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Abstract
This paper considers statistical parsing of Czech,
which differs radically from English in at leasttwo
respects: (1) it is a highly inflectedlanguage,and
(2) it has relatively free word order. Thesedif-
ferencesare likely to posenew problemsfor tech-
niques that have beendevelopedon English. We
describe our experiencein building on the parsing
modelof (Collins 97). Our final results – 80% de-
pendency accuracy – represent good progress to-
wardsthe 91% accuracy of the parser on English
(Wall StreetJournal) text.

1 Intr oduction
Much of the recent research on statistical parsing
hasfocused on English; languagesother than En-
glish are likely to posenew problemsfor statisti-
cal methods. This paper considersstatistical pars-
ing of Czech,using the PragueDependency Tree-
bank(PDT)(Hajič, 1998) asasourceof training and
testdata(the PDT containsaround 480,000 words
of general news,businessnews,andsciencearticles�
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annotatedfor dependency structure). Czechdiffers
radically from English in at leasttwo respects:

� It is a highly inflected(HI) language. Words
in Czechcan inflect for a number of syntac-
tic features: case, number, gender, negation
andso on. This leads to a very large number
of possibleword forms,andconsequent sparse
dataproblemswhenparametersareassociated
with lexical items.On thepositive side,inflec-
tional information should provide strong cues
to parsestructure;animportant question is how
to parameterizea statistical parsing modelin a
way that makesgooduseof inflectional infor-
mation.

� It hasrelatively free word order (FWO). For
example,a subject-verb-object triple in Czech
cangenerally appear in all 6 possible surface
orders (SVO, SOV, VSOetc.).

OtherSlavic languages(suchasPolish,Russian,
Slovak, Slovene, Serbo-croatian, Ukrainian) also
show thesecharacteristics. Many European lan-
guagesexhibit FWO andHI phenomenato a lesser
extent. Thus the techniquesand results found for
Czechshould be relevant to parsing several other
languages.

This paperfirst describes a baseline approach,
based on the parsing modelof (Collins 97), which
recoversdependencieswith 72%accuracy. Wethen
describe a series of refinements to the model,giv-
ing an improvement to 80% accuracy, with around
82% accuracy on newspaper/businessarticles. (As
a point of comparison,theparser achieves91%de-
pendency accuracy on English(Wall StreetJournal)
text.)



2 Data and Evaluation
The Prague Dependency Treebank PDT (Hajič,
1998) hasbeenmodeled after the PennTreebank
(Marcus et al. 93), with one important excep-
tion: following the Praguian linguistic tradition,
the syntactic annotation is basedon dependencies
rather than phrasestructures. Thusinsteadof “non-
terminal” symbolsusedatthenon-leavesof thetree,
thePDT uses so-called analytical functionscaptur-
ing the type of relation between a dependentand
its governing node. Thus the number of nodes is
equal to thenumberof tokens(words+ punctuation)
plus one(an artificial root node with rathertechni-
cal function is added to eachsentence). The PDT
contains also a traditional morpho-syntactic anno-
tation (tags)at eachword position (together with a
lemma,uniquelyrepresenting theunderlying lexical
unit). As Czechis a HI language,thesizeof theset
of possible tagsis unusually high: morethan3,000
tagsmay be assignedby the Czechmorphological
analyzer. ThePDT alsocontainsmachine-assigned
tagsandlemmasfor each word (using a tagger de-
scribedin (Hajič andHladka,1998)).

For evaluation purposes,the PDT hasbeen di-
vided into a training set (19k sentences) anda de-
velopment/evaluationtestsetpair (about 3,500sen-
tenceseach). Parsingaccuracy is definedastheratio
of correctdependency links vs. thetotal numberof
dependency links in a sentence(which equals,with
theoneartificial root node added, to thenumberof
tokens in a sentence). As usual, with the develop-
menttestsetbeingavailableduring thedevelopment
phase,all final resultshasbeenobtainedontheeval-
uation testset,which nobody couldseebeforehand.

