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Abstract

In this work, normalization techniques in the acoustic feature space are studied which
improve the robustness of automatic speech recognition systems.

It is shown that there is a fundamental mismatch between training and test data which
causes degraded recognition performance. Adaptation and normalization, basic strategies
to reduce the mismatch, are introduced and placed into the framework of statistical
speech recognition. A classification scheme for different normalization techniques
is introduced. Common normalization schemes proposed in the literature are moti-
vated and discussed, and two promising techniques are implemented and studied in detail.

Vocal tract length normalization relies on frequency axis warping during signal analysis
to reduce inter-speaker variability. The baseline procedure for training and test data
normalization is introduced and optimized so that consistently large improvements in
recognition performance are achieved under a variety of acoustic conditions. A technique
for fast parameter estimation is developed that gives the same improvements as the
baseline technique without an increase in computation time. It is shown that vocal tract
length normalization can be applied successfully in online applications. A novel approach
for integrated frequency axis warping is developed that merges successive signal analysis
steps into a single one. It simplifies signal analysis and gives a better control over the
amount of spectral smoothing.

The second set of techniques explored in detail are histogram normalization and feature
space rotation. They aim at reducing the mismatch between training and test by match-
ing the distributions of the training and test data. The effect of histogram normalization
at different signal analysis stages, as well as training and test data normalization are
investigated in detail. One of the basic assumptions of histogram normalization is relaxed
by taking care of the variable silence fraction. Feature space rotation is introduced to
account for undesired variations in the speech signal that are correlated in the feature
space dimensions. The interaction of histogram normalization and feature space rotation
is analyzed, and it is shown that both techniques significantly improve the recognition
accuracy in scenarios with different degrees of mismatch.

Finally, it is demonstrated how the application of several normalization schemes in
presence of large mismatch between training and test data can make the difference from
essentially zero recognition accuracy to a high level of 90%.

Experimental results are reported for corpora with different acoustic conditions, vocab-
ulary sizes, languages, and speaking styles: North American Business News is a large
vocabulary task of English read speech, VerbMobil II is a German large vocabulary con-
versational speech task, EuTrans II is an Italian speech corpus of conversational speech
over telephone, and CarNavigation a German isolated-word recognition task recorded
partly in noisy car environments.





Zusammenfassung

In dieser Arbeit werden Normalisierungsverfahren im akustischen Merkmalsraum zur
Erhöhung der Robustheit von automatischen Spracherkennungssystemen untersucht.

Es gibt eine grundsätzliche Diskrepanz zwischen den Trainings- und Testdaten, die zu
einer Verschlechterung der Erkennungsleistung führt. Adaption und Normalisierung, zwei
Prinzipien zur Verringerung des Unterschieds, werden in der Arbeit vorgestellt und in
den Rahmen der statistischen Spracherkennung eingefügt. Es wird ein Klassifikations-
schema für Normalisierungsverfahren entwickelt. Gängige Normalisierungsverfahren wer-
den vorgestellt und erörtert und zwei besonders erfolgversprechende Verfahren im Rahmen
der Arbeit umgesetzt und genauer analysiert.

Die Vokaltraktlängennormierung beruht auf der Verzerrung der Frequenzachse während
der Signalanalyse mit dem Ziel, sprecherabhängige Variationen im Sprachsignal zu re-
duzieren. Das allgemeine Prinzip wird vorgestellt und das Standardverfahren so optimiert,
daß konsistent hohe Verbesserungen der Erkennungsleistung in verschiedenen Umgebun-
gen erreicht werden. Ein Verfahren zur schnellen Parameterschätzung liefert dieselben
Verbesserungen ohne eine Zunahme an Rechenzeit, was den Einsatz der Normalisierung
in Online-Erkennungssystemen ermöglicht. Schließlich wird ein neuer Ansatz zur inte-
grierten Verzerrung der Frequenzachse vorgestellt, der mehrere Signalanalyseschritte zu
einem vereint. Das vereinfacht die Signalanalyse und verbessert die Kontrolle über die
spektrale Glättung.

