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Abstract. We present a holistic statistical model for the automatic
analysis of complex scenes. Here, holistic refers to an integrated approach
that does not take local decisions about segmentation or object transfor-
mations. Starting from Bayes’ decision rule, we develop an appearance-
based approach explaining all pixels in the given scene using an explicit
background model. This allows the training of object references from
unsegmented data and recognition of complex scenes. We present em-
pirical results on different databases obtaining state-of-the-art results on
two databases where a comparison to other methods is possible. To ob-
tain quantifiable results for object-based recognition, we introduce a new
database with subsets of different difficulties.

1 Introduction

The increasing availability of digital images causes a growing interest in au-
tomatic classification of such images. Up to now, approaches to classification,
indexing, or retrieval are usually not based on the objects present in the image,
but mostly on features derived from color or texture. This is due to the fact that
automatic segmentation of objects in presence of inhomogeneous background is
still an unsolved problem [7]. Approaches to image object recognition rely on
manually pre-segmented data for training. These algorithms also perform best
for homogeneous or static background but ignoring background information in
automatic recognition can cause classification errors.

In this paper we address the problem of automatically determining object ref-
erences and object-based classification in the presence of background. We present
an appearance-based holistic statistical model for automatic training and recog-
nition of image objects that explicitly takes into account the image background.
Starting from Bayes’ decision rule, which is the best we can do to minimize the
error rate, we avoid explicit segmentation and determination of transformation
parameters but instead consider these as integral parts of the decision problem.
This is done to avoid incorrect local decisions. This holistic approach takes into
consideration experiences in speech recognition, where explicit segmentation of
‘objects’ (words) and background is neither done in training, nor in recognition.
Note that treatment of distortions and transformations is computationally sig-
nificantly more demanding in 2D (e.g. images) than in 1D (e.g. speech signals).



Related work. The problems addressed here have been considered by other
authors with different approaches. We discuss two works that are closely related:

A statistical model for object recognition in the presence of heterogeneous
background and occlusions was presented in [6]. The authors use wavelet features
to determine the local probabilities of a position in the image belonging to an ob-
ject or to the background. The background is modeled by a uniform distribution.
The assumption of statistical independence of the object features is reported to
produce best results. The problem of automatic training in presence of hetero-
geneous background is not addressed. The authors report 0% error rate on a
classification and localization task, in the presence of rotation and translation.

A similar model to the one presented here has been independently proposed
in [1]. The authors introduce transformed mixtures of Gaussians that are used
to learn representations on different databases of image data. They provide a
detailed description of the statistical model. They consider only translations for
an image database with background but do not present quantifiable results for
this case. Instead, they only compare the results to a Gaussian mixture not
regarding transformations. Error rates are only given for a set of synthetic 9×9
images in comparison to Gaussian mixtures.

2 Statistical Model and Decision Making

Principles. To classify an observation X ∈ IRI×J we use Bayes’ decision rule

X 7−→ r(X) = argmax
k

{p(k) p(X|k)} , (1)

where p(k) is the prior probability of class k and p(X|k) is the class-conditional
probability for the observation X given class k. For holistic recognition, we ex-
tend the elementary decision rule (1) into the following directions:

– We assume that the scene X contains an unknown number M of objects
belonging to the classes k1, ..., kM =: kM

1 . Reference models p(X|µk) exist
for each of the classes k = 1, . . . ,K, and µ0 represents the background.

– We take decisions about object boundaries, i.e. the original scene is implicitly
partitioned into M + 1 regions IM

0 , where Im ⊂ {(i, j) : i = 1, ..., I, j =
1, ..., J} is assumed to contain the m-th object and I0 the background.

– The reference models may be subject to certain transformations (rotation,
scale, translation, etc.). That is, given transformation parameters ϑM

1 , the
m-th reference is mapped to µkm

→ µkm
(ϑm).

