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Abstract—We integrate the tangent method into a statistical framework for
classification analytically and practically. The resulting consistent framework for
adaptation allows us to efficiently estimate the tangent vectors representing the
variability. The framework improves classification results on two real-world pattern
recognition tasks from the domains handwritten character recognition and
automatic speech recognition.

Index Terms—Statistical pattern recognition, adaptation, tangent vectors, linear
models.
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1 INTRODUCTION

ADAPTATION is an important topic in classification as, in many
applications, recognition accuracy can be significantly improved
by explicitly modeling the variability of the data. This is especially
effective in cases where the training set is small. We study the use
of linear representations for the variability in a statistical frame-
work. This is related to the use of tangent vectors, which were
successfully used for the recognition of handwritten digits with
distance-based classifiers [16].
The main contributions of this paper are:

e to present a consistent framework for adaptation in a
statistical classifier,
e to integrate the tangent vector approach into a statistical
framework,
e  to derive the resulting distribution analytically, and
e  to evaluate the approach thoroughly using experiments on
two different tasks, showing significant improvements.
The statistical framework derived in this work allows us to use
tangent vectors that are the derivatives of specified transforma-
tions as well as to determine the tangent vectors from the given
training data in terms of a maximum likelihood estimation. This
facilitates the use of the tangent vector method for tasks where
meaningful transformations of the feature vectors are not easily
obtained, e.g., the transformation effects on the feature vectors of a
speech signal used in automatic speech recognition.

2 STATISTICAL FRAMEWORK

To classify an observation z € R”, we use the Bayesian decision rule

v r(@) = argmax{p(k) - ple)}

Here, p(k) is the a priori probability of class k € {1,..., K}, p(z|k)
is the class conditional probability for the observation z given
class k and r(z) is the decision of the classifier. This decision rule is
known to be optimal with respect to the expected number of
decision errors if the required distributions are known [4]. As they
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are unknown in practical situations, it is necessary to choose
models for the respective distributions and estimate their
parameters using the training data. We will consider:

e  single Gaussian densities:
plalk) = N (z|m, 2)

= den(2m) - exp |~ o = "5 o - )|

e  Gaussian mixture densities:
I,
p(alk) = p(ilk) - N (z|u, D).
i=1

e  Gaussian kernel densities:

Ny
plelk) = 3> Mo, ) )

" n=1

Here, N;, represents the number of training samples of class k£ and
Zj, denotes the nth reference pattern of class k. The theoretical
results are derived for the case of Gaussian densities. This does not
impose any restrictions as these results can be transferred to
mixture or kernel densities, which can model any density function
up to arbitrary precision. We assume ¥ to be identical for all
classes, i.e., we use variance pooling over classes. For some tasks
(especially for a larger number of dimensions), we also use pooling
over dimensions, i.e., ¥ = ac?l with a factor a to determine the
width of the density.

Our goal is to obtain a classifier that is invariant with respect to
certain transformations of the data that are known to leave the class
unchanged. This goal can be addressed in different stages of the
classification process: In the preprocessing step, the feature vectors
can be normalized, during feature analysis, we can extract invariant
features, and we can use invariant probability density functions,
which are inherently related to invariant distance measures. We will
concentrate here on the use of invariant probability density
functions.

Invariance can also be achieved by using virtual data. This
common method for creating more data than given in the training
set is typically based on the invariance requirements. For example,
in the experiments with optical character recognition, we use shifts
in the directions of the 8-neighborhood, thus obtaining a nine-fold
increase in the number of patterns. This method can be extended to
the test data as well [3].

3 TANGENT VECTORS

3.1 Motivation

In some application areas, transformations which leave the class
membership unchanged are known a priori, e.g., small affine
transformations in the case of character recognition. We want the
classifier to be invariant with respect to these transformations. Let
Z(a) denote a transformation of z depending on a parameter
L-tuple o € R, The set of all transformed patterns typically has
highly nonlinear characteristics in pattern space. To obtain a
tractable representation, we consider a linear approximation of the
transformation using a Taylor expansion about o = 0:

L L
Z(a) =z + Z o + ZO(@?),
=1 =1

neglecting the terms of second order and higher. Here, the partial
derivatives of the transformation Z with respect to the parameters
oy (1=1,..., L) are called the tangent vectors v; = 9Z(a)/dav],,_, as
they span the tangent subspace of the set of all transformed
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Fig. 1. Example of first-order approximation of affine transformations and line thickness. (Left to right: original image, + horizontal translation, + vertical translation,
+ rotation, + scale, & diagonal deformation, + axis deformation, and + line thickness).

patterns at the point z. These derivatives can be efficiently
calculated, e.g., using differences between slightly transformed
patterns. Fig. 1 shows examples using an image of a handwritten
digit and approximations of transformations. These examples
illustrate the advantage of using the linear approximation as the
depicted patterns (and those which result from a combination of
the transformations) all lie in the same linear subspace and can,
therefore, be represented by one prototype and the corresponding
tangent vectors. We thus have a concise representation of the
variability, where the degree of transformation is represented by a
parameter vector a. This representation can be integrated into the
probabilistic framework as presented in the following section.