Der zweite Satz von Verfahren, die im Detail untersucht werden, sind die Histogramm-
normalisierung und die Merkmalsraumrotation. Sie zielen darauf ab, die Diskrepanz zwi-
schen Trainings- und Testdaten durch eine Angleichung ihrer Verteilungen zu verringern.
Der Effekt der Normalisierung auf verschiedenen Ebenen der Signalanalyse sowie auf
Trainings- und Testdaten wird untersucht. Die Berücksichtigung des Anteils an Sprech-
pausen relaxiert eine der Grundannahmen der Histogrammnormalisierung. Ein Verfahren
zur Merkmalsraumrotation beseitigt unerwünschte Variationen im Sprachsignal, die in
den einzelnen Dimensionen des Merkmalsraumes korreliert sind. Die Interaktion von His-
togrammnormalisierung und Rotation wird untersucht. Beide Verfahren erhöhen deutlich
die Erkennungsleistung in Szenarien mit verschiedenen Graden an Diskrepanz zwischen
Trainings- und Testdaten.

Schließlich wird demonstriert, daß die Anwendung mehrerer Normalisierungsverfahren im
Fall von starker Diskrepanz zwischen Training und Test die Erkennungsleistung von Null
auf ein hohes Niveau von 90% bringen kann.

Erkennungsergebnisse werden für Korpora mit verschiedenen akustischen Bedingungen,
Vokabulargrößen, Sprachen und Sprechstilen angegeben: North American Business News
ist ein Testkorpus mit großem Vokabular, der aus gelesenen englischen Texten besteht.
VerbMobil II ist ein deutscher Spontansprachkorpus mit großem Vokabular, EuTrans II
ist ein italienischer spontansprachlicher Telefonkorpus und CarNavigation ein verrauschter
deutscher Einzelwortkorpus, der zum Teil in fahrenden Autos aufgenommen wurde.
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Chapter 1

Introduction

Speech is the fundamental form of communication between humans, and it will play a
central role in future man-machine interfaces. The aim of automatic speech recognition
is to extract the sequence of spoken word from a recorded speech signal. It does not
include the task of speech understanding, which can be seen as an even more elaborate
problem.

Depending on the complexity of the recognition task, current automatic speech recog-
nizers range from experimental systems in research laboratories to solutions that have
reached the consumer market in a number of isolated applications. For speaker-dependent
recognition of isolated digit strings in clean acoustic conditions, the word error rate
can be as low as a fraction of a percent, whereas speaker-independent large vocabulary
recognition of conversational speech in adverse acoustic conditions (e.g. the transcription
of broadcast news) still yields word error rates in the order of several ten percent. Hence,
today’s best automatic speech recognizers are still far inferior to the performance of the
human ear and brain.

Compared to the importance speech has in the communication among humans, the in-
tegration of voice in current man-machine-interfaces is still rudimentary. Examples for
speech recognition systems that have reached the market are:

• voice control of technical devices (e.g. telephone, car electronics, . . .)

• dictation systems (e.g. PC-based dictation systems)

• transcription systems (e.g. transcription of broadcast news, medical reports, . . .)

• access to databases (e.g. information systems for time tables, telephone numbers,
stock prices, voice-mail systems, . . .)

Further research is required to design voice-based interfaces, and to improve the available
speech recognition technology. A key issue is to increase the robustness of speech recog-
nizers to variable environments and speakers. It will be of fundamental importance for
the advance of speech technology.

1



2 CHAPTER 1. INTRODUCTION

1.1 Statistical Speech Recognition

Automatic speech recognition is nowadays solved in a statistical framework. Bayes’ de-
cision rule [Duda & Hart 73] states that the word sequence W = w1, . . . , wN should be
chosen that maximizes the posterior probability of the observed sequence of acoustic vec-
tor X = x1, . . . , xN :

W = arg max
W ′

p(W ′|X) (1.1)

Using Bayes’ identity, the posterior probability can be transformed as:

p(W |X) =
p(W ) · p(X|W )

p(X)
(1.2)

The a-priori probability p(X) of the acoustic vector sequence can be omitted, since it is a
constant factor and has no influence on the optimization problem. Hence, Bayes’ decision
rule can be rewritten as:

W = arg max
W ′

{p(W ′) · p(X|W ′)} (1.3)

From Eqn. 1.3 follows that there are two basic knowledge sources involved in automatic
speech recognition: The acoustic model with the class-dependent probability distributions
p(X|W ), and the language model that provides the a-priori probability p(W ) of the
word sequence W . Both knowledge sources can be found in the system architecture
depicted in Figure 1.1 [Ney 1990], which has become a de-facto standard for modern
speech recognizer.