The unknown parameters M,kM
1 ,ϑM

1 and (implicitly) IM
0 must be considered

and the hypothesis which best explains the given scene is searched. This must
be done considering the interdependence between the image partitioning, trans-
formation parameters and hypothesized objects, where in the holistic concept
partitioning is a part of the classification process. Note that this means that any
pixel in the scene must be assigned either to an object or to the background
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Fig. 1. Implicit partitioning and comparison during the search.

class. This model has been introduced in [3], where a restricted version was used
in the experiments, only allowing horizontal shift. The resulting decision rule is:

r(X) = argmax
M,kM

1

{
max
ϑM

1

{
p(ϑM

1 ) · p(kM
1 ) ·

M∏
m=0

p(XIm |µkm
(ϑm))

}}
, (2)

where X denotes the scene to be classified and XIm is the feature vector extracted
from region Im. Instead of performing a summation over the parameters ϑM

1 ,
we apply the common maximum approximation here. Invariance aspects can be
directly incorporated into the models chosen for the density functions using a
probabilistic model of variability. In (2), p(kM

1 ) is a prior over the combination
of objects in the scene, which may depend on the transformation parameters
and the combination of objects.

Constraints. Regarding the components of the presented decision rule (2),
we start with the consideration of the interdependence between segmentation and
recognition. For the identification of one object in the presence of inhomogeneous
background we assume M = 1. Thus, (2) reduces to

r(X) = argmax
k

{
max

ϑ
{p(ϑ) p(k) p(XI0 |µ0) p(XI1 |µk(ϑ))}

}
. (3)

We consider 2D-rotation, scaling with fixed aspect ratio, and translation as trans-
formations. The priors p(ϑ) and p(k) are assumed uniform. The object density
p(X|µk) is modeled using Gaussian kernel densities or Gaussian mixture densi-
ties. The use of mixture models allows the implicit modeling of further trans-
formations by mapping them to different densities if they are observed in the
training data. The part of the image that is not assigned to any object is assigned
to the class background. In the experiments, the set of background pixels is mod-
eled by a univariate distribution on the pixel level, where individual pixel values
are assumed to be statistically independent. I.e. we assume for the background
model p(X|µ0) =

∏
x∈X p(x|µ0). The local density p(x|µ0) is chosen among uni-

variate Gaussian, uniform distribution, or empirical histograms with different
numbers of bins. Note that the correct normalization of the distributions is im-
portant because of the changing amount of pixels that are explained for different
transformation parameters ϑ. One example partitioning is shown in Fig. 1.

Decision Making. To illustrate the search or decision problem arising from
the decision rule (3), we fix the hypothesized class k and assume the maximizing



transformation parameters ϑ̂ are to be determined. E.g. considering Gaussian
densities p(X|µk) = N (X|µk, σ2

1I) for the objects and p(x|µ0) = N (x|µ0, σ
2
0)

for the background leads to the search

ϑ̂ = argmax
ϑ

{p(ϑ) p(k) p(XI0 |µ0) p(XI1 |µk(ϑ))} (4)

= argmin
ϑ

{
− log p(ϑ)− log p(k) +

1
2
|I0| log(2πσ2

0) +
1

2σ2
0

∑
x∈XI0

(x− µ0)2

+
1
2
|S1| log(2πσ2

1) +
1

2σ2
1

‖XI1 − µk(ϑ)‖2
}

The large number of parameter settings ϑ makes the search for the maximizing
arguments a complex problem. Optimization strategies should be considered:
– The Euclidean distances ‖XI1 −µk(ϑ)‖ for all translations can be efficiently

calculated using the fast Fourier transform reducing the computation effort
for this term in the order of log |X| / |µk(ϑ)|.

– The sums of squares
∑

x∈XI0
(x− µ0)2 for all translations can be efficiently

computed using precomputed sums of squares. This reduces the effort for
this term in the order of |µk(ϑ)|−1.

– The search space can be reduced by limiting the number of hypothesized
transformations or by restricting the regions I1 to square regions.

– A significant speedup can be gained by pruning the search space using the
results of a complete search in a down-scaled version of the scene.

Training. Algorithms for single object recognition cannot be used to deter-
mine the model parameters without given segmentation. The following training
algorithm is based on an expectation-maximization (EM) scheme, where the
hidden variables are the parameters ϑ for each object in each training scene:
1. initialize model parameters
2. search maximizing transformation parameters ϑ in each scene using (4)
3. re-estimate model parameters (e.g. EM algorithm for mixtures)
4. repeat from 2 until convergence

For the training we assume exactly one object to be present in each image.
Furthermore, objects are assumed to lie within a square region. The initial model
parameters can be based on a constant graylevel estimated from a histogram
of the training data or a small set of manually segmented objects. The latter
approach facilitates convergence and still leads to a high reduction of manual
preprocessing. The hypothesized transformations are translation, scaling with
fixed aspect ratio and 2D-rotation.