3 A Sketch of the Parsing Model
The parsing model builds on Model 1 of (Collins
97); this section briefly describesthe model. The
parser usesa lexicalized grammar— each non-
terminal hasan associatedhead-word andpart-of-
speech (POS).We write non-terminals as

�����	�
:
�

is thenon-terminal label,and
�

is a 
��
����� pairwhere� is theassociatedhead-word,and � asthePOStag.
Seefigure 1 for an examplelexicalized tree, anda
list of thelexicalizedrules that it contains.

Eachrule hastheform1:

���������������������! " " #�%$&����$'�)(*�����)+,$-��./$'�! " " #+102��.304�
(1)

1With theexceptionof thetoprulein thetree,whichhasthe
form TOP 5 H(h).

(
is the head-child of the phrase, which inher-

its the head-word
�

from its parent
�

.
�6$7 " " #���

and
+8$3 " " #+10

are left and right modifiers of(
. Either 9 or : may be zero, and 9 ;: ; < for unary rules. For example,

in S(bought,VBD)
�

NP(yesterday,NN)
NP(IBM,NNP) VP(bought,VBD):

=?>A@ BC>ED
P = S H = VPFHG

= NP
FJI

= NPK G
= L IBM, NNP M K I

= L yesterday, NN M
h = L bought, VBD M
The model can be considered to be a variant

of Probabilistic Context-FreeGrammar(PCFG).In
PCFGs eachrule N � O

in the CFG underlying
the PCFG has an associated probability

����OQP N � .
In (Collins 97),

����ORP N � is definedasa product of
terms,by assuming that the right-hand-side of the
rule is generatedin threesteps:

1. Generate the head constituent label of the
phrase,with probability SHT ��(UP'� � �V� .

2. Generate modifiersto theleft of theheadwith
probability W?XZY $�[\[ �^]J$ SQ_ ��� X ��� X �`Pa� � � � (b� ,
where

�c�/]J$d���Z�/]J$'� ; STOP. The STOP
symbol is added to the vocabulary of non-
terminals, andthe modelstopsgenerating left
modifierswhenit is generated.

3. Generatemodifiersto theright of theheadwith
probability W XZY $�[\[ 0Q]J$ Sfe ��+ X ��. X �gPh� � � � (b� .+ 0Q]J$ ��. 0R]J$ �

is definedasSTOP.

For example, theprobability of S(bought,VBD)
-> NP(yesterday,NN) NP(IBM,NNP)
VP(bought,VBD) is defined asiVjlk

VP m S,bought,VBD npoirqsk
NP(IBM,NNP) m S,VP,bought,VBD nHoi q k
NP(yesterday,NN) m S,VP,bought,VBD nHoi q k
STOP m S,VP,bought,VBD npoi�t&k
STOP m S,VP,bought,VBD n

Other rules in the treecontribute similar setsof
probabilities. The probability for the entire tree is
calculatedastheproduct of all these terms.

(Collins 97) describesa seriesof refinementsto
this basic model: theaddition of “distance”(a con-
ditioning feature indicating whetheror not a mod-
ifier is adjacent to the head); the addition of sub-
categorization parameters (Model 2), and parame-
tersthatmodelwh-movement(Model3); estimation



TOP

S(bought,VBD)

NP(yesterday,NN)

NN

yesterday

NP(IBM,NNP)

NNP

IBM

VP(bought,VBD)

VBD

bought

NP(Lotus,NNP)

NNP

Lotus

TOP -> S(bought,VBD)
S(bought,VBD) -> NP(yesterday,NN) NP(IBM,NNP) VP(bought,VBD)
NP(yesterday,NN) -> NN(yesterday)
NP(IBM,NNP) -> NNP(IBM)
VP(bought,VBD) -> VBD(bought) NP(Lotus,NNP)
NP(Lotus,NNP) -> NNP(Lotus)

Figure1: A lexicalized parse tree,anda list of therulesit contains.

techniquesthatsmoothvariouslevelsof back-off (in
particular using POStagsas word-classes, allow-
ing the model to learn generalizations aboutPOS
classesof words). Searchfor the highestprobabil-
ity treefor asentenceis achievedusing aCKY-style
parsing algorithm.

