

Extending Hierarchical Machine Translation Using Soft Syntactic Labels

Stephan Peitz

peitz@i6.informatik.rwth-aachen.de

April 14, 2010

Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

1	State of the Art	3
2	Hierarchical Phrase-based Translation	4
3	Soft Syntactic Labels	5
4	Tree Well-Formedness Probability Model	10
5	Results	15
6	Conclusion	16

1 State of the Art

- hierarchical phrase-based translation:
 - ▶ A Hierarchical Phrase-based Model for Statistical Machine Translation [Chiang 05] (UMD/ISI, ACL 2005)
- explicit linguistic structures:
 - Statistical Machine Translation with Syntactified Target Language Phrases [Marcu & Wang⁺ 06] (ISI, EMNLP 2006)
 - ▶ Well-formed Dependency Structure [Shen & Xu⁺ 08] (BBN, ACL 2008)
 - ▶ Preference Grammars: Softening Syntactic Constraints to Improve Statistical Machine Translation [Venugopal & Zollmann+ 09] (CMU 2009)

2 Hierarchical Phrase-based Translation

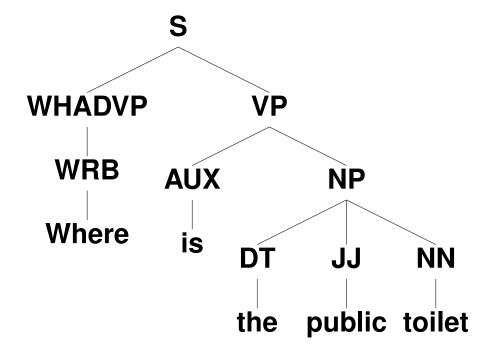
- formalization as a parallel stochastic context-free grammar
- consider the generation of a translation as probabilistic parsing procedure (CYK+)
- ightharpoonup rules of the form $X \to \langle \gamma, \alpha, \sim \rangle$, where:
 - > X is a non-terminal
 - $ightarrow \gamma$ and lpha are strings of terminals and non-terminals
 - hd \sim is a one-to-one correspondence between the non-terminals of lpha and γ
- **example:**

```
X	o \langle 	ext{lch stimme } X^{\sim 1} 	ext{ zu, I agree with } X^{\sim 1} 
angle \ X	o \langle 	ext{weil andere } X^{\sim 1} 	ext{ nicht } X^{\sim 2}, 	ext{ because others have not } X^{\sim 2} 	ext{ } X^{\sim 1} 
angle
```

- problem: only use a generic non-terminal
- ▶ no further information to guide the translation process

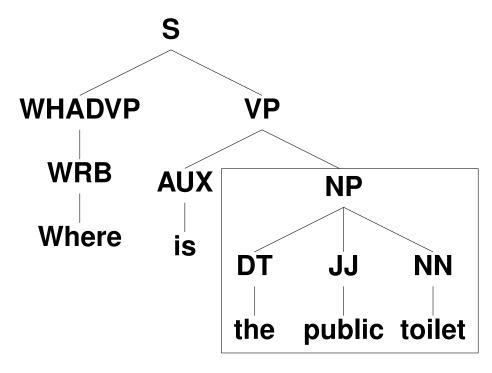
3 Soft Syntactic Labels

- ▶ idea: extend hierarchical translation with an additional model using syntax information
 - additional information is extracted from deep syntactic parse tree of the target language
- **▶** goal: get more fluent, structured and grammatically correct translation



Syntactic Analysis

- ▶ use labels from deep syntactic parse trees to replace the generic nonterminals in the translation process
- each sentence of the target language is parsed
- resulting syntax trees are used in the rule extraction process
 - ▶ for each phrase of a given sentence, find the node in the parse tree that matches the phrase best



Rule Extraction

- $ightharpoonup \mathcal{H} = \{NP, PP, NN, DT ...\}$ is a set of labels used in the additional model
- ightharpoonup for each rule r_i :
 - ho define a probability distribution $p(\mathrm{h}|r_i)$ over vectors of labels h
 - hd h replaces in the additional model the generic non-terminals in the rule r_i

Example

- rules with soft syntactic labels:
 - hierarchical rule

$$r_0:X o \langle X^{\sim 1}$$
 Zweideutigkeit, $X^{\sim 1}$ ambiguity $angle \ egin{cases} p((NP,DT)|r_0)=0.5\ p((PP,PP)|r_0)=0.3\ p((NP,NP)|r_0)=0.2 \end{pmatrix}$