To determine the tangent vectors {v;}, we can use three
alternatives:

(vl) compute the derivatives for the reference vector p
(v = Opp(a)/Beul, ),

(v2) compute the derivatives for the observation vector z
(v = 0 () /Do =),

(v3) estimate the derivatives from the training data,

where (v1) and (v2) require prior knowledge about the transfor-

mations. How to apply (v3) will become clear with the integration

of the following statistical framework which facilitates the
estimation as a maximum likelihood solution.

3.2 Integration into the Probabilistic Framework:

Adaptive Pattern Recognition

In adaptive pattern recognition, the distribution models are
assumed to depend on an unknown adaptation parameter
vector o, e.g., for rotation and scaling in image recognition [3].
The Bayesian approach to adaptation consists of integrating out the
unknown parameter, which is possible in this context. We consider
the case where the observations x have a Gaussian distribution
with expectation p; and covariance matrix . The extension to
Gaussian mixtures or kernel densities is straightforward using
maximum approximation or the expectation-maximization algo-
rithm. The starting point is the integration

p(z|k) = /p(x:, alk)da
= / plalk) - plalk, 0)da™=" /'p<a> - plalk, a)da,

where the distribution of the adaptation parameter set « is
assumed to be independent of k. This distribution is assumed to
be Gaussian with zero mean and covariance matrix equal to a
multiple of the identity matrix:

pla) = N(a]0,7°1), (2)

where « is a hyperparameter describing the standard deviation of
the transformation parameters. The distribution of z is assumed to
be Gaussian for these considerations to simplify the analytical
derivation. This assumption does not imply a loss of generality as
the expectation-maximization algorithm allows us to transfer the
results to Gaussian mixtures or kernels, which can model arbitrarily
complex distributions and are successfully used in different
applications (e.g., being the standard in speech recognition).

The distribution of class k is modified for adaptation based on
the first-order approximation of the transformation given by the
tangent vectors {vy}:

p(alk, a) = N(z|fn(a), %)

L
fi(a) = pue + Z vy (3)
=1
'Uz:lzilvk'm = 6lm7

where 6, :=1if Il =m and 0 otherwise denotes the Kronecker
delta. To simplify the mathematical representation, the tangent
vectors are assumed to be orthonormal with respect to the global
covariance matrix . This does not imply a loss of generality as
only the spanned subspace determines the variation modeled and
it is always possible to achieve this condition using, e.g., a singular
value decomposition. It is then possible to perform the integration
(2) analytically by combining the exponents of the Gaussian
density functions into one term of quadratic order in o using (2)
and (3) and transforming this into one Gaussian density function
[11]. As result we obtain the exact closed-form solution for the
probability density function of the observations:

p(alk) = N (x|, Zr)

L
Sp=S 4 vavfz (4)
=1
ST -1 1 -1 - T -1
B =3l-—1 3 > o
T =1

Thus, the incorporation of tangent vectors only affects the
covariance matrix, which can be interpreted as imposing a structure
on ¥ [11]. Note that this result does not hold for the case (v2)
above—using the derivatives of the observation. In this case, the
resulting distribution is not necessarily Gaussian. Fig. 2 shows an
example of a resulting density that is not Gaussian. Note,
furthermore, that det(E),) = (1 +42)* - det(Z) (cp. [6, p. 38ff.]) which
is independent of the tangent vectors and can therefore be dropped
in the maximum likelihood estimation (Section 3.3).

To view the results in terms of distances, consider the exponent
in N (x|, 1) with a covariance matrix ¥ = 02T which is assumed
to be white except for a constant factor. This is the case, for
example, after application of a global whitening transform of the
data. We furthermore assume v — oo here, which lets the factor
ﬁ approach one:

(z— )" Sk (@ — )

L
= (@ — )" =7 (@ — ) = Y [ — ) S o]
— (5)

L

= % (CE - ;Ufk)T(l' - Hk,) - Z[(I — ,LLk;)T’UM]Q .