4 Parsing the CzechPDT

Many statistical parsing methodsdevelopedfor En-
glish uselexicalizedtreesasa representation (e.g.,
(Jelinek et al. 94; Magerman95; Ratnaparkhi 97;
Charniak 97; Collins 96; Collins 97)); several (e.g.,
(Eisner96; Collins 96; Collins 97; Charniak 97))
emphasize the use of parameters associated with
dependencies betweenpairs of words. The Czech
PDT containsdependency annotations, but no tree
structures.For parsing Czechweconsidered astrat-
egy of converting dependency structures in training
data to lexicalized trees,then running the parsing
algorithmsoriginally developedfor English. A key
point is that the mapping from lexicalized trees to
dependency structuresis many-to-one.As anexam-
ple, figure 2 showsan input dependency structure,
andthreedifferentlexicalizedtreeswith this depen-
dency structure.

Thechoiceof treestructureis crucial in determin-
ing the independenceassumptions that the parsing
modelmakes. Thereareat least3 degreesof free-
domwhendeciding on thetreestructures:

1. How “flat” should thetreesbe?Thetreescould
be asflat aspossible (asin figure 2(a)), or bi-
narybranching(asin trees(b) or (c)), or some-
wherebetweenthese two extremes.

2. What non-terminal labelsshould the internal
nodes have?

3. Whatsetof POStagsshould beused?

4.1 A BaselineApproach

To provideabaselineresultweimplementedwhatis
probably thesimplest possible conversion scheme:

1. The treeswere as flat as possible, as in fig-
ure2(a).

2. The non-terminal labels were “XP”, whereX
is the first letter of the POStag of the head-
word for the constituent. Seefigure 3 for an
example.

3. The part of speech tagswere the major cate-
gory for each word (thefirst letterof theCzech
POSset,which corresponds to broad category
distinctions suchasverb,noun etc.).

Thebaselineapproachgave a result of 71.9%accu-
racy on thedevelopmenttestset.



Input:
u
sentencewith partof speech tags:I/N saw/V the/D man/N(N=noun, V=verb,D=determiner)

dependencies(word v Parent): 
 I v saw � , 
 saw v START � , 
 the v man� , 
 man v saw �
Output: a lexicalizedtree

(a) X(saw)

X(I)

N

I

V

saw

X(man)

D

the

N

man

(b) X(saw)

N

I

X(saw)

V

saw

X(man)

D

the

N

man

(c) X(saw)

X(saw)

N

I

V

saw

X(man)

D

the

N

man

Figure2: Converting dependency structuresto lexicalized treeswith equivalentdependencies. The trees
(a), (b) and(c) all have the input dependency structure: (a) is the “flattest” possible tree; (b) and(c) are
binary branchingstructures. Any labels for thenon-terminals(marked

�
) would preserve thedependency

structure.

VP(saw)

NP(I)

N

I

V

saw

NP(man)

D

the

N

man

Figure 3: The baseline approach for non-terminal
labels. Eachlabelis XP, whereX is thePOStagfor
thehead-word of theconstituent.

4.2 Modifications to the BaselineTrees

While thebaselineapproachis reasonablysuccess-
ful, there aresomelinguistic phenomenathat lead
to clear problems.This section describessometree
transformations that are linguistically motivated,
andleadto improvements in parsing accuracy.

4.2.1 Relative Clauses

In thePDT theverb is taken to be theheadof both
sentencesandrelative clauses. Figure4 illustrates
how thebaseline transformation method canleadto
parsing errorsin relative clausecases.Figure4(c)
shows the solution to the problem: the label of the
relative clause is changed to SBAR, and an addi-
tional VP level is added to the right of the relative
pronoun. Similar transformations wereapplied for
relative clauses involving Wh-PPs(e.g., “the man
to whomI gave a book”), Wh-NPs(e.g., “the man
whosebook I read”) andWh-Adverbials (e.g.,“the
placewhere I live”).