3 Databases and Results

To evaluate the quality of an image classification approach it is important to
compare the obtained results to those of other methods on the same data. One of
the drawbacks in the research within this field is that there exists no widely used



Table 1. Description of databases COIL-20 and ERLANGEN with error rates (ER).

name ERLANGEN COIL-20

# classes 5 20

# training images 90 720

# test images 85 180

example images

other methods (ER [%]) [6] 0.0 [2] 0.0

holistic model (ER [%]) 0.0 0.0

benchmark database for object-based image recognition or object training. Many
groups use their own non-public data which makes it impossible to compare re-
sults. A number of databases exist for different purposes, as e.g. face recognition
or handwritten digit recognition, or the used databases contain unspecific images
on which the results are judged qualitatively by a human observer.

The website http://www-2.cs.cmu.edu/∼cil/v-images.html lists many
databases used in computer vision research, out of which none is suitable for
this task. An exception is a database of images collected by the authors of [6],
although error rates of 0% can be achieved, making a comparison difficult. Due
to this absence of a standard benchmark we created a database for object-based
scene analysis based on the well known Columbia Object Image Library (COIL)
and a set of real-world backgrounds. This database named COIL-RWTH is pub-
licly available upon request and results are presented in Section 3.3. Tables 1
and 3 show an overview of the databases used in this work.

3.1 ERLANGEN

Database. In [6] the authors used two databases of images containing five dif-
ferent objects, all images of size 256×256. The first of the databases contains
images taken with one illumination while in the second case the objects are il-
luminated with two light sources. Each of the training sets contains 18 images
per object taken at different 2D rotation angles on a homogeneous background.
Another 17 images per object at rotation angles not occurring in the training set
are in the test sets. For each database, three different test sets exist, one with
heterogeneous background, and two with two different levels of occlusion. Note
that background and occlusions were added to the images artificially. Note also
that the background is identical in all of the images and it does not occur in the
training images as background (although one image containing only the back-
ground exists). The background resolution differs from that of the object images,
which might be advantageous when using features based on Gabor filters.

Results. We used the test set with heterogeneous background from the first
database and the corresponding training set. In [6] a recognition error rate of
0% is reported. The same error rate was achieved using the proposed holistic
model with rectangular prototype models.



3.2 COIL-20
Database. The Columbia Object Image Library (COIL-20) [5] contains 72
graylevel images for each of a set of 20 different objects, taken at intervals of five
degrees 3D-rotation. To strictly separate train and test images, we use the odd
angles of the ‘processed’ corpus (size 128×128) for training and the even angles
of the ‘unprocessed’ corpus (size 448×416) for testing. The two corpora differ
in the lighting conditions (because of the processing) and the size of the object
in the image (cp. Table 1). This procedure ensures at least 5 degrees difference
in 3D position and poses the additional difficulty of differing light conditions.
Other authors use a splitting of the ‘processed’ corpus into train and test, but
in this case even a Euclidean nearest neighbor classifier leads to a 0% error rate.

Results. On the original COIL-20 database, the holistic approach achieves
a 0% error rate without further tuning than using a Gaussian background model
with mean zero and low variance. This result seems not surprising, as the images
are shown on a homogeneous black background. But as the training and test
images appear at different lighting conditions and on different scales, a nearest
neighbor classifier is not sufficient for completely correct classification and it is
necessary to extend it with elaborate techniques to achieve a 0% error rate [2].

3.3 COIL-RWTH

Database. As the COIL-20 database only contains images with homogeneous
black background, segmentation of the object from the background is a feasible
approach to classification. On the other hand, for real-world images segmenta-
tion poses a serious problem. (Although many application areas exist, where a
homogeneous or static background can be assumed and existing methods provide
acceptable solutions.) Therefore, a new dataset was created based on the objects
from the COIL-20 database and a set of new background images. The goal was
to create tasks of increasing difficulty to extend the COIL-20 task that can be
solved perfectly by existing methods. Each test image carries information about
the used transformation parameters for the object images, allowing to separate
the effects of different transformations.