A speech recognition systems consists of four basic parts, which will be described in detail
in the following sections:

• the signal analysis (Section 1.2) creates a sequence of acoustic vectors X from the
speech waveform recorded by the microphone

• the acoustic model (Section 1.3) describes the probability to observe a sequence of
acoustic vectors X given a (hypothesized) word sequence W . The acoustic model
is typically made of two parts:

– acoustic models for the smallest sub-word units that are used, i.e. typically
phonemes

– the pronunciation lexicon that describes how the acoustic model for words is
composed from the sub-word units

• the language model (Section 1.4) covers syntax, semantics, and pragmatics of the
language, and provides the a-priori probability of a (hypothesized) word sequence

• the search procedure (Section 1.5) finds the word sequence of maximum posterior
probability according to Bayes’ decision rule (Eqn. 1.3)
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Speech Input

Signal Analysis

      Acoustic Model
* Phoneme Inventory
* Pronunciation Lexicon

Language Model

Global Search:

Maximize

p(w1,...,wN) * p(x1,...,xT | w1,...,wN)

over w1,...,wN

Recognized Word
Sequence w1,...,wN

Acoustic Vectors
x1,...,xT

p(x1,...,xT | w1,...,wN)

p(w1,...,wN)

Figure 1.1: Principal architecture of an automatic speech recognition system.

1.2 Signal Analysis

The aim of signal analysis is to provide the speech recognizer with a stream of acoustic
vectors. The vector sequence is a parameterization of the speech waveform observed at
the microphone that should fulfill the following criteria:

• acoustic vectors should be characteristic for the sub-word units used in acoustic
modeling, i.e. they should be similar for the same phoneme, but discriminative
among different phonemes

• they should depend on the spoken word sequence only; ideally they are independent
of the speaker, recording conditions, transmission channel, and other environmental
effects

• the acoustic vectors should be of low dimensionality to allow robust parameter
estimation for the acoustic model, i.e. all information necessary for the recognition
process should be captured in only a few coefficients

Especially the second condition is difficult to realize, which is why special normalization
and adaptation methods were developed to improve the performance of automatic speech
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recognition systems. Normalization schemes, which are introduced in detail in Chapter 2,
will be the focal point of this work.

Signal analysis is an autonomous part of modern speech recognition architectures
(cf. Figure 1.1). It is based on short-term spectral analysis (basic principles of spectral
analysis are described in [Rabiner & Schafer 78]) and yields typically one acoustic
vector every 10 milliseconds. In recent years, two different signal analysis schemes have
become popular. They are based on either Mel-frequency cepstral coefficients (MFCC
[Davis & Mermelstein 80]) or perceptual linear prediction (PLP [Hermansky 90]).

Throughout this work, the MFCC-based RWTH signal analysis front-end will be used,
which is depicted in Figure 1.2 and described in detail in [Welling 99].

Preemphasis, Windowing

| FFT |

Mel-Frequency Warping

Filterbank

Logarithm

DCT

Mean, Variance, and
Energy Normalization

Time Derivatives

LDA

Speech Waveform

Acoustic Vector

Figure 1.2: Signal analysis front-end of the RWTH speech recognition system.
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First, the speech signal sampled at 8 kHz (telephone data) or 16 kHz (microphone data)
is differentiated (preemphasis), i.e. the previous sample is subtracted from the current
sample. Preemphasis is a high-pass filter that counteracts the drop in spectral energy at
higher frequencies.

Every 10 ms, the preemphasized speech signal is segmented into windows of 25 ms
length, i.e. there is an overlap of 15 ms to the left and right neighbor window. The
underlying idea is that the speech signal is quasi stationary for 20 to 50 ms, which
supports short-term spectral analysis within a window of 25 ms length.