4.2.2 Coordination

ThePDT takestheconjunct to betheheadof coor-
dination structures(for example, and would be the
headof the NP dogs and cats). In thesecases the
baseline approachgivestreestructuressuchasthat
in figure5(a).Thenon-terminallabel for thephrase
is JP (becausetheheadof thephrase,theconjunct
and, is taggedasJ).

This choice of non-terminal is problematic for
two reasons: (1) theJP label is assignedto all co-
ordinatedphrases,for examplehiding the fact that
theconstituent in figure5(a)is anNP; (2) themodel
assumesthat left andright modifiersaregenerated
independently of eachother, and as it stands will
give unreasonably high probability to two unlike
phrasesbeing coordinated. To fix theseproblems,
thenon-terminallabel in coordination cases wasal-
teredto be the sameasthat of the second conjunct
(the phrasedirectly to the right of the headof the
phrase).Seefigure5. A similar transformation was
madefor cases wherea commawas the headof a
phrase.

4.2.3 Punctuation

Figure 6 showsan additional change concerning
commas. This change increasesthe sensitivity of
themodelto punctuation.

4.3 Model Alterati ons

Thissection describessomemodificationsto thepa-
rameterization of themodel.



(a) VP

NP

John

V

likes

NP

Mary VP

Z

,

P

who

V

likes

NP

Tim

(b) VP

VP

NP

John

V

likes

NP

Mary

Z

,

VP

P

who

V

likes

NP

Tim

(c) VP

NP

John

V

likes

NP

Mary SBAR

Z

,

P

who

VP

V

likes

NP

Tim

Figure4: (a) Thebaselineapproachdoesnot distin-
guish mainclauses from relative clauses:both have
averbasthehead, sobotharelabeledVP. (b) A typ-
ical parsing error due to relative andmain clauses
notbeing distinguished. (notethattwo mainclauses
can be coordinatedby a comma,as in John likes
Mary, Mary likesTim). (c) Thesolution to theprob-
lem: a modification to relative clause structuresin
training data.

4.3.1 Preferencesfor dependenciesthat do not
cross verbs

The model of (Collins 97) had conditioning vari-
ablesthat allowed the model to learn a preference
for dependencies which do not crossverbs. From
theresultsin table3,adding thiscondition improved
accuracy by about 0.9%on thedevelopmentset.

4.3.2 Punctuation for phrasal boundaries
Theparserof (Collins96)usedpunctuation asanin-
dication of phrasalboundaries. It wasfoundthatif a
constituent w � 
  " " \�yxh " " � hastwo children

�
andx

separatedby a punctuation mark, then
x

is gen-
erally followed by a punctuation markor theendof

a) JP(a)

NP(z!{ )
...

J

and

NP(z}| )
...

b) NP(a)

NP(z'{ )
...

J

and

NP(z�| )
...

Figure 5: An exampleof coordination. The base-
line approach(a) labels the phraseasa JP; the re-
finement(b) takes thesecondconjunct’s label asthe
non-terminalfor thewholephrase.

NP(h)

Z(,)

,
...

N(h)

h
...

~ NPX(h)

Z(,)

,

NP(h)

...

N(h)

h
...

Figure 6: An additional change, triggered by a
commathatis theleft-most child of aphrase: anew
non-terminalNPX is introduced.

sentencemarker. Theparsers of (Collins 96,97)en-
coded this asa hardconstraint. In theCzechparser
we added a cost of -2.5 (log probability)2 to struc-
turesthat violatedthis constraint.

