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Abstract

We introduce a string-to-string distance measure which extends the edit distance by block transpositions as con-
stant cost edit operation. An algorithm for the calculation of this distance measure in polynomial time is pre-
sented. We then show how this distance measure can be used as an evaluation criterion in machine translation. Its
correlation with human judgment is systematically compared with that of other automatic evaluation measures
on two translation tasks.

1 Introduction

One basic task in natural language processing
(NLP), as well as other disciplines like computa-
tional biology (Waterman, 1995), is comparing se-
quences of symbols with each other, deciding about
their similarity. In NLP, sequences are designated as
sentences, consisting ofwords.

By common sense, sentences are considered to
be the more similar the more words they share and
the more their word orders resemble each other.
Whereas for applications in speech recognition or
optical character recognition reordering is of no con-
sideration, there are applications where one expects
reordering of single words and blocks between two
sentences, like

• Grammar induction, see e.g. (Vilar, 2000)

• Document retrieval

• Evaluation in Machine Translation (MT)

In this paper, we will propose a distance measure,
the inversion edit distance, that takes block reorder-
ing into account. We will show an application to MT
evaluation. The paper will be organized as follows:
Section 2 will introduce conventional edit operations
and their extension by block transpositions. In Sec-
tion 3, a formal definition of the inversion edit dis-
tance on the basis of bracketing transduction gram-
mars will be given. Furthermore, the search algo-
rithm and its complexity will be described. An ap-
plication of the inversion edit distance to machine
translation evaluation will be presented in Section 4,
and experiments on two different corpora will be

given in Section 5. These experiments will be dis-
cussed in Section 6, and we will conclude in Sec-
tion 7.

2 Edit Operations

2.1 Conventional Edit Operations

A common approach to distance measures defines a
set ofedit operations, such asinsertionor deletion
of a word, together with a cost for each operation.
The distance between two sentences then is defined
to be the sum of the costs in the cheapest chain of
edit operations transforming one sentence into the
other. Havinginsertion, deletionandsubstitutionas
operations, each at the cost of1, yields theLeven-
shtein distance(Levenshtein, 1966).

Unfortunately, classical edit distances do not cor-
respond well with the consideration that two sen-
tences are similar if just a block changes position:

ConsiderA,B,C, D to be blocks of words. As-
sume,B andC do not share words. Then, in order
to transform the sentenceABCD into ACBD with
Levenshtein operations only, we have to delete all
words ofB before and insert them behindC (or vice
versa), resulting in total costs of2 · min{|B|, |C|}.
Nevertheless, a penalization of a block move by con-
stant cost only might be sensible as the example in
Section 3.2.1 will show.

2.2 Block Transposition as Edit Operation

As a solution to this, we define ablock transposi-
tion, i.e. changing the order of two arbitrary succes-
sive blocks, to be a constant-cost edit operation. In



the example presented above,ABCD can then be
transformed intoACBD at constant cost.

In order to reduce the complexity of the search, we
restrict consequent block transpositions to bebrack-
eted, i.e. the two blocks to be swapped must both lie
either completely within or completely out of any
block from previous operations.
The following examples illustrate allowed and for-
bidden block transpositions. The brackets indicate
the blocks that are swapped. In the transforma-
tion of ABCD into CDBA in (1), only transpo-
sitions within these blocks are performed. Whereas
in (2), the transformation fromBCDA into BDAC
crosses the blocksBCD andA from the previous
transposition and is therefore forbidden.

1. Allowed transpositions:
(A)(B C D) → ((B) (C D))(A)

→ ((C D) (B))(A)
2. Forbidden transpositions:

(A)(B C D) → (B C D)(A)
→ (B)(D A)(C)

3 The Extended Distance Measure

A concise definition of the edit operations intro-
duced in Section 2 can be formulated using brack-
eting transduction grammars.

3.1 Bracketing Transduction Grammars

A bracketing transduction grammar (BTG) (Wu,
1995) is a bilingual model that generates two out-
put streamss andt in two languages, called source
and target language, respectively. It consists of one
common set of production rules for both languages.
A BTG always generates a pair of sentences. Termi-
nals are pairs of source and target language symbols,
where each may be the empty wordε.