=1

Fig. 2. The resulting density for case (v2) in a 2D example with ¥ =1, v =2,

L=1,and v :m(?é)z
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The resulting exponent (5) turns out to be a modified Euclidean
distance. It shows that variations along the directions of the
tangent vectors are not (or less) important for classification. Note
that the exponent leads to the conventional Mahalanobis distance
for v — 0 and to the tangent distance for v — oo.

3.3 Estimation of Tangent Vectors
To relax the constraint that the transformations must be known
a priori, the tangent vectors can be estimated from the training
data. This estimation can be formulated as a maximum likelihood
approach within the presented framework. Let the training data be
given by z;,,n =1,..., N}, training patterns of K = 1, ..., K classes.
We consider the single Gaussian model (4) with known class
means /iy, and global covariance matrix 3. For the derivation, we
assume that the number L of tangent vectors is known.

We consider the log-likelihood as a function of the unknown
tangent vectors {vy }:

K N

ZZlogN Tk iy S

k=1 n=1
. (6)
f—

F({vu}):

UZ;E_ISA-Z_IUk] + const

Ml\

>

1+7 =1 7

Py

Il
_-

with the class dependent scatter matrix

N

Sk‘ = Z(ajnk - Mk’)(mnk - ,U‘k')T-

n=1

Taking into account the constraints of orthonormality of the
tangent vectors with respect to £~!, we obtain the following result
(cp. [6, p. 400ff.]): The class specific tangent vectors {vy}
maximizing (6) have to be chosen such that the vectors
{¥712y,} are the eigenvectors with the largest corresponding
eigenvalues of the matrix £/25,(27/2)" (the dominant eigen-
vectors or principal components).

Using this model is equivalent to performing a global
whitening transformation of the feature space (i.e., right-multi-
plication by X7/2 of all data) and then using the L principal
components as tangent vectors for each class. This reduces the
effect of those directions of class specific variability that contribute
the most variance.

In summary, the use of estimated tangent vectors in Gaussian
models consists of the following steps for each class :

e compute the empirical mean vector py,

e  compute the scatter matrix Sy,

e compute {32y} as eigenvectors with largest eigenva-
lues of ¥1/28,(x-1/2)T.

4 TASKS AND EXPERIMENTAL RESULTS

We present experimental results using the statistical approach in
combination with tangent vectors for two different real-world
classification tasks, described in more detail in the following, along
with the results obtained in the experiments. The tasks are from
two different domains, namely, image object recognition and
automatic speech recognition.

The performance of a classifier is measured by the obtained
error rate (ER), i.e., the ratio of errors to the number of tests. For
speech recognition, a suitable measure is the word error rate
(WER). Here, the difference to the correct sentence is measured
using the edit distance, defined as the minimal number of
insertions (ins), deletions (del), or substitutions of words necessary
to transform the correct sentence into the recognized sentence.

4.1 Image Object Recognition—USPS Corpus

Results for the domain of image object recognition were obtained on
the well-known US Postal Service recognition task (USPS). It

contains normalized gray-scale images of handwritten digits, taken
from US postal envelopes. The images are segmented and normal-
ized to size 16 x 16 pixels, yielding 256-dimensional feature vectors
for the appearance based approach chosen here, where each pixel
value is considered a feature. The corpus consists of a training set of
7,291 images and a test set of 2,007 images. Reported recognition
error rates for this database are summarized in Table 1a. The test set
is considered to be hard (with a human error rate estimated to be
2.5 percent) and the comparably small training set makes the use of
invariance methods especially helpful.

Table 1b shows a summary of results on the USPS database using
the Gaussian models. The non-Gaussian data is modeled well by the
use of mixture and kernel density models. Because of the good
performance of the Gaussian kernel density model (1), all following
experiments on USPS were based on this model, using ¥ = ao’I.

In the experiments with Gaussian kernels and estimated,
covariance-based tangent vectors, we computed the local scatter
matrix S, using the nearest neighbors of the same class for each
training vector. The experiments showed that using about 30 neigh-
bors provides a sufficient estimate of the local covariance structure.

Fig. 3a shows the error rate with respect to v for derivative
tangents of the references and the covariance-based estimation of
tangents using L =7 each. It can be seen that, on this data, no
significant improvement can be obtained by restricting the value of
the hyperparameter 7, which controls the possible values of the
transformation vectors o. This effect is most likely due to the high
dimensionality of the feature space in combination with a fixed
range for meaningful feature values (“black” to “white”). The strong
nonlinearity of the manifolds then makes undesired solutions with
high values of the parameters a very unlikely. The following
experiments were therefore performed using v — oco.

