

Medical Image Processing Erkennung, Analyse und Suche von Bildern

Thomas Deselaers Daniel Keysers Hermann Ney

Lehrstuhl für Informatik VI Human Language Technology and Pattern Recognition Computer Science Department, RWTH Aachen University D-52056 Aachen, Germany

November 11th, 2004

Medical Images

High intra-class variability

Blood Cell Data

Application: X-Ray Dose Estimation

RWTH

Object Recognition

Deselaers: Medical Image Processing

Object Recognition / Scene Analysis

Scene Analysis

Deselaers: Medical Image Processing

Scene Analysis

Object Recognition using Image Patches

idea:

- small sub images extracted at different relevant positions of original image
- position determined e.g. by local variance, entropy, or salient points
- known to achieve good results in various classification tasks: face recognition, optical character recognition

advantages:

- different objects with same parts: allow for learning about one type of object from other objects
- changes in geometrical relation between image parts can be modelled
- can handle occlusions well

Extraction of image patches

Deselaers: Medical Image Processing

Further Processing of Patches Image Patch Histograms

- extract local features from all images in the database
- cluster these local features to a reasonable number of clusters (e.g. 512)
- save for each image how many features are in which cluster

Classification using image patches

using patches directly

global patch search and direct voting

using image patch histograms

- nearest neighbor
- naive Bayes
- statistical models

Global Patch Search

training:

- extract local features from all training images
- build KD-Tree of this large set of local features

testing:

- extract local features from the test image
- query the KD-Tree about these local features
- use a direct voting scheme for classification

Statistical Models Principles

idea:

- compact representation: histograms
- learn which objects consist of what object parts. e.g. what is typical for faces?
- different learning techniques possible

parameters:

- position of the image patches
- size of the image patches
- number of clusters for the histograms

Statistical Models example images: discriminative parts

Statistical Models example images: examples for most discriminative parts

RNTH

Statistical Models example images: images classified correctly/incorrectly

correctly classified:

incorrectly classified:

Image Retrieval Demo How is this done?

Deselaers: Medical Image Processing

Features

important aspects within content-based image retrieval:

- ► how are the images represented ⇒ features
- ► how are the image representations compared ⇒ comparison measures
- ► how do we retrieve similar images from a database ⇒ retrieval method

properties of images

- features describing color
- features describing texture
- images as features
- features describing shapes
- objects contained in images

▶ $P(x \in S^m) = \frac{K^m}{N}$

 $\int \mathcal{S}^m = \mathcal{S}$

idea:

M-1

m=0

Color Histograms feature describing color

usually regularly spaced grid

example

Deselaers: Medical Image Processing

▶ Partition feature space S into M regions: $S^m \subset S$ with

Tamura Texture Features

feature describing texture proposed by Tamura et al. 1978:

- how do algorithmic features correspond to human perception?
- examined 6 different features, three correspond strongly to human perception
 - coarseness coarse vs. fine
 - contrast high vs. low
 - directionality directional vs. non-directional
 - line-likeness line-like vs. blob-like
 - regularity regular vs. irregular
 - roughness rough vs. smooth
- calculate the first three features pixel wise
- create a 3D histogram of these features

22

Image Features images as features

idea:

- use images directly
- different methods to compare images

comparison methods:

- Euclidean distance
- tangent distance
- image distortion model

Comparing Images Euclidean Distance

- scale images to common size
- calculate distance

$$D(A,B) = \sum_{x=1}^{X} \sum_{y=1}^{Y} (A(x,y) - B(x,y))^{2}$$

- advantages:
 - easy to calculate
 - fast
- drawbacks
 - no invariance against any transformation
 - sensitive to lighting changes

Comparing Images Tangent Distance

introduced by Simard et al. captures transformations in linear subspace

examples: linear approximations of affine transforms and image brightness

(a) original image, (b) left shift, (c) down shift (d) hyperbolic diagonal,(e) hyperbolic axis, (f) scaling, (g) rotation, (h) increased brightness

Comparing Images Tangent Distance (cont.)

- advantages:
 - fast
 - can account for some transformations
 - can account for lighting changes
- drawbacks
 - only global transformations considered

idea:

- account for small local transformations
- important: take local context into account

Deselaers: Medical Image Processing

同時

Comparing Images Image Distortion Model (cont.)

no dependencies between mappings

28

Comparing Images Image Distortion Model (cont.) / Local Context

Comparing Images Image Distortion Model (cont.) / Examples

Deselaers: Medical Image Processing

Comparing Image Comparison Measures

correct with tangent distance

correct with image patches

Deselaers: Medical Image Processing

Feature-based Retrieval Method Combining Features

- database B
- ▶ image X represented by a set of features:
 X := {X₁,...,X_m,...,X_M}
- query image $Q := \{Q_1, \ldots, Q_m, \ldots, Q_M\}$
- query is processed by calculating distance:

$$D(Q,X) := \sum_{m=1}^{M} w_m \cdot d_m(Q_m,X_m)$$

- *d_m* distance function, *w_m* weight
- ▶ for each d_m , $\sum_{X \in B} d_m(Q_m, X_m) = 1$ by re-normalization
- the *K* images with smallest distances are returned
- simple extension to support relevance feedback

Evaluation of CBIR

Problems:

- which images are relevant
- what does the user want
- how to measure performance

Performance measures:

other measures based on these (strongly correlated)

Competitions / Evaluations:

systematic comparison of different systems on the same task

Browsing an image database

RNTH

results from Google image search ('cookie') (order: as from Google in March 2003)

Results for Clustering Google Images ('cookie')

Results for Clustering Google Images ('aircraft')

RNTH

Videos / image sequences

Data Mining Cup 2004

RNTH

task:

- classify customer data of mail-order company
- classes: returning much, returning little, unspecified
- ho ~ 20 000 training examples
- ho \sim 20000 examples to be classified

methods

- data transformations
- logistic regression
- naive bayes classification

results

places 1,3,5 of 97 student submissions

Studienarbeiten:

- Im Rahmen des IRMA Projektes
- IRMA= Image Retrieval in Medical Applications

Mögliche Themen:

- Bilderkennung
- Bildverarbeitung
- Bildsuche

Bisherige Studienarbeiten am i6

 Automatische Iris-Detektion und Merkmalsextraktion in digitalen Farbbildern des menschlichen Auges

 Parameterbestimmung f
ür die Dosisregelung von Durchleuchtungssystemen

- Merkmale zur statistischen Objekterkennung
- Kombination von Text- und Image Retrieval

Mögliche Studienarbeiten