Concatenation of the terminals and nonterminals
in the right hand side of a production rule is either
straight, denoted by[·], or inverted, denoted by〈·〉.
In the former case, the parse subtree is to be read
left-to-right in both languages, and in the latter case
it is to be read left-to-right in the source language
and right-to-left in the target language. A BTG con-
tains only the start symbolS and one nonterminal
symbolA, and each production rule consists of ei-
ther a string ofAs or a terminal pair.

3.2 Edit Operations as BTG Production Rules

Using the BTG formalism, we can describe the edit
operations we have defined in Section 2 as a produc-
tion rules, associated with a cost functionc:

1. Concatenation:A → [AA]
with c([αβ]) = c(α) + c(β)

2. Inversion: A → 〈AA〉
with c(〈αβ〉) = c(α) + c(β) + cinv

3. Identity: A → x/x
with c(x/x) = 0

4. Substitution: A → x/y, wherex 6= y
with c(x/y) = csubst

5. Deletion: A → x/ε
with c(x/ε) = cdel

6. Insertion: A → ε/y
with c(ε/y) = cins

7. Start: S → A; S → ε/ε
with c(ε/ε) = 0

The costscinv, csubst, cdel, andcins are parameters
of the edit distance; usually we set all of them to1.

We define theinversion edit distancebetween a
source sentencesI

1 and a target sentencetJ1 to be the
minimum cost of the setT (sI

1, t
J
1 ) of all trees for this

sentence pair:

dinv(sI
1, t

J
1 ) := min

τ∈T (sI
1,tJ1 )

c(τ)

Note that, without the inversion rule(2), the min-
imum production cost equals the Levenshtein dis-
tance.

3.2.1 Example
Consider the sentenceswe will meet at

noon in the lobby and we will meet
in the lobby at twelve o’clock .
Then,dinv = 3, as these sentences can be parsed as
follows (trivial concatenation brackets not shown):[
we/we will/will meet/meet

〈

[ at/at noon/twelve ε/o’clock ]
[ in/in the/the lobby/lobby ]

〉 ]

We see that the insertion rule, the substitution rule,
and the inversion rule are each applied once. The
Levenshtein distancedL of this sentence pair is 5.

3.2.2 Properties
The inversion edit distance has the following proper-
ties:



Property 1 For cinv = csubst = cdel = cins = 1,
dinv is a distance measure.

As no cost is negative, we havedinv(sI
1, t

J
1 ) ≥ 0.

Since concatenation and identity are for free,
but each other operation has positive cost,
(dinv(sI

1, t
J
1 ) = 0 ⇔ sI

1 = tJ1 ) follows. dinv is
symmetric, because all production rules and costs
are symmetric. Thus,dinv is a distance measure.

Property 2 For cinv = csubst = cdel = cins = 1,
dinv is not a metric.

It holdsdinv(abcd , abdc ) = 1 and
dinv(abdc , bdac ) = 1, but we have
dinv(abcd , bdac ) = 4 > 2. Thus, the triangular
inequation does not hold, anddinv is not a metric.

3.3 Algorithm

For the calculation of the distance of two sentences
si1
i0

and tj1j0 , we have to determine the cost of the

cheapest parse tree inT (si1
i0

, tj1j0) generating them.
We can extend the CYK algorithm (Younger,

1967) to the two-dimensional (i. e. bilingual) case.
Then, the costs are calculated according to:

• If i0 = i1 and j0 = j1, that is si1
i0

and tj1j0
both are single words, either the identity or the
substitution production will be applied; thus
dinv(si0 , tj0) is zero orcsubst, respectively.

• Similar holds ifi1 < i0, that issi1
i0

= ε . Then,

ε andtj1j0 can only be generated byj1 − j0 + 1
applications of the concatenation and the inser-
tion rule, thusdinv(ε, t

j1
j0

) = (j1−j0 +1) ·cins.

• Analogously, ifj1 < j0, the deletion rule has to
be appliedi1− i0 +1 times, thusdinv(si1

i0
, ε) =

(i1 − i0 + 1) · cdel.