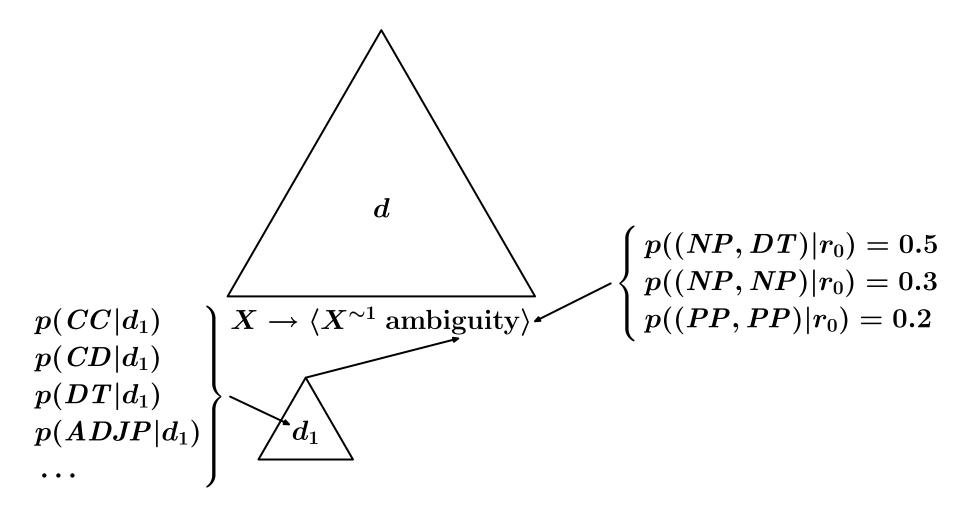
▶ lexical rule

$$egin{aligned} r_1: X &
ightarrow \langle \mathsf{diese}, \ \mathsf{this}
angle \ iggl\{ p((DT)|r_1) \ = \ 1 \ igr\} \end{aligned}$$

4 Tree Well-Formedness Probability Model

- ▶ introduce additional model to measure the compatibility between two rules
 - > rules with high mutual match should get a high probability
- **b** used factors in the computation of the additional feature $p_{syntax}(d)$ for a derivation d:
 - ▷ distribution for each rule computed in the rule extraction
 - distribution over all labels for each sub-derivation

Visualization



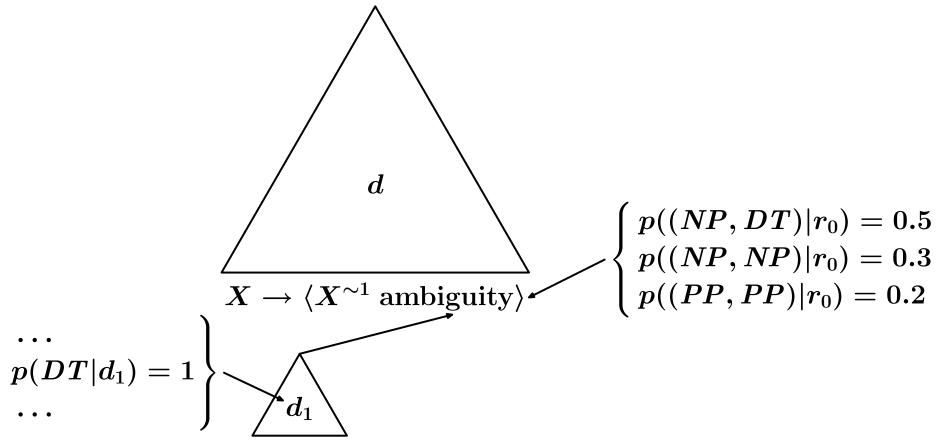
- $m p(h_0|d_1)$ is a computed distribution over all labels $h_0\in \mathcal H$ for sub-derivation d_1
- $ightharpoonup p(\mathrm{h}|r_0)$ is the distribution computed in the rule extraction for rule r_0

Example

$$r_0: X
ightarrow \langle X^{\sim 1}$$
 Zweideutigkeit, $X^{\sim 1}$ ambiguity $\left\{egin{array}{l} p((NP,DT)|r_0) &= 0.5 \ p((PP,PP)|r_0) &= 0.3 \ p((NP,NP)|r_0) &= 0.2 \end{array}
ight\}$ $r_1: X
ightarrow \langle ext{diese, this}
angle \left\{ egin{array}{l} p((DT)|r_1) &= 1 \ \end{pmatrix}
ight.
ight.
ight.
ight.
ight. Y
ight.
ight.
ight. \langle ext{diese, such}
angle \left\{ egin{array}{l} p((JJ)|r_2) &= 0.7 \ p((PDT)|r_2) &= 0.3 \ \end{array}
ight.
ight.$