4.3.3 First-Order (Bigram) Dependencies
The model of section 3 madethe assumption that
modifiersaregeneratedindependentlyof eachother.
This section describes a bigram model, wherethe
context is increasedto consider thepreviously gen-
erated modifier ((Eisner 96) also describesuseof
bigram statistics). The right-hand-sideof a rule is
now assumedto begeneratedin thefollowing three
stepprocess:

1. Generate thehead label, with probability

SR� ��(UP'� � ���
2. Generate left modifierswith probability�

XZY $�[\[ �/]J$ SR�
��� X ��� X ��P'� X�� $ � P,h,H

�

where
���

is definedasa special �E� �h� sym-
bol. Thus the previous modifier,

� X�� $ , is
addedto the conditioning context (in the pre-
vious modelthe left modifiershadprobabilityW?XZY $�[\[ �^]J$ S � ��� X ��� X �cP P,h,H

�
.)

3. Generate right modifiers using a similar bi-
gramprocess.

Introducing bigram-dependencies into the parsing
model improved parsing accuracy by about <  �� %
(asshown in Table3).

2This valuewasoptimizedon thedevelopment set



1. main part of
speech

8. person

2. detailed part of
speech

9. tense

3. gender 10. degreeof compar-
ison

4. number 11. negativeness
5. case 12. voice
6. possessor’s

gender
13. variant/register

7. possessor’s num-
ber

Table 1: The 13-character encoding of the Czech
POStags.

4.4 Alter native Part-of-SpeechTagsets

Part of speech (POS)tagsserve an important role
in statistical parsing by providing themodelwith a
level of generalization as to how classesof words
tend to behave, what roles they play in sentences,
andwhat other classes they tend to combinewith.
Statistical parsersof Englishtypically make useof
theroughly 50 POStagsusedin thePennTreebank
corpus,but theCzechPDT corpus providesa much
richer setof POStags,with over 3000 possible tags
definedby the tagging system and over 1000 tags
actually found in the corpus. Using that large a
tagset with a training corpus of only 19,000 sen-
tences would leadto serious sparsedataproblems.
It is also clear that someof the distinctions being
madeby the tags are more important than others
for parsing. We therefore explored different ways
of extracting smaller but still maximally informative
POStagsets.

4.4.1 Description of the CzechTagset
ThePOStagsin the CzechPDT corpus (Hajič and
Hladká, 1997) areencodedin 13-character strings.
Table1 showstherole of eachcharacter. For exam-
ple, thetagNNMP1-----A-- would beusedfor a
word thathad“noun” asboth its mainanddetailed
partof speech,thatwasmasculine, plural, nomina-
tive(case1), andwhosenegativenessvaluewas“af-
firmative”.

Within thecorpus,eachwordwasannotatedwith
all of thePOStagsthatwould bepossible given its
spelling, using theoutput of amorphological analy-
sis program, andalso with the single oneof those
tags that a statistical POS tagging program had
predicted to be the correct tag (Hajič and Hladka,
1998). Table2 showsaphrasefrom thecorpus,with

Form DictionaryTags Machine Tag
poslanci NNMP1-----A-- NNMP1-----A--

NNMP5-----A--
NNMP7-----A--
NNMS3-----A--
NNMS6-----A--

Parlamentu NNIS2-----A-- NNIS2-----A--
NNIS3-----A--
NNIS6-----A-1

schv́alili VpMP---XR-AA- VpMP---XR-AA-

Table2: CorpusPOStagsfor “the representatives
of theParliament approved”.

the alternative possible tagsand machine-selected
tagfor eachword. In thetraining portion of thecor-
pus,the correct tag asjudged by humanannotators
wasalsoprovided.

4.4.2 Selection of a Mor e Inf ormative Tagset
In the baseline approach, the first letter, or “main
partof speech”, of the full POSstringswasused as
the tag. This resulted in a tagset with 13 possible
values.

A number of alternative, richer tagsetswereex-
plored, using various combinations of characterpo-
sitions from the tagstring. Themostsuccessful al-
ternative wasa two-letter tag whosefirst letter was
alwaysthemainPOS,andwhosesecond letterwas
the casefield if the main POS was one that dis-
plays case, while otherwise the second letter was
the detailed POS. (The detailed POSwasused for
the main POSvaluesD, J, V, andX; the casefield
wasusedfor the other possible main POSvalues.)
This two-letter schemeresultedin 58 tags, andpro-
vided abouta 1.1% parsing improvementover the
baseline on thedevelopmentset.