• In all other cases, either the concatenation or
the inversion production rule will be applied,
hence the tree’s cost is the sum of two subtrees’
costs. For concatenation of blocks, we obtain

dinv(si1
i0

, tj1j0) =

min
i′,j′

min
τ∈T (si′

i0
,tj
′

j0
)

τ ′∈T (s
i1
i′+1

,t
j1
j′+1

)

{
c(τ) + c(τ ′)

}

and for inversion, we obtain

dinv(si1
i0

, tj1j0) =

min
i′,j′

min
τ∈T (si′

i0
,t

j1
j′+1

)

τ ′∈T (s
i1
i′+1

,tj
′

j0
)

{
c(τ) + c(τ ′) + cinv

}

3.4 Auxiliary Quantity

To apply dynamic programming, we define an aux-
iliary quantityQ for the recursive calculation of the
cost of the cheapest parse tree:

Q(i0, i1, j0, j1) := minimum cost for transforming
blocksi1

i0
into tj1j0

Then, Q(i0, i1, j0, j1) = (1)



(j1 − j0 + 1) · cins if i1 < i0
(i1 − i0 + 1) · cdel if j1 < j0

(1− δ(si0 , tj0)) · csubst if (i1 = i0)
∧ (j1 =j0)

min
i0≤i′≤i1
j0≤j′≤j1





Q(i0, i′, j0, j
′)

+Q(i′+1, i1, j
′+1, j1),

cinv + Q(i0, i′, j′+1, j1)
+Q(i′ + 1, i1, j0, j

′)





otherwise





where δ(·, ·) is the Kronecker function. Finally,
dinv(sI

1, t
J
1 ) = Q(1, I, 1, J).

Note thatQ can be viewed as a two-dimensional
extension of the two-dimensional CYK algorithm
cost table. A nonterminal matching table is not nec-
essary here, asA will always match and is the only
nonterminal1.

3.5 Complexity of the Algorithm

A näıve approach to the calculation ofQ(1, I, 1, J)
would be the recursive calculation according to the
formula in Eq. 1. This procedure is much too expen-
sive. Instead, we can – analogously to the original
CYK algorithm – fill theQ table using dynamic pro-
gramming, dovetailing on the block lengthsi1 − i0
andj1 − j0. We have to fill a table of sizeO(I2J2),
running overO(IJ) pairs of split points(i′, j′) for
each table entry. This yields a time complexity of
O(I3J3) for this approach.

We found that in most cases it is not necessary to
calculate all values ofQ(i0, i′, j0, j

′). Thus, we im-
plemented a recursive approach with memoization
(Norvig, 1991), i. e. caching of all previously cal-
culated table entries ofQ. This algorithm has the
same worst case complexityO(I3J3), but performs
much better in average case. This is due to the fact
that we can prune many subtrees of the search tree
after having estimated or calculated the first term in
the sum.

1except forS, of course



4 An Application to MT Evaluation

4.1 Introduction

Research in MT depends on the evaluation of MT
system results. The progress in the development of
a system is to be measured or different systems are
to be compared on the basis of test corpora.

In most applications, the translations generated by
an MT system are eventually intended to be used by
humans. Consequently, manually assigned scores
are considered as gold standard for evaluation. In
order to evaluate an MT system, a set{t(i)}n

i=1 of
translations generated by the system, calledcandi-
date sentence set, is evaluated by human experts.
Unfortunately, manual evaluation is very expensive
in time and money. Several suggestions have been
made to simplify and accelerate this task, while at
the same time reproducibility and reliability are im-
proved. But manual evaluation still requires 30 to 60
secondsper sentenceeven for easy tasks (Nießen et
al., 2000). Thus, the manual evaluation of a candi-
date sentence set, which usually contains hundreds
or even thousands of sentences, takes several hours.

For this reason, a number of automatic measures
have been proposed, which provide cheap and repro-
ducible results. To evaluate a candidate sentence set
using an automatic measure, each sentence is com-
pared to a set of reference translationsR(i). Usually,
there is more than one reference translation for a
sentence, as there is more than one way to translate it
correctly. The evaluation measure either pools these
reference translations, or it is calculated against the
most similar reference sentence.

Unfortunately, automatic evaluation measures de-
pend heavily on the choice of reference translations.
Furthermore, automatic measures can only decide
on words and phrases, and not whether the meaning
of sentences is captured or not.

Following these considerations, MT research
would benefit from an automatic measure which
strongly correlates with human judgment.

4.2 Automatic Measures

4.2.1 BLEU
(Papineni et al., 2001) introduced an MT evaluation
measure which they called BLEU(BiLingual Evalu-
ation Understudy). For each candidate sentencet(i),
a modifiedn-gram precision is calculated with re-
spect to its pooled reference sentencesR(i). The
n-gram lengths range from 1 toN , where typically
N = 4. To penalize overgeneration of common

n-grams in a candidate sentence, then-gram count
is limited to the corresponding maximumn-gram
count in its reference sentences. Then, the geometric
mean of theseN precisions is calculated.