Another interesting factor with effect on the error rate is the
number of tangent vectors used in the covariance-based approach.
This dependency is depicted in Fig. 3b. It can be observed that the
first four tangent vectors lead to the largest reduction in error rate,
while a minimum was reached for 20 tangent vectors per kernel
density. The strong decrease in error rate shows that the presented
method can be effectively used to learn the class specific variability
on this data set.

The effect of the three estimation methods (v1) to (v3) is indicated
in Table 1a. The results show that, on this data, the covariance-based
estimation of the tangent vectors (v3) leads to the same error rate as
the use of the derivatives for x (v1) using more parameters (20
instead of seven tangent vectors) or a slightly higher error rate using
the same number of parameters. This result seems quite remarkable
as the estimation from the data alone was able to improve results as
much as the use of additional domain knowledge about the data
(invariance with respect to small affine transformations and line
thickness). The use of derivatives of = (v2) and the combination of
(v1) and (v2) leads to further improvements.

Table la also contains the results obtained using additional
virtual data. The use of virtual test and training data (by shifting the
images 1 pixel into eight directions, keeping training and test set
separated) increased the performance of the classifier further to
2.4 percent. The best result obtained using the presented approaches
was with a combination of different classifiers (with varying
parameters), where different test results were combined using the
sum rule. This reduced the error rate further to 2.2 percent, although
this last result must be considered as an effect of “training on the
testing data,” as the best ensemble was chosen on the basis of the test
results.

Interestingly, when using a single Gaussian density, i.e., one
reference per class, the error rate on the USPS corpus could be
reduced from 18.6 to 5.5 percent using L = 12 covariance-based
tangent vectors. Using only L =7 tangent vectors, the result of
6.4 percent outperforms the use of the derivative, here with
11.8 percent error rate. Here, the means of the single densities are
very blurred, which is a disadvantage for the derivative tangent
vectors.
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TABLE 1
Results for the USPS Corpus (Error Rates (ER) [%]): (a) Reported Results and (b) Results for Gaussian Models
[ method ER[%] |
human performance [16] SIMARD et al. 1993] 2.5
relevance vectors [18 TIPPING et al. 2000] 5.1
neural net (LeNet1) [17] LeCUN et al. 1990] 4.2
invariant support vect. [15] [SCHOLKOPF et al. 1998] 3.0
neural net + boosting [17] DRUCKER et al. 1993] *2.6
tangent distance [16] SIMARD et al. 1993] *2.5
nearest neighbor [12] 5.6
mixture densities [3] baseline 7.2
+ LDA + virtual data 34
kernel densities [12] baseline 5.5
+ tangent vectors (v3), L=7 338
(v3), L=20 3.7
(v1), L=7 37
(v2), L=7 33
(v1)+(v2),L=14 3.0
+ virtual test data 2.6
+ virtual training data 24
+ classifier combination 2.2
(a)
classifier total # without LDA with LDA
of dens. z € R16*16 z € R®®
Y =o0%] | diag(X) diag(X)
single Gaussian 10 18.6 19.5 12.8
Gaussian mixtures | ~1,000 8.0 6.7
+ virtual data ~10,000 6.0 3.4
nearest neighbor ~7,300 5.6 6.8 7.0
+ virtual data ~65,700 4.3 5.3 3.6
Gaussian kernels ~7,300 5.5 6.3 6.5
+ virtual data ~65,700 4.2 5.1 3.4
(b)
*: training set extended with 2,418 machine-printed digits.
56 : —_— . 56 1
g derivative e
w‘%& covariance based —=
52+ e 52
Lo
_ 48| W _ a8}
2 a4 | % g 44T
H
4+ & 4
36 : ; : 36 L : : ; : : .
0.01 0.1 1 10 0 5 10 15 20 25 30
Y number of tangent vectors
(a) (b)

Fig. 3. Error rate (ER) (a) as a function of tangent vector parameter standard deviation ~ for L = 7 derivative and covariance-based tangent vectors K and (b) as a
function of the number of covariance-based tangent vectors (both for USPS, kernel densities).

Using all 7,291 training patterns in a kernel density-based
classifier, the result obtained without tangent model was the same as
for a single density model with 12 estimated tangents (5.5 percent).
In this case, the single densities with estimated tangent subspace
obtain the same result as the kernel density approach using about
50 times fewer parameters.