Cutting a window out of the sample stream is synonymic to the application of a
rectangular window function. The multiplication of speech samples with a window
function in the time domain, however, is equivalent to a convolution of the speech and
the window functions’ spectra in the frequency domain. Hence, windowing affects the
spectra derived by Fourier analysis from the speech samples. The side lobes of the
spectrum of a Hamming window are significantly smaller than those of a rectangular
window. For this reason, the Hamming function is multiplied to the windowed samples
before the Fourier transform is carried out.

A number of zero samples are attached to the windowed samples (zero padding) to
increase the number of frequency lines obtained by the subsequent fast Fourier transform
(FFT). In the RWTH signal analysis front-end, a magnitude spectrum sampled at 512
discrete frequencies is derived.

In the next step, the frequency axis is warped according to the Mel-scale [Young 93]. As
the result, the spectral resolution is reduced towards higher frequencies similar to the
frequency response of the human ear.

The Mel-frequency magnitude spectrum passes a filter bank of typically 15 (telephone
data) or 20 (microphone data) equidistant overlapping triangular bandpass filters. They
reduce the spectral resolution and compress the information content into a few coefficients.

The dynamic range of the individual filter bank channels is reduced by taking the
logarithm. One of the reasons for this step is that it mimics the non-linear dependency
between the intensity of a speech signal and the loudness perceived by the human ear.
Another reason is that convolutional distortions introduced to the speech signal by the
transmission channel are multiplicative in the spectral domain. By taking the loga-
rithm they become additive and can be removed easier by subsequent normalization steps.

The discrete cosine transform applied to the log filter bank coefficients uncorrelates the
filter bank channels. The highest cepstral coefficients are typically omitted, as they
contain only little information about the spoken word sequence. The resulting vector of
typically 12 (telephone data) or 16 (microphone) coefficients is the standard MFCC vector.

Mel-Frequency warping, filter bank, log compression, and cepstral uncorrelation will
be discussed in detail in Section 6.7 again, where an alternative method to compute
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Mel-frequency cepstral coefficients directly from the magnitude spectrum is proposed.

Subsequent signal analysis steps do not belong to the “standard” MFCC signal analysis
anymore, but they have shown to improve the recognition performance of automatic
speech recognition systems significantly, which is why they are a fixed part of the RWTH
signal analysis front-end.

The long-term mean (typically sentence mean) of each cepstral coefficient is subtracted
from the MFCC vector to remove time-invariant distortions introduced by the transmis-
sion channel and the recording device (cepstral mean normalization, CMN). Sometimes
the coefficients are also transformed to unity variance (cepstral variance normalization,
CVN). Both methods are in fact normalization schemes, which will be discussed in detail
in Section 3.1.3. Mean normalization is always applied, whereas variance normalization
is only applied on corpora with large variations in the acoustic signal (cf. Chapter 5).

Energy normalization is carried out sentence-wise as well. The maximum of the zeroth
cepstral coefficient within the sentence is subtracted from the zeroth coefficient of each
cepstrum vector (which is proportional to the log energy of the time frame). This reduces
the energy of speech frames to approximately the same level independent of the loudness.
At the same time, however, a larger sentence-dependent variation in the energy level of
silence is introduced.

Next, the normalized MFCC vector is augmented with times derivatives. Typically
the first derivatives of all cepstral coefficients, and the second derivative of the zeroth
cepstrum coefficient are computed by linear regression from five successive cepstrum
vectors. Increasing the temporal context of Mel-frequency coefficients improves their
quality.

Finally, three successive augmented Mel-frequency vectors are concatenated to yield one
large vectors, which is transformed by linear discriminant analysis (LDA). At the same
time, the size of the final acoustic vector is reduced to a desired dimension of typically
25 (telephone data) or 33 (microphone data) coefficients. LDA is a standard method in
pattern recognition. It transforms feature vectors into a sub-space which maximizes the
separability of different classes (e.g. phonemes). The first dimensions of the resulting
LDA-transformed acoustic vector are most discriminant, which is why there is essentially
no loss of information involved by the dimension reduction.

Alternatively to the time derivatives, linear discriminant analysis can be applied to a larger
sequence of seven or nine normalized MFCC vectors without their derivatives. Recent
experiments have shown that this method yields typically a slightly better recognition
accuracy. Which method was actually applied for the different corpora used in this work
is summarized in Chapter 5.
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1.3 Acoustic Modeling

The aim of acoustic modeling is to provide the acoustic probability that a hypothesized
word sequence W generates an observed sequence of acoustic vectors X. These probabil-
ities are trained on large speech corpora.