The precision alone would favor systems that pro-
duce short and simple sentences, even if parts of
the translation are omitted. To avoid this, sentences
which are shorter than the next-in-length reference
are assigned a brevity penalty.

The calculation of the geometric mean and the
penalizing is carried out on the whole candidate
set (and not sentence-wise), thus implicitly weight-
ing each sentence by its length. To investigate the
effect of this implicit weighting, we also calcu-
lated the arithmetic mean of BLEU of each sentence
(weighted and unweighted). We denote this measure
by avgBLEU.

(NIST, 2002a) proposed a measure similar to
BLEU, introducing a different brevity penalty and
exchanging then-gram precision by information
weight. We have not conducted further experiments
regarding this measure, but we expect it to behave
similarly.

4.2.2 Word Error Rate
The word error rate (WER), which is calculated as
the length-normalized Levenshtein distance to a ref-
erence sentence, has been used in several NLP ar-
eas and related disciplines. (Nießen et al., 2000)
presented an application to MT evaluation using
the multiple reference technique described in Sec-
tion 4.1. The WER of a test set is calculated by
determining the totalized Levenshtein distance be-
tween each candidate sentence and its nearest refer-
ence sentence and normalizing this by the totalized
reference length:

WER({t(i)}, {R(i)}) =

∑

i

min
r∈R(i)

dL(t(i), r)

∑

i

1
|R(i)| ·

∑

r∈R(i)

|r|

This implicitly weights each sentence by its length
as well.

4.2.3 Position-Independent Error Rate
The position-independent error rate (PER) is similar
to the WER, but uses a position independent Lev-
enshtein distance (bag-of-word difference) instead;
i. e. the distance between a sentence and one of its
permutations is always0. Note that therefore this is
technically not a distance measure.



4.2.4 Inversion Word Error Rate
As the distance measure we have defined in Sec-
tion 2.2 is an extension of the Levenshtein distance,
we can introduce the new evaluation measure as
an extension of the WER, wheredL(t(i), r) is ex-
changed bydinv(t(i), r).

5 Experiments

We performed experiments on two different test cor-
pora. For both of them, several candidate sets were
produced by different MT systems, which were then
manually evaluated sentence-wise. We calculated
the PER, the WER, the invWER, and BLEU for each
candidate set. These automatic evaluation scores
were compared with the manual evaluation. This
comparison was done as well on the sentence level
as on the level of the whole test set. In the latter case,
we compared the unweighted averages of the evalu-
ation scores of the sentences as well as the averages
weighted by sentence length (which the automatic
measures do implicitly; see Section 4.2). BLEU and
the human scores are accuracy measures, whereas
PER, WER and invWER are error measures. Thus
we inverted the latter three and rescaled such that all
measures range from0.0 (worst) to1.0 (best).

5.1 German-English

We performed experiments on a German–English
test corpus from the Verbmobil project. This corpus
contains 342 sentences from the domain of tourism
and appointment scheduling. It consists of transcrip-
tions of spontaneously spoken dialogues, and the
sentences often lack correct syntactic structure. We
collected 898 reference translations from different
translators, averaging to 2.63 reference translations
per sentence. The average reference sentence length
is 12.2.

We evaluated 22 candidate sets from two MT re-
search systems, which were produced using differ-
ent parameter sets, pre-/postprocessing steps and
training corpus size.

Figure 1 shows the distribution of the automatic
evaluation scores versus human judgment on the
sentence level. The human evaluators assigned 11
quality classes ranging from 0.0 (worst) to 1.0 (best)
in steps of 0.1; see (Nießen et al., 2000) for a de-
scription of this measure. We see that all auto-
matic evaluation scores correlate well with the man-
ual score. Nevertheless, the standard deviation of
the automatic evaluation scores within each manual
evaluation class is rather large.
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Figure 1:German–English:Sentence level compar-
ison of different automatic evaluation scores versus
manual evaluation; averaged. Each bar shows the
standard deviation within the averaged range.