4.2 Automatic Speech Recognition—SieTill Corpus
Experiments for automatic speech recognition were performed on
the SieTill corpus [5] for telephone line recorded continuously

spoken German digit strings. The corpus consists of approximately
43k spoken digits in 13k sentences for both training and test set.

The recognition system is based on whole-word Hidden
Markov Models using continuous emission densities. The baseline
system is characterized as follows [21]:

e  vocabulary of 11 German digits, including the pronuncia-
tion variant “zwo,”
gender-dependent whole-word Hidden Markov Models,
for each gender, 214 distinct states plus one for silence,
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TABLE 2
Word Error Rates (WER) on the
SieTill Corpus Obtained with Tangent Distance

LDA | dns/mix | tv/mix error rate [%
del - ins | WER
0 1.17-0.83 | 4.59
1 1 1.17-0.52 | 3.76
4 0.69-1.07 | 3.60
0 0.59-0.83 | 2.67
no 16 1 0.54-0.58 | 2.49
4 0.46-0.80 | 2.60
0 0.52-0.54 | 2.24
128 1 0.50-0.48 | 2.12
4 0.55-0.49 | 2.13
0 0.71-0.63 | 3.78
1 1 0.97-0.49 | 3.26
5 0.48-0.88 | 2.70
0 0.44-0.68 | 2.28
yes 16 1 | 0.58-040 | 1.97
4 0.38-0.55 | 1.97
0 0.45-0.39 | 1.85
128 1 0.42-0.34 | 1.67
4 0.39-0.41 1.76

In column “tv/mix,” the number of used tangent vectors per mixture is given. A
value of 0 means that the conventional Mahalanobis distance is used. “dns/mix”
gives the average number of densities per mixture.

e Gaussian mixture emission distributions with globally

pooled diagonal covariance ¥, and

e 12 cepstral features, first derivatives, and second deriva-

tive of the first feature component.

The baseline recognizer applies maximum likelihood training using
the Viterbi approximation in combination with an optional Linear
Discriminant Analysis (LDA). The word error rates obtained with
the baseline system for the combined recognition of both genders are
summarized in Table 2 (in the lines with 0 tangent vectors (tv) per
mixture (mix)). All densities of the mixtures for the states of the
Hidden Markov Models were regarded as separate classes for the
application of the covariance-based tangent vector estimation. The
scatter matrices S}, which are only necessary in the training phase,
were trained as state specific full covariance matrices.

For single densities, the incorporation of tangent distance
improved the word error rate by 18 percent relative for one tangent
vector and 22 percent relative using four tangent vectors per state.
In combination with LDA transformed features, the relative

4.2 T T T T

38 F ) &l 1
3.6 |\ ",\ ]
34 r \'\, \ T

WER[%]
WER[%]

32 ¢ “\ ) ]

2.6

number of tangent vectors

(a)
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improvement was 14 percent for the incorporation of one tangent
vector and increased to 29 percent for five tangent vectors per
state. Fig. 4a depicts the word error rates on the SieTill test corpus
as a function of the number of tangent vectors using single
densities that were trained on LDA transformed features. For this
setting, the optimal choice was five tangent vectors per state.

Using mixture densities, the performance gain in word error rate
decreased but was still significant. Thus, the relative improvement
between the baseline result and tangent distance was 7 percent for
untransformed features and 14 percent for LDA transformed
features (both at 16 dns/mix, 1 tv/mix). Consequently, a larger
number of densities is able to partially compensate for the restriction
that is imposed by using a globally pooled covariance matrix. The
best result was obtained using 128 densities per mixture in
combination with LDA transformed features and one tangent
vector per state. Using this setting, the word error rate decreased
from 1.85 to 1.67 percent that is a relative improvement of 5 percent.
The 95 percent confidence interval for this experiment resulting in a
word error rate of 1.67 percent is [0.00%; 1.80%)], which shows that
the improvement is significant at the 5 percent level.

Fig. 4b depicts the word error rates for conventional training in
comparison with tangent distance as a function of the number of
parameters, as the incorporation of tangent vectors into the
Mahalanobis distance obviously increases this number. If we
compare the performance of models with the same number of
parameters, we still observe that the model that includes the
tangent vectors performs better.

5 DISCUSSION

The presented tangent model is related to previous work in two
fields: On the one hand, tangent vectors have been used in
distance-based classifiers, where the resulting distance measure is
called tangent distance. On the other hand, the resulting distribu-
tions take the form of linear Gaussian models.