Even richer tagsets that also included the per-
son,gender, andnumbervaluesweretested without
yielding any further improvement, presumablybe-
cause the damagefrom sparsedataoutweighedthe
valueof theadditional informationpresent.

4.4.3 Explorations toward Clustered Tagsets
An entirely different approach, rather thansearch-
ing by handfor effective tagsets, would be to use
clustering to derive them automatically. We ex-
plored two different methods, bottom-up and top-
down, for automatically deriving POStagsetsbased
oncountsof governinganddependent tagsextracted
from theparsetreesthat theparser constructsfrom
the training data. Neither testedapproachresulted
in any improvement in parsing performancecom-



paredto the hand-designed “two letter” tagset, but
the implementations of eachwerestill only prelim-
inary, anda clusteredtagsetmoreadroitly derived
might do better.

4.4.4 Dealing with Tag Ambiguity
Onefinal issue regarding POStagswashow to deal
with the ambiguity betweenpossible tags,both in
training and test. In the training data, therewasa
choicebetweenusingthe output of thePOStagger
or thehumanannotator’s judgmentasto thecorrect
tag. In testdata,the correct answerwasnot avail-
able,but thePOStagger output couldbeusedif de-
sired. This turns out to matteronly for unknown
words,asthe parseris designedto do its own tag-
ging, for words that it hasseenin training at least
5 times, ignoring any tag supplied with the input.
For “unknown” words(seen lessthan5 times), the
parser canbe seteither to believe the tag supplied
by the POStagger or to allow equally any of the
dictionary-derivedpossible tagsfor theword,effec-
tively allowing theparsecontext to makethechoice.
(Notethattherich inflectionalmorphologyof Czech
leadsto ahigher rateof “unknown” wordformsthan
would be true in English; in onetest,29.5%of the
wordsin testdata were“unknown”.)

Our tests indicated that if unknown words are
treated by believing the POStagger’s suggestion,
then scoresare better if the parser is also trained
on thePOStagger’s suggestions, rather thanon the
humanannotator’scorrect tags.Training onthecor-
rect tags results in 1% worseperformance. Even
though thePOStagger’s tagsarelessaccurate,they
aremorelikewhattheparser will beusingin thetest
data,andthat turnsout to be thekey point. On the
other hand, if the parser allows all possible dictio-
nary tagsfor unknownwordsin testmaterial, then
it pays to train on theactual correct tags.

In initial tests, thiscombination of training on the
correct tagsandallowing all dictionary tagsfor un-
known testwordssomewhatoutperformedthealter-
nativeof usingthePOStagger’spredictionsbothfor
training andfor unknowntestwords. Whentested
with the final version of the parser on the full de-
velopmentset,thosetwo strategiesperformedat the
samelevel.

5 Results
We ran three versions of the parser over the final
test set: the baseline version, the full model with
all additions, andthefull modelwith everything but
the bigram model. The baseline system on the fi-

Modification Improvement
Coordination +2.6%
Relative clauses +1.5%
Punctuation -0.1% ??
EnrichedPOStags +1.1%
Punctuation +0.4%
Verbcrossing +0.9%
Bigram +0.9%
Total change +7.4%
Total RelativeError reduction 26%

Table3: A breakdown of theresultson thedevelop-
mentset.

Genre Proportion Accuracy
(Sentences/
Dependencies)

Newspaper 50%/44% 81.4%
Business 25%/19% 81.4%
Science 25%/38% 76.0%

Table4: Breakdownof the results by genre. Note
that although the Science section only contributes
25% of the sentencesin testdata, it contains much
longer sentencesthanthe othersections andthere-
fore accounts for 38% of the dependencies in test
data.

nal testsetachieved72.3%accuracy. Thefinal sys-
temachieved80.0%accuracy3: a7.7%absoluteim-
provement anda 27.8%relative improvement.