Only in rare cases it is possible to train acoustic models for whole words (e.g. in
the case of digit recognition). The recognition vocabulary contains typically many
words that are not (or not frequently enough) observed in the training data. For
this reason, acoustic modeling is typically based on sub-word units. Models for whole
words are built from a concatenation of these units according to the pronunciation lexicon.

Phonemes are the basic sounds human speech is made of. In the RWTH system, the
pronunciation lexicon is based on a language-dependent inventory of typically 40 to 50
phonemes. Depending on their context, phonemes may be articulated in a different way.
Hence, the sub-word units used for acoustic modeling in most speech recognition systems
are phonemes in their phonetic context (i.e. conditioned by their left and right neighbor
phoneme), called triphones.

The same word (or phoneme) can be uttered at different speaking rates as well, so
it can generate acoustic vector sequences of different length. For this reason, hidden
Markov models [Baker 75][Rabiner 89] are used for triphone modeling in automatic
speech recognition.

Hidden Markov models are stochastic finite state automata. They consist of a number
of states and transitions between these. Each state is characterized by the probability
to observe a given acoustic vector (emission probability), and the probability to step into
one of the possible successor states (transition probability). An acoustic model θ is the
sum of all hidden Markov model parameters that describe the sub-word units of a speech
recognition system (Eqn. 1.4):

p(X|W )
HMM

= p(X|W ; θ) (1.4)

Based on the pronunciation lexicon, the word sequence W is decomposed into a sequence
of triphones, which is modeled by a sequence of hidden Markov model states S.

As an example, Figure 1.3 depicts the HMM topology for a part of the word “seven” in the
RWTH speech recognition system. The word is composed of the four phonemes s, eh, v and
un. Each triphone (e.g. the triphone sehv, which is the phoneme eh with the left context s
and right context v) is modeled by a 6-state hidden Markov model with strict left-to-right
topology. The model consists of three segments (marked <1>, <2>, and <3>), each of
which is made up of two identical states [Schwartz & Chow+ 85][Ney & Noll 88].

To model different temporal realizations of words and their sub-word units, three types
of state transitions are allowed (Bakis topology [Bakis 76]). The automaton may stay in
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Figure 1.3: 6-state hidden Markov model in Bakis topology for the triphone sehv in the
word “seven”. The HMM segments are marked <1>, <2>, and <3>.

the same state (loop), enter the next state (forward), or the state after the next state (skip).

Under the assumption that the acoustic vector sequence follows a first order Markov
process [van Kampen 92], the emission and transition probabilities depend only on the
previous and current HMM state. Hence, the probability of an acoustic vector sequence
X given the HMM state sequence S (which is derived form the word sequence W ) can be
expressed as follows:

p(X|W ; θ) =
∑

sT
1

T∏
t=1

{p(st|st−1,W ) · p(xt|st,W ; θ)} (1.5)

The sum is computed for all possible alignments sT
1 between HMM states and acoustic

vectors, i.e. over all possible paths through the grid spanned by the HMM states S and
acoustic vectors X in Figure 1.3. The probability of each path is given by the product
over all time frames t = 1, . . . , T of the transition probability p(st|st−1,W ) and the
emission probability p(xt|st,W ; θ).
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In practice, the sum over all possible paths sT
1 is often replaced by the maximum (Viterbi

or maximum approximation [Ney 1990], Eqn. 1.6). This is appropriate since the feature
space is of high dimension and the distribution of data is assumed to be of an exponential
type. Hence, there is typically only one path that contributes the majority to the sum:

p(X|W ; θ) ∼= max
sT
1

T∏
t=1

{p(st|st−1,W ) · p(xt|st,W ; θ)} (1.6)

Both the summation and the maximum approximation can be efficiently calculated
by the forward-backward algorithm [Rabiner & Juang 86] or by dynamic programming
[Ney 84].

If only forward transitions are used, it takes six time frames to get through a hidden
Markov model. Given the frame shift of 10