Tangent distance has been successfully applied in image object
recognition during the last years [12], [16], [17] and also has been
recently included in textbooks [1, p. 320ff.], [4, p. 188ff.], [8, p. 423ff.]
as it combines intuitive understanding and effective modeling of
variability, leading to reduction of classification errors.

The subject of linear subspaces for pattern classification is
treated in different contexts with different names, including
principal component analysis or Karhunen-Loéve transform, factor
analysis, sensible principal component analysis [14], local principal
component analysis [10], tangent distance [16], locally linear
models [9], eigenfaces [20], etc.

Recently, [14] presented a unified view of linear Gaussian
models including (sensible) principal component analysis,
factor analysis, and mixtures of Gaussians with the respective

4.5
4 P ; 4 L 4
35 1 r 1
3F i female (LDA) P 1
Ny
25 ¢ 1 r
X,
2 r Bl % F )
female (LDA+TD) o e
15 ) . male (LDA+TD)
215 1000 10000 215 1000 10000
number of parameters number of parameters

(b)

Fig. 4. (a) Word error rates (WER) as a function of the number of tangent vectors on the SieTill test corpus for single densities using ML training on LDA transformed
features. (b) Comparison of word error rates for mixture densities on the SieTill test corpus using equal overall model parameter numbers.
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expectation-maximization algorithms. In this work, we connect
the use of tangent vectors to these models and describe a
framework suitable for classification. The main addition is the
treatment of the global noise covariance that is identical in the
class-specific models, implying a different restriction on the
covariance matrices. We consider this connection between
tangent vectors and linear Gaussian models important, as the
use of tangent vectors improves results on different classifica-
tion tasks.

In the resulting model (4), the parameters a can be regarded as
latent variables and it is therefore related to sensible principal
component analysis [14] and probabilistic principal component
analysis [19]. For the limiting case ¥ = I, a similar result to the one
presented here was derived in [7]. Note that the presented model
assigns to the subspace components a weight v which may differ
from the corresponding eigenvalue, which is a main difference to
subspace approximations to the full covariance matrix based on
eigenvalue decomposition. In the experiments, this weight was
chosen to be larger than the eigenvalues (cp. Fig. 3a). Some
connections between tangent distance and linear models are already
pointed out in [9], but here the authors report that they “found that
the inclusion of tangent vectors did not substantially improve the
performance.”

The maximum likelihood estimation of the tangent vectors
seems to resemble conventional principal component analysis,
which minimizes the reconstruction error. But, here the projection
vectors are chosen separately for each class. Furthermore, the
model (4) disregards the specific variability of the patterns when
determining the distance or the log-likelihood, respectively. That
is, the tangent vectors span the subspace with least importance in
the distance calculation here. In the limiting case of v — oo, the
effect is a class-dependent dimensionality reduction.

Note that the probabilistic interpretation of tangent distance can
be used for a more reliable estimation of the parameters of a basic
distribution by implicitly enriching the training set with infinitely
many transformed patterns [3]. Note also that there is substantial
recent work on problems related to that of determining the number
of tangent vectors L automatically [2], [13], which can alternatively
be achieved using cross-validation.

So far, we have not discussed the computational complexity of
the tangent method. Due to the structure of the resulting model,
the computational cost of the distance calculation is increased
approximately by a factor of (L + 1), in comparison with the model
that corresponds to the Euclidean distance or to Mahalanobis
distance with diagonal covariance matrices. If full covariance
matrices are used, the tangent vector approach does not increase
the computational complexity.

6 CONCLUSION

In this paper, we presented a consistent framework for adaptation
in a statistical classifier by embedding the use of tangent vectors
into a probabilistic framework. The resulting model allows us to
obtain transformation tolerance also if no domain knowledge
about invariance properties of the feature vectors is available. The
tangent vector model proved to be very effective for pattern
recognition, including the combination with global feature
transformations as the linear discriminant analysis.

Comparative experiments were performed on the USPS corpus
for image object recognition and on the SieTill corpus for
continuously spoken German digit strings for automatic speech
recognition. On the USPS corpus, single density and kernel density
error rates could be significantly improved and the obtained
results were comparable to the use of tangents based on prior
knowledge. On the SieTill corpus, a relative improvement in word
error rate of approximately 20 percent was achieved for single
densities, and for mixture densities, we could gain a relative
improvement of up to 14 percent. Incorporating the tangent
vectors, we were able to significantly reduce the word error rate of

our best recognition result based on maximum likelihood trained
references from 1.85 to 1.67 percent.
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