Visualization

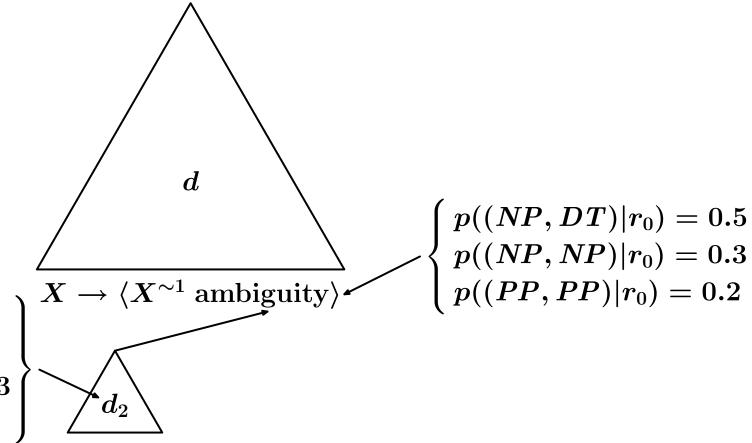
- ▶ sentence "diese Zweideutigkeit ..."
- ► translation "this ambiguity ..."



 $ightharpoonup p_{syntax}(d) = 0.5 \cdot 1 + 0.3 \cdot 0 + 0.2 \cdot 0 = 0.5$

Visualization

- ▶ sentence "diese Zweideutigkeit ..."
- translation "such ambiguity ..."



 $p(JJ|d_2)=0.7 \ p(PDT|d_2)=0.3 \ \cdots$

 $ightharpoonup p_{syntax}(d) = 0.5 \cdot 0 + 0.3 \cdot 0 + 0.2 \cdot 0 = 0$

5 Results

▶ QUAERO 09 German-English (1.5 M training sentences)

	dev		test	
	BLEU [%]	T ER [%]	BLEU [%]	TER [%]
baseline	24.4	59.0	26.1	56.4
+ soft syntactic labels	24.8	58.6	26.1	56.4

► NIST 09 Chinese-English (1.1 M training sentences)

	NIST'06		NIST'08	
	BLEU [%]	TER [%]	BLEU [%]	TER [%]
baseline	27.6	66.2	22.2	69.3
+ soft syntactic labels	28.4	65.6	22.6	69.2

6 Conclusion

- extension of the hierarchical system with soft syntactic labels
 - > use syntax information of the target language to guide translation process
- ► small improvement on non-monotonic language pair Chinese-English
- outlook: analysis of the syntax parser influence
 - ▷ casing, tokenization, categories
 - ▶ domain depedence? (Stanford trained on Wall Street data)

thank you for your attention

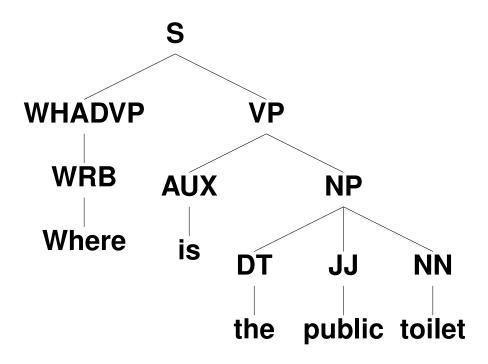
References

- [Chiang 05] D. Chiang. A hierarchical phrase-based model for statistical machine translation. In *Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics*, pp. 263–270, Ann Arbor, Michigan, June 2005. Association for Computational Linguistics. 3
- [Marcu & Wang⁺ 06] D. Marcu, W. Wang, A. Echihabi, K. Knight. Spmt: statistical machine translation with syntactified target language phrases. In *EMNLP* '06: Proceedings of the 2006 Conference on Empirical Methods in Natural Language Processing, pp. 44–52, Morristown, NJ, USA, 2006. Association for Computational Linguistics. 3
- [Shen & Xu⁺ 08] L. Shen, J. Xu, R. Weischedel. A New String-to-Dependency Machine Translation Algorithm with a Target Dependency Language Model. In *46rd Annual Meeting on Association for Computational Linguistics*, pp. 577–585, Columbus, Ohio, June 2008. 3
- [Venugopal & Zollmann⁺ 09] A. Venugopal, A. Zollmann, N. A. Smith, S. Vogel. Preference grammars: softening syntactic constraints to improve statistical machine translation. In *NAACL '09: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American*

of the Association for Computational Linguistics, pp. 236–244, Morristown, NJ, USA, 2009. Association for Computational Linguistics. 3