Table 1:German–English:Correlation between the
manual and automatic scores; calculated at sentence
level and system level. At system level, all scores
were compared both weighted by sentence length
and unweighted.

sentence system
weighted unweighted

PER 0.61 0.85 0.85
WER 0.65 0.98 0.98
invWER 0.68 0.95 0.95
BLEU 0.70 0.97 0.98
avgBLEU - 0.96 0.96

Figure 2 shows the distribution of the automatic
evaluation scores on the system level. The manual
evaluation score was calculated as the average sen-
tence evaluation score, weighted by the (average)
reference sentence length. Again, the three scores
show a similar behavior; and the correlation with hu-
man judgment is very high.

Comparing the correlation between the automatic
and manual scores numerically, as presented in Ta-
ble 1, we see that the sentence level correlation val-
ues range between 0.65 and 0.70 for all systems.
BLEU has the highest correlation, followed by the
invWER. On system level, all correlation values
range between 0.95 and 0.98, here the WER being
the best, followed by BLEU. Neither in tendency nor
in the correlation values we find a remarkable dif-
ference between the weighted and the unweighted



Table 2:German–English:Ranking of the systems according to the different (weighted) automatic scores.
S1, . . . S22 are numbered according to (weighted) manual evaluation:S1 is the best system,S22 is worst.cR

is the ranking correlation
Measure Ranking cR

PER S1 S2 S3 S4 S5 S6 S7 S11 S12 S13 S9 S8 S10 S15 S14 S16 S19 S18 S20 S21 S22 S17 0.92
WER S1 S2 S3 S5 S4 S6 S7 S12 S11 S14 S13 S8 S9 S10 S15 S16 S19 S18 S17 S20 S21 S22 0.95
invWER S1 S2 S3 S4 S6 S5 S7 S12 S11 S13 S9 S8 S10 S14 S15 S16 S19 S18 S20 S17 S21 S22 0.96
BLEU S1 S2 S3 S5 S4 S6 S7 S12 S11 S13 S9 S8 S10 S14 S15 S16 S19 S18 S17 S20 S21 S22 0.96
avgBLEU S1 S2 S3 S7 S12 S6 S4 S5 S9 S11 S8 S10 S13 S14 S15 S16 S19 S18 S20 S17 S21 S22 0.94
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Figure 2: German–English:System level compari-
son of different automatic evaluation scores versus
manual evaluation. Each score is weighted by sen-
tence length (implicitly or explicitly).

system-level scores.
In Table 2, we see that the rankings of the 22 sys-

tems implied by the automatic scores highly corre-
late with the manual ranking. On the other hand,
small scale differences of similar systems need not
be judged equally by the automatic and manual eval-
uation scores. This may cause problems if small
changes in the parameter setting of an MT system
are to be evaluated: An improvement according to
manual evaluation might be a deterioration accord-
ing to an automatic score and vice versa.

5.2 Chinese-English

The Chinese–English test corpus along with man-
ual evaluation scores was obtained from the NIST
MT evaluation 2002 (NIST, 2002b). Originally, the
test corpus consists of 100 Chinese newspaper ar-
ticles, summing up to 878 sentences. Out of these
sentences, we selected all sentences for which the
maximum length of all candidate and reference sen-

tences is 50 words or below; leaving us with 657
test sentences in total. Each sentence has been pro-
vided with four reference translations, generated by
different human translators. The average reference
sentence length is 23.5.

Six different research MT systems and three com-
mercial MT systems generated nine candidate sets
for this test corpus. Each sentence was evaluated
by two or three out of eleven evaluators, judging
fluency and adequacy, each from 1 to 5 in steps of
1. For each evaluator, we normalized the fluency
and adequacy judgements such that the mean of all
judgements was0.0 and the variance1.0 (over all
sentences, documents and systems). Then, for each
sentence, we compared the mean fluency and mean
adequacy out of its two or three judgements.

We normalized each reference and candidate sen-
tence by case conversion, whitespace trimming and
punctuation separation before the automatic evalua-
tion process.

This test corpus is a lot more difficult for the MT
systems than the German–English task, as is re-
flected in the fact that only one(!) of the 5913 can-
didate sentences matches its reference translation.
Most interestingly, this translation was rated 3.5 out
of 5 in fluency and 4.5 out of 5 in adequacy by the
human evaluators, showing that the choice of appro-
priate reference translations must be cared for.