We created two corpora that differ in the background used: The COIL-
RWTH-1 corpus contains objects placed on a homogeneous black background,
whereas the COIL-RWTH-2 corpus contains the objects in front of inhomoge-
neous real-world background images that were kept separate for training and
test images and vary in resolution. The two training and test sets are based on
the COIL-20 sets as described above. The training images are of size 192×192
and the size of the test images is 448×336. In all sets, we applied the following
uniformly distributed random transformations to the object images: translation,
360 degree 2D-rotation, and 60–100% scaling with fixed aspect ratio.

Results. To investigate the effect of different background models, we tested
univariate Gaussian densities, uniform distributions, and histograms with vary-
ing numbers of bins. In about 70% of the evaluated experiments, the univariate
Gaussian densities performed best among these models [4]. In the following we
therefore only discuss results obtained with this background model.



Table 2. Training results for Gaussian single densities on COIL-RWTH-2 with fixed
3D-rotation angle shown for one of the objects.

rotation known scaling known no information

initial mean of
Gaussian density

resulting mean of
Gaussian density

To observe the effect of known transformation parameters on the proposed
training, we trained a Gaussian single density on all images with a fixed 3D-
rotation angle of COIL-RWTH-2. The resulting mean images are shown in Ta-
ble 2. It can be observed that the algorithm finds visually important parts of the
object searched for. The exact appearance of the mean image differs strongly
depending on the used initialization and the information supplied to the train-
ing algorithm. To evaluate the proposed training algorithm further, we trained
Gaussian mixture densities on COIL-RWTH-1 and used these models to classify
the original COIL-20 dataset. This resulted in 7.8% error rate. Note that the
mixture density now models the different 3D-rotation angles of the objects. If
the correct 2D-rotation of the object is supplied to the training algorithm, this
error rate can be reduced to 4.4%. To separate the effect of unknown rotation
from the other unknown parameters, in the following we only present results, in
which the 2D-rotation of the objects in the images is known to the classifier.

We evaluated the classification accuracy of the complete setup on the COIL-
RWTH databases in three scenarios. The results are shown in Table 3. As no
other results are available, we used a conventional kernel density classifier for
comparison. This classifier was supplied with the same information and an object
position compensation was implemented using the center of gravity of the images.
The results show that the holistic model performs with acceptable error rates for
homogeneous background. Recall that scale changes are handled automatically
and segmentation is performed implicitly in the model. The high error rates of
the kernel density classifier can be explained by the fact that it cannot cope with
scale changes. This also explains the improving error rate for the COIL-RWTH-1
test data when switching from the COIL-20 to the COIL-RWTH-1 training data,
because the latter already includes variations in scale.

The error rates for the inhomogeneous background are clearly inacceptable.
The failure of the algorithm here is based on the coincidence of two problems:
1. Automatic object training with unknown segmentation and variable back-
ground is very difficult. The resulting mean vectors show strong blur due to the
changing background but capture some characteristic information, which is not
enough to achieve lower error rates. 2. Detection of objects of variable scale and
position in large inhomogeneous images based on an incomplete object model of
graylevels and backgrounds not seen in training is possible only in few cases.

4 Conclusion

We presented a holistic statistical model for appearance-based training and
recognition of objects in complex scenes. Experiments on two existing databases



Table 3. Error rates for the COIL-RWTH database (20 classes, 180 test images each).

training data

COIL-20
720 images

COIL-RWTH-1
5760 images

COIL-RWTH-2
5760 images

test data

COIL-RWTH-1 COIL-RWTH-1 COIL-RWTH-2

kernel dens. (ER[%]) 38.9 27.2 95.0

holistic (ER[%]) 1.1 7.8 92.8

show the algorithm to be competitive with other known approaches. A third
database with a higher level of difficulty that can be used by other researchers
was introduced. The gained results underline the difficulty of training and recog-
nition in the presence of inhomogeneous background. The fact that the presented
method achieves 0% error rates on two databases used in the literature, but fails
on a database of images with highly misleading background shows that the
databases on which 0% error rates can be reported are by far not representative
for the complexity of the general object-based scene analysis problem.

Most improvement to the presented method can be expected from the inclu-
sion of more descriptive features than only grayvalues, like e.g. wavelet features
or local representations of image parts. Furthermore, local variations of the ob-
jects may be modeled using tangent distance or appropriate distortion models.
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