"Best match" node

- ▶ find the node in the parse tree that best matches the phrase
- minimize the number of words to be deleted or added to a phrase, so that it fits the yield of a node

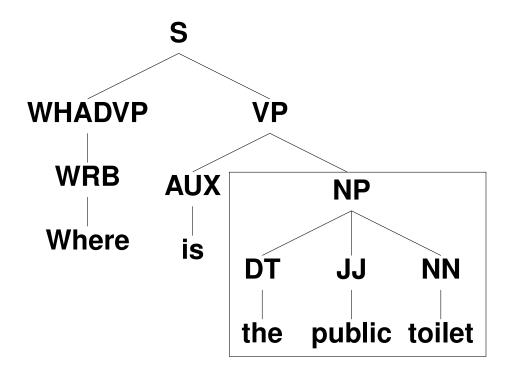


source phrases:

- public toilet
- ▶ is the

"Best match" node

- ▶ find the node in the parse tree that best matches the phrase
- minimize the number of words to be deleted or added to a phrase, so that it fits the yield of a node



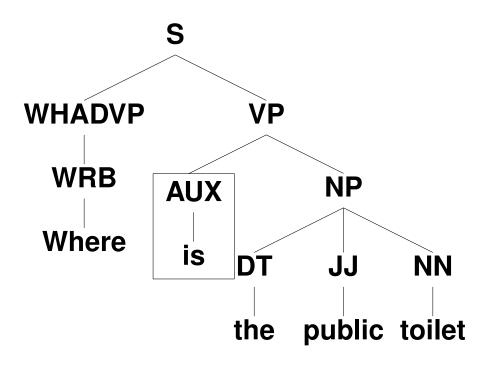
source phrases:

public toilet: Node NP

▶ is the

"Best match" node

- ▶ find the node in the parse tree that best matches the phrase
- minimize the number of words to be deleted or added to a phrase, so that it fits the yield of a node



source phrases:

▶ public toilet: Node NP

▶ is the: Node AUX

Tree Well-Formedness Probability Model

- ▶ introduce additional model to measure the compatibility between two rules
 - rules with high mutual match should get a high probability
- $lackbox{}{lackbox{}{}} d$ is a derivation using rules $r_1 \dots r_i \dots r_{|d|}$
- lacksquare Let $p_{syntax}(d) = \prod_i^{|d|} p_{syntax}(r_i|r_{i+1}^{|d|})$ be the additional feature

Computation

- lacksquare 1. $r_{|d|}$ is a lexical rule X o w
 - \triangleright calculate a probability distribution p for the non-terminals

$$orall h_0 \in \mathcal{H} : p(h_0|r_{|d|}) = p((h_0)|r_{|d|}) \ p_{syntax}(r_{|d|}) = 1$$

Computation

- **> 2.** r_i is a hierarchical rule $X \to wXv$
 - \triangleright calculate new probability distribution p for the non-terminals

$$egin{aligned} ilde{p}(h_0|r_i) &= \sum_{(h_0,h_1)\in H(r_i)} p((h_0,h_1)|r_i) \cdot p(h_1|r_{i+1}^{|d|}) \ orall h_0 \in \mathcal{H} : p(h_0|r_i) &= rac{ ilde{p}(h_0|r_i)}{\sum_{h_0' \in \mathcal{H}} ilde{p}(h_0'|r_i)} \ p_{syntax}(r_i|r_{i+1}^{|d|}) &= \sum_{\mathrm{h} \in H(r_i)} p(\mathrm{h}|r_i) \cdot p(h_1|r_{i+1}^{|d|}) \end{aligned}$$

QUAERO corpus statistics

		German	English	
train:	Sentences	1 521 715		
	Running Words	41 009 835	41 695 098	
	Vocabulary	177 031	119 140	
	Singletons	66 985	45 575	
dev:	Sentences	2 1	121	
	Running Words	56 029	45 211	
	Vocabulary	9 454	10 325	
	OOVs	1 121	6 131	
test:	Sentences	2 0	007	
	Running Words	53 654	43 797	
	Vocabulary	9 375	9 999	
	OOVs	1 341	5 881	

NIST corpus statistics

		Chinese	English	
train:	Sentences	1 165 478		
	Running Words	30 545 919	31 351 263	
	Vocabulary	69 804	180 921	
	Singletons	15 782	82 502	
dev:	Sentences	1 6	1 664	
	Running Words	42 930	194 885	
	Vocabulary	6 387	9 673	
	OOVs	1 897	6 935	
test:	Sentences	1 3	357	
	Running Words	36 114	149 057	
	Vocabulary	6 418	17 877	
	OOVs	1 449	43 595	