Figure 3 shows the distribution of the automatic
evaluation scores versus manual evaluation on the
sentence level. Again, WER and invWER behave
rather similarly, even though the difference is bigger
than in Figure 1. Both WER and invWER have a
rather large standard deviation which even increases
for higher manual scores. BLEU has a lower stan-
dard deviation, but we notice a very small total rise
from 0.22 to 0.46 in the BLEU score over all manual
evaluation classes.
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Figure 3:Chinese–English:Sentence level compar-
ison of different automatic evaluation scores versus
manual evaluation; averaged. Each bar shows the
standard deviation within the averaged range.

Figure 4 shows the distribution of the automatic
evaluation scores on the system level. The manual
evaluation score was calculated as the average sen-
tence evaluation scores, weighted by the (average)
reference sentence length. This time, we notice that
the correlation between the automatic and the man-
ual evaluation score is very small.

Table 3:Chinese–English:Correlation between the
manual and automatic scores; calculated at sentence
level and system level. At system level, all scores
were compared both weighted by sentence length
and unweighted.

sentence system
weighted unweighted

BLEU 0.26 0.28 0.25
avgBLEU - 0.15 0.13
PER 0.26 0.15 0.14
WER 0.27 0.04 0.02
invWER 0.28 0.09 0.07

Table 3 confirms our observations: The correla-
tion on the sentence level is acceptable with all three
scores, where this time the invWER is leading. On
the system level, the correlation is close to zero for
the WER and the invWER. For nine observed val-
ues, we would expect a much higher correlation if
the scores were related. Assuming a normal distri-
bution for both types of score, even an empirical cor-
relation of 0.28would by far not prove (with a confi-
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Figure 4: Chinese–English:System level compari-
son of different automatic evaluation scores versus
manual evaluation. Each score is weighted by sen-
tence length (implicitly or explicitly).

dence of 90%) that BLEU and the manual score are
not independent variables.

Table 4 shows the ranking of the systems accord-
ing to different automatic evaluation scores. We see
that the rankings are similar, but on this task, all
three are significantly different from the ranking ac-
cording to manual evaluation.

6 Discussion

Comparing the correlation between automatic and
manual evaluation, we find significant differences
between the two translation tasks presented above:
On the German–English corpus, all three automatic
evaluation scores have a high correlation with hu-
man judgment, whereas on the Chinese–English
task, the correlation is very poor.

We assume that one reason for this is that the

Table 4: Chinese–English: Ranking of the sys-
tems according to the different (weighted) auto-
matic scores.S1, . . . S9 are numbered according to
(weighted) manual evaluation:S1 is the best system,
S9 is worst.cR is the ranking correlation

Measure Ranking cR

BLEU S4 S1 S5 S6 S7 S9 S3 S2 S8 0.30
avgBLEU S4 S5 S1 S7 S6 S9 S2 S3 S8 0.28
PER S4 S1 S9 S7 S5 S6 S3 S2 S8 0.10
WER S9 S4 S1 S7 S5 S6 S3 S2 S8 0.13
invWER S9 S4 S1 S7 S5 S6 S3 S2 S8 0.12



German–English corpus is relatively easy compared
to Chinese–English. We conclude that for tasks
with an acceptable system performance, the auto-
matic measures are well suited for judging trans-
lation quality. Another reason for the high corre-
lation might be that the candidate sets investigated
for German–English were generated by very simi-
lar systems. This suggests that automatic evalua-
tion is appropriate for the comparison of improve-
ment within one system or between similar systems.
On the other hand, for the comparison of differ-
ent MT approaches, manual evaluation should not
be replaced by automatic evaluation, as especially
the ranking for the Chinese–English task in Table 4
shows.

7 Conclusion

We have presented a new distance measure, the in-
version edit distancedinv, for comparison of se-
quences of symbols. The classical Levenshtein dis-
tance has been extended by block transpositions in
order to allow for moves of word blocks at constant
cost.

By the definition of the inversion edit distance as
the parse cost of the sentence pair within a simple
bilingual grammar, we have given it a sound theo-
retical background. Using this definition, we have
shown that all distance axioms hold. Furthermore,
we have introduced an algorithm to calculate the in-
version edit distance in worst-case polynomial time,
which is related to the CYK algorithm.

We then have shown an application of the inver-
sion edit distance in evaluation of machine transla-
tion. Its behavior versus human judgment has been
compared with other automatic evaluation measures
on two different translation tasks. We have demon-
strated that the correlation of this evaluation mea-
sure with human judgment is comparable with that
of other automatic evaluation measures.
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