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Abstract

We introduce a string-to-string distance measure which extends the edit distance by block transpositions as con-
stant cost edit operation. An algorithm for the calculation of this distance measure in polynomial time is pre-
sented. We then show how this distance measure can be used as an evaluation criterion in machine translation. Its
correlation with human judgment is systematically compared with that of other automatic evaluation measures
on two translation tasks.

1 Introduction given in Section 5. These experiments will be dis-
cussed in Section 6, and we will conclude in Sec-

One basic task in natural language processi n7

(NLP), as well as other disciplines like computa-
tional biology (Waterman, 1995), is comparing se»
guences of symbols with each other, deciding about
their similarity. In NLP, sequences are designated 881  Conventional Edit Operations
sentencesonsisting ofvords ) ]

By common sense, sentences are considered/A¢ommon approach to distance measures defines a
be the more similar the more words they share arsft ofedit operatlons;uch asnsertionor deletlon.
the more their word orders resemble each othe?f & word, together with a cost for each operation.
Whereas for applications in speech recognition ofhe distance between two sentences then is de_flned
optical character recognition reordering is of no cont©® be the sum of the costs in the cheapest chain of
sideration, there are applications where one expe@§it operations transforming one sentence into the
reordering of single words and blocks between tw8ther. Havingnsertion deletionandsubstitutionas

Edit Operations

sentences, like operations, each at the cost hfyields theLeven-
shtein distancéLevenshtein, 1966).
e Grammar induction, see e.g. (Vilar, 2000) Unfortunately, classical edit distances do not cor-
e Document retrieval respond well with the consideration that two sen-

tences are similar if just a block changes position:
ConsiderA, B, C, D to be blocks of words. As-
In this paper, we will propose a distance measursume,B andC do not share words. Then, in order
theinversion edit distancehat takes block reorder- to transform the sentencéBC D into AC B D with
ing into account. We will show an application to MT Levenshtein operations only, we have to delete all
evaluation. The paper will be organized as followswords of B before and insert them behidd(or vice
Section 2 will introduce conventional edit operationsersa), resulting in total costs af- min{|B|, |C|}.
and their extension by block transpositions. In SedNevertheless, a penalization of a block move by con-
tion 3, a formal definition of the inversion edit dis-stant cost only might be sensible as the example in
tance on the basis of bracketing transduction gransection 3.2.1 will show.
mars will be given. Furthermore, the search algo; . . .
rithm and its complexity will be described. An ap—z'2 Block Transposition as Edit Operation
plication of the inversion edit distance to machinéAs a solution to this, we define laock transposi-
translation evaluation will be presented in Section 4jon, i.e. changing the order of two arbitrary succes-
and experiments on two different corpora will besive blocks, to be a constant-cost edit operation. In
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the example presented aboweBCD can then be 1. Concatenationd — [AA]

transformed intcAC' B D at constant cost. with ¢([af]) = c(a) + ¢(B)
In order to reduce the complexity of the search, we _
restrict consequent block transpositions tdkeck- 2. Inversion: A — (AA)
eted i.e. the two blocks to be swapped must both lie with c({(aB)) = c(a) + c(B8) + cinv

either completely within or completely out of any o
block from previous operations. 3. Identity: A—a/z

The following examples illustrate allowed and for- with c(z/z) = 0

bidden block transpositions. The brackets indicatg g pstitution: A — x/y, wherez # y
the blocks that are swapped. In the transforma- With ¢(z/y) = Coubst

tion of ABCD into CDBA in (1), only transpo-

sitions within these blocks are performed. Whereas, Deletion: A— /e
in (2), the transformation fromC D A into BDAC with c(z/€) = cgey
crosses the blockBC'D and A from the previous

transposition and is therefore forbidden. 6. Insertion: A—ely

1. Allowed transpositions: with ¢(e/y) = Cins

(AB C D) — ((B) (C D)A) 7. Start; S A S = efe
~ (€ D) ®)A) with e(c/e) = 0
2. Forbidden transpositions:
(A)B C D) — (B C D)A)

— (B)(D A)C) The costsjny, Csupsts Cdel, @aNdce;,s are parameters
of the edit distance; usually we set all of themilto
3 The Extended Distance Measure We define thanversion edit distancéetween a

source sentence and a target senteneg to be the
minimum cost of the sef (s!, ¢{) of all trees for this
l%entence pair:

A concise definition of the edit operations intro-
duced in Section 2 can be formulated using brac
eting transduction grammars.

3.1 Bracketing Transduction Grammars dino (s, 1)) := min  ¢(7)
7T (s7,t
A bracketing transduction grammar (BTG) (Wu, (i)

1995) is a bilingual model that generates two outyjte that, without the inversion rulg), the min-

put streams; andt in two languages, called sourcejmn m production cost equals the Levenshtein dis-
and target language, respectively. It consists of ongnce.

common set of production rules for both languages.
A BTG always generates a pair of sentences. Term$.2.1 Example

nals are pairs of source and target language symbolg;onsider the sentencesve will meet at
where each may be the empty waord ~noon in the lobby and we will meet
Concatenation of the terminals and nonterminal, the Iobby at twelve o'clock

straight denoted by[-], orinverted denoted by(-).  follows (trivial concatenation brackets not shown):
In the former case, the parse subtree is to be read

left-to-right in both languages, and in the latter casgve/we will/will meet/meet (

it is to be read left-to-right in the source language [at/at noon/twelve elo’clock |
and right-to-left in the target language. A BTG con- [infin the/the lobby/lobby ] >]
tains only the start symbd and one nonterminal

symbol A, and each production rule consists of ei\We see that the insertion rule, the substitution rule,
ther a string ofds or a terminal pair. and the inversion rule are each applied once. The

3.2 Edit Operations as BTG Production Rules Levenshtein distancé;, of this sentence pair is 5.

Using the BTG formalism, we can describe the edi$-2.2 Properties
operations we have defined in Section 2 as a produlhe inversion edit distance has the following proper-
tion rules, associated with a cost functian ties:



Property 1 FOr ¢iny = Csupst = Cdel = Cins = 1, 3.4 Auxiliary Quantity

diny i a distance measure. To apply dynamic programming, we define an aux-

; - I 4J . . : :
As no cost is negative, we hawg,, (s1,17) > 0. jjiary quantity Q for the recursive calculation of the
Since concatenation and identity are for freeyqst of the cheapest parse tree:

but each other operation has positive cost,
(dino(st,t{) =0 & sl =1t]) follows. d;,, is
symmetric, because all production rules and costs
are symmetric. Thusl;,, is a distance measure.

Pmpertyz FOr ciny = Csubst = Cdel = Cins = 1,

Q(io, 1, jo, j1) := minimum cost for transforming
block ;) into 7

d;ny 1S NOt @ metric. Then, Q(io, i1, jo, j1) = (1)
It holds d;,,,(abcd ,abdc ) = 1 and (1 —jo+ 1) - Cins if i < g
diny(abdc , bdac ) = 1, but we have (i1 — o + 1) - Cger it 41 < o
diny(abed , bdac ) = 4 > 2. Thus, the triangular (1= 6(sig ti0)) - Coupst 1 (i1 =1i0)
inequation does not hold, amd,, is not a metric. A (j1=jo)
3.3 Algorithm Q(io, ', jo, J')
For the calculation of the distance of two sentences min +Q(l/+1’ B J_/,+1’J,1)’
5’:(1) and /!, we have to determine the cost of the i0<i'<iy | Cinv +_Q(ZO’Z_ “7,+L]1)

. 7 J1 H Jo<i'<i +Q(7’/+ 17117j07],)
cheapest parse treeTi(s;} , ¢ ) generating them. otherwise )

We can extend the CYK algorithm (Younger,
1967) to the two-dimensional (i. e. bilingual) caseynere 5(-,-) is the Kronecker function. Finally,

)

Then, the costs are calculated according to: dino(s1,14) = Q(1,1,1, 7).

o If iy = iy andjy = ji, that is S? and ti(l) Note that() can be viewed as a two-dimensional
both are single words, either the identity or theextension of the two-dimensional CYK algorithm
substitution production will be applied; thuscost table. A nonterminal matching table is not nec-
dinw(Sigs Ljo ) 1S ZETO Olcypsr, TESPECLiVEly. essary here, ag will always match and is the only

, nonterminat.

e Similar holds ifi; < ig, that is#} = €. Then,
€ andt% can only be generated by — jo + 1
applications of the concatenation and the inseA naive approach to the calculation 6f(1,1, 1, .J)
tion rule, thusdim,(e,til) = (j1—Jo+1)- Cins. would be the recursive calculation according to the

. ,]O ) formulain Eq. 1. This procedure is much too expen-

e Analogously, ifj1 < jo, the deletion ruille hasto gje. Instead, we can — analogously to the original
be applied; —io + 1 times, thusli,(s;;,€) =  CYK algorithm — fill theQ table using dynamic pro-
(i1 —do + 1) - Cdet- gramming, dovetailing on the block lengths— i

. . ; : i H 2 72

e In all other cases, either the concatenation gndJj1 — jo- We have to fill a table of S'Z@/(I_/J ),
the inversion production rule will be applied, "unning overO(1.J) pairs of split pointg(i’, ;') for
hence the tree’s cost is the sum of two subtree§ach table entry. This yields a time complexity of

. . 373 i
costs. For concatenation of blocks, we obtain O(1°J7) for this approach. o
We found that in most cases it is not necessary to

3.5 Complexity of the Algorithm

dino (80, t55) = calculate all values of)(ig, 7', jo, j'). Thus, we im-
min min {e(r) + c(7)} plemented a recursive approach with memoization
B rer(si ) (Norvig, 1991), i. e. caching of all previously cal-
TET (s}, 0] ) culated table entries af. This algorithm has the

same worst case complexiy(13.J3), but performs

o much better in average case. This is due to the fact

dmv(sﬁé,t%) = that we can prune many subtrees of the search tree
after having estimated or calculated the first term in

and for inversion, we obtain

min min {e(r) + () + cino}
A -/ ]
7. TeT(sio’t;}ﬂ) the sum.
TIET (st 0 ) except forS, of course

i'4+1°"30



4 An Application to MT Evaluation n-grams in a candidate sentence, thgram count
_ is limited to the corresponding maximumgram
4.1 Introduction countin its reference sentences. Then, the geometric

Research in MT depends on the evaluation of MTnean of thesév precisions is calculated.
system results. The progress in the development of The precision alone would favor systems that pro-
a system is to be measured or different systems a#gice short and simple sentences, even if parts of
to be compared on the basis of test corpora. the translation are omitted. To avoid this, sentences

In most applications, the translations generated Byfhich are shorter than the next-in-length reference
an MT system are eventually intended to be used I#f€ assigned a brevity penalty.
humans. Consequently, manually assigned scoreslhe calculation of the geometric mean and the
are considered as gold standard for evaluation. Penalizing is carried out on the whole candidate
order to evaluate an MT system, a @@}?ﬂ of set (and not sentence-wise), thus |mpI|C|tIy Weight-
translations generated by the system, catladdi- ing each sentence by its length. To investigate the
date sentence seis evaluated by human experts.effect of this implicit weighting, we also calcu-
Unfortunately, manual evaluation is very expensivéated the arithmetic mean of BLEU of each sentence
in time and money. Several suggestions have beéfeighted and unweighted). We denote this measure
made to simplify and accelerate this task, while dty avgBLEU
the same time reproducibility and reliability are im- (NIST, 2002a) proposed a measure similar to
proved. But manual evaluation still requires 30 to 6LEU, introducing a different brevity penalty and
secondper sentenceven for easy tasks (NieRen ettxchanging then-gram precision by information
al., 2000). Thus, the manual evaluation of a candiveight. We have not conducted further experiments
date sentence set, which usually contains hundretgarding this measure, but we expect it to behave
or even thousands of sentences, takes several houginilarly.

For this reason, a number of automatic measures, 5  \word Error Rate

have been proposed, which provide cheap and repro- N
ducible results. To evaluate a candidate sentence %‘ge word error rate (WER), which is calculated as

using an automatic measure, each sentence is co length-normalized Levenshtein distance to a ref-
pared to a set of reference translati®®ié . Usually, erence sentence, _has peen useq in several NLP ar-
there is more than one reference translation for &> and related d|§C|p_I|nes. (NieBen et _al., 20.00)
sentence, as there is more than one way to translat {Fsente_d an application to_ MT evalu_atlon_ using
correctly. The evaluation measure either pools the e multiple reference technique described in Sec-

reference translations, or it is calculated against t éao? rAfrﬁliﬁinThteh WtEF”(;f g It_e?/t f]ethtlsirc]:egim{[lar:ed Ey_
most similar reference sentence. ete g the totalized Levenshte stance be

Unfortunately, automatic evaluation measures qdween each candidate sentence and its nearest refer-

pend heavily on the choice of reference translation§'¢© sentence and normalizing this by the totalized

Furthermore, automatic measures can only deci(ﬁgference length:

on words and phrases, and not whether the meaning Z min dL(t(i)7T,)

of sentences is captured or not. A A ,
Following these considerations, MT research WER({t"W}, {RV}) = - T

would benefit from an automatic measure which Z\RT” Z ]
strongly correlates with human judgment. i reR()

4.2 Automatic Measures This implicitly weights each sentence by its length
421 BLEU as well.

(Papineni et al., 2001) introduced an MT evaluatio#-2-3  Position-Independent Error Rate

measure which they called BLE@®iLingual Evalu- The position-independent error rate (PER) is similar
ation Understudy)For each candidate senterit®, to the WER, but uses a position independent Lev-
a modifiedn-gram precision is calculated with re-enshtein distance (bag-of-word difference) instead;
spect to its pooled reference senten®¥. The i. e. the distance between a sentence and one of its
n-gram lengths range from 1 &, where typically permutations is alway®. Note that therefore this is

N = 4. To penalize overgeneration of commortechnically not a distance measure.



4.2.4 Inversion Word Error Rate 1

As the distance measure we have defined in Sec-
tion 2.2 is an extension of the Levenshtein distance, 0.8 t .
we can introduce the new evaluation measure as A
an extension of the WER, whe, (t®),r) isex- & 06} 47 | |
changed byl;,, (t®, 7). B AT
5 oap 1

5 Experiments 3 PER

. , 0.2 | iNVWER — |+
We performed experiments on two different test cor- WER —
pora. For both of them, several candidate sets were ol ‘ ‘ ‘ BLEU ‘
produced by different MT systems, which were then 0 0.2 0.4 0.6 08 1
manually evaluated sentence-wise. We calculated manual score

the PER, the WER, the invWER, and BLEU for each

candidate set. These automatic evaluation scoregyure 1:German—EnglishSentence level compar-
were compared with the manual evaluation. Thigon of different automatic evaluation scores versus
comparison was done as well on the sentence lev@lanual evaluation; averaged. Each bar shows the
as onthe level of the whole test set. In the latter casstandard deviation within the averaged range.

we compared the unweighted averages of the evalu-

ation scores of the sentences as well as the averages

weighted by sentence length (which the automatitable 1:German—EnglishCorrelation between the
measures do implicitly; see Section 4.2). BLEU an#éhanual and automatic scores; calculated at sentence
the human scores are accuracy measures, whergagl and system level. At system level, all scores
PER, WER and invWER are error measures. Thugere compared both weighted by sentence length
we inverted the latter three and rescaled such that alhd unweighted.

measures range fromo (worst) to1.0 (best). sentence system

5.1 German-English weighted| unweighted
_ | PER 0.61 0.85 0.85

We performed experiments on a German-Englisii\ygEr 0.65 0.98 0.98

test corpus from the Verbmobil project. This corpusnvWER | 0.68 0.95 095

contains 342 sentences from the domain of tourisig g 0.70 0.97 0.98

and appointment scheduling. It consists of transcri “avgBLEU | - 0.96 0.96

tions of spontaneously spoken dialogues, and the

sentences often lack correct syntactic structure. We

collected 898 reference translations from different

translators, averaging to 2.63 reference translationsFigure 2 shows the distribution of the automatic
per sentence. The average reference sentence lengghluation scores on the system level. The manual
is12.2. evaluation score was calculated as the average sen-

We evaluated 22 candidate sets from two MT retence evaluation score, weighted by the (average)
search systems, which were produced using differeference sentence length. Again, the three scores
ent parameter sets, pre-/postprocessing steps asitbw a similar behavior; and the correlation with hu-
training corpus size. man judgment is very high.

Figure 1 shows the distribution of the automatic Comparing the correlation between the automatic
evaluation scores versus human judgment on tlad manual scores numerically, as presented in Ta-
sentence level. The human evaluators assigned bie 1, we see that the sentence level correlation val-
quality classes ranging from 0.0 (worst) to 1.0 (best)es range between 0.65 and 0.70 for all systems.
in steps of 0.1; see (NiefRen et al., 2000) for a dBLEU has the highest correlation, followed by the
scription of this measure. We see that all autonvWER. On system level, all correlation values
matic evaluation scores correlate well with the manrange between 0.95 and 0.98, here the WER being
ual score. Nevertheless, the standard deviation tfe best, followed by BLEU. Neither in tendency nor
the automatic evaluation scores within each manual the correlation values we find a remarkable dif-
evaluation class is rather large. ference between the weighted and the unweighted



Table 2:German—-EnglishRanking of the systems according to the different (weighted) automatic scores.
S1, ... S99 are numbered according to (weighted) manual evaluaigiis the best systensss is worst.cr
is the ranking correlation

Measure | Ranking CR
PER S1 S2 53 S4 S5 Se S7 S11 S12 S13 S9 Sg S10 S15 S14 S16 S19 S18 S20 S21 S22 S17 | 0.92
WER S1 82 53 S5 5S4 S6 S7 S12 S11 S14 S13 Ss S S10 S15 S16 S19 S18 S17 S20 S21 S22 | 0.95

INVWER | S1 S2 S3 84 S6 S5 S7 S12 S11 S13 S9 Sg S10 S14 S15 Si6 S19 S1s S20 S17 S21 S22 | 0.96
BLEU S1 82 53 S5 5S4 S6 S7 S12 S11 S13 S9 Ss S10 S14 S15 S16 S19 S18 S17 S20 S21 S22 | 0.96
avgBLEU | 51 S3 S3 57 S12 S6 S4 S5 S9 S11 S8 S10 S13 S14 S15 S16 S19 S18 S20 S17 S21 S22 | 0.94

tences is 50 words or below; leaving us with 657

08¢ Lo test sentences in total. Each sentence has been pro-
g 07 f, + o o o i::i ] vided with four reference translations, generated by
T 06| § «x o xR ] different human translators. The average reference
= os [ = . x o 55| sentence length is 23.5.
g =[x e Six different research MT systems and three com-
o 04y . per 1 | mercial MT systems generated nine candidate sets
2 03le ™ " ] invWER = |1 for this test corpus. Each sentence was evaluated
% 02 | BVIYES al by two or three out of eleven evaluators, judging
o1 | avgBLEU = fluency and adequacy, each from 1 to 5 in steps of

035 04 045 05 055 06 065 07 075 1. For each eyaluator, we normalized the fluency
and adequacy judgements such that the mean of all
judgements wa$.0 and the variancé.0 (over all

Figure 2: German—English:System level compari- sentences, documents and systems). Then, for each

son of different automatic evaluation scores versiEntence, we compared the mean fluency and mean

manual evaluation. Each score is weighted by seR9€quacy out of its two or three judgements.
tence length (implicitly or explicitly). We normalized each reference and candidate sen-

tence by case conversion, whitespace trimming and
punctuation separation before the automatic evalua-
system-level scores. tion process.