Thedevelopmentsetshowedverysimilar results:
abaselineaccuracy of 71.9%andafinal accuracy of
79.3%. Table3 showsthe relative improvementof
eachcomponentof the model4. Table4 shows the
results on thedevelopmentsetby genre. It is inter-
esting to seethat theperformanceon newswiretext
is over 2% better than the averaged performance.
The Sciencesection of the developmentset is con-
siderably harder to parse(presumably becauseof
longer sentencesandmoreopenvocabulary).

3Theparserfails to give ananalysison somesentences,be-
causethesearchspacebecomestoo large.Thebaselinesystem
missed5 sentences;the full systemmissed21 sentences; the
full systemminus bigramsmissed2 sentences.To scorethe
full systemwe took the outputfrom the full systemminusbi-
gramswhenthe full systemproducedno output (to prevent a
heavy penaltydueto the21 missedsentences).Theremaining
2 unparsed sentences(5 in thebaselinecase)hadall dependen-
ciesattachedto theroot.

4We weresurprisedto seethis slight drop in accuracy for
the punctuationtreemodification. Earlier testson a different
developmentset,with lesstrainingdataandfewer othermodel
alterationshadshown a goodimprovement for this feature.



5.1 Comparison to Previous Results
Themainpieceof previouswork on parsing Czech
that we are aware of is described in (Kuboň 99).
This is a rule-basedsystem which is basedon a
manually designed set of rules. The system’s ac-
curacy is not evaluated on a test corpus, so it is
difficult to compare our results to theirs. We can,
however, make somecomparison of the results to
those on parsing English.(Collins99) describesre-
sults of 91% accuracy in recovering dependencies
on section 0 of the PennWall StreetJournal Tree-
bank, using Model 2 of (Collins 97). This task
is almostcertainly easierfor a numberof reasons:
therewas more training data(40,000sentencesas
opposedto 19,000); Wall StreetJournal maybe an
easier domain than the PDT, as a reasonablepro-
portion of sentencescomefrom a sub-domain, fi-
nancial news, which is relatively restricted. Unlike
model1, model2 of theparsertakessubcategoriza-
tion information into account,whichgivessomeim-
provement on Englishandmight well alsoimprove
results on Czech.Given thesedifferences, it is dif-
ficult to make a direct comparison, but the overall
conclusion seemsto be that the Czechaccuracy is
approaching results on English, although it is still
somewhatbehind.
6 Conclusions
The80%dependency accuracy of the parser repre-
sentsgood progresstowardsEnglishparsing perfor-
mance. A major areafor future work is likely to
bean improvedtreatmentof morphology; a natural
approachto this problem is to considermorecare-
fully how POS tags are used as word classesby
the model. We have begun to investigate this is-
sue,through the automatic derivation of POStags
through clustering or “splitting” approaches. It
might alsobe possible to exploit the internal struc-
tureof thePOStags,for examplethroughincremen-
tal prediction of thePOStagbeinggenerated; or to
exploit the useof word lemmas,effectively split-
ting word–word relations into syntactic dependen-
cies(POStag–POStagrelations)andmoreseman-
tic (lemma–lemma)dependencies.
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fyzikálńı fakulta Karlovy univerzity, Prague.

D. Magerman. 1995.Statistical Decision-TreeMod-
els for Parsing.Proceedings of the 33rd Annual
Meeting of the Association for Computational
Linguistics, pages276-283.

M. Marcus, B. Santorini and M. Marcinkiewicz.
1993. Building a LargeAnnotatedCorpusof En-
glish: the PennTreebank. Computational Lin-
guistics, 19(2):313-330.

A. Ratnaparkhi. 1997.A LinearObservedTimeSta-
tistical ParserBasedon MaximumEntropy Mod-
els. In Proceedings of the Second Conference
on Empirical Methods in Natural Language Pro-
cessing, Brown University, Providence, Rhode
Island.