In Table 2, we see that the rankings of the 22 sys- This test corpus is a lot more difficult for the MT
tems implied by the automatic scores highly corresystems than the German—English task, as is re-
late with the manual ranking. On the other handflected in the fact that only on@) of the 5913 can-
small scale differences of similar systems need nefidate sentences matches its reference translation.
be judged equally by the automatic and manual evajiost interestingly, this translation was rated 3.5 out
uation scores. This may cause problems if smadf 5 in fluency and 4.5 out of 5 in adequacy by the
changes in the parameter setting of an MT systeRuman evaluators, showing that the choice of appro-
are to be evaluated: An improvement according tgriate reference translations must be cared for.
manual evaluation might be a deterioration accord- Figyre 3 shows the distribution of the automatic
ing to an automatic score and vice versa. evaluation scores versus manual evaluation on the
5.2 Chinese-English sentenc_e _IeveI. Again, WER ano_l ianER be_have

rather similarly, even though the difference is bigger
The Chinese—English test corpus along with manthan in Figure 1. Both WER and invWER have a
ual evaluation scores was obtained from the NISfather large standard deviation which even increases
MT evaluation 2002 (NIST, 2002b). Originally, thefor higher manual scores. BLEU has a lower stan-
test corpus consists of 100 Chinese newspaper @ard deviation, but we notice a very small total rise

ticles, summing up to 878 sentences. Out of thesfom 0.22 to 0.46 in the BLEU score over all manual
sentences, we selected all sentences for which theajuation classes.

maximum length of all candidate and reference sen-

manual score (weighted)
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Figure 3:Chinese—EnglishSentence level compar- Figure 4: Chinese—EnglishSystem level compari-
ison of different automatic evaluation scores versuson of different automatic evaluation scores versus
manual evaluation; averaged. Each bar shows timanual evaluation. Each score is weighted by sen-
standard deviation within the averaged range. tence length (implicitly or explicitly).

Figure 4 shows the distribution of the automaticlence of 90%) that BLEU and the manual score are
evaluation scores on the system level. The manuabt independent variables.
evaluation score was calculated as the average senfable 4 shows the ranking of the systems accord-
tence evaluation scores, weighted by the (averagisg to different automatic evaluation scores. We see
reference sentence length. This time, we notice th#tat the rankings are similar, but on this task, all
the correlation between the automatic and the mathree are significantly different from the ranking ac-
ual evaluation score is very small. cording to manual evaluation.

6 Discussion
Table 3:Chinese—EnglishCorrelation between the

manual and automatic scores; calculated at sentené@mparing the correlation between automatic and
level and system level. At system level, all scoregianual evaluation, we find significant differences
were compared both weighted by sentence lengttetween the two translation tasks presented above:

and unweighted. On the German—English corpus, all three automatic
sentence system evaluation scores have a high correlation with hu-
weighted| unweighted man judgment, whereas on the Chinese—English
BLEU 0.26 0.28 0.25 task, the correlation is very poor.
avgBLEU | - 0.15 0.13 We assume that one reason for this is that the
PER 0.26 0.15 0.14
WER 0.27 0.04 0.02
inWER | 0.28 0.09 0.07 Table 4: Chinese—English: Ranking of the sys-

tems according to the different (weighted) auto-
matic scores.Sy, ... Sy are numbered according to

Table 3 confirms our observations: The correlagyeighted) manual evaluatiors is the best system,
tion on the sentence level is acceptable with all thres,, is worst. ¢y, is the ranking correlation

scores, where this time the invWER is leading. O Measure | Ranking cn
the system level, the correlation is close to zero farBLEU S, S1 S5 Sg S7 89 S3 .55 Ss | 0.30
the WER and the invWER. For nine observed valt aygBLEU | Sy S5 S1 S7 S6 So 52 S5 Ss | 0.28
ues, we would expect a much higher correlation if pEr S4S1 S S7 S5 S S5 5 Sg | 0.10
the scores were related. Assuming a normal distri-\yER So 5S4 51 S7 S5 Sg 53 S S | 0.13
bution for both types of score, even an empirical COSiRWER | S, S, S, S7 S5 Sg 53 52 Sg | 0.12

relation of 0.28would by far not prove (with a confi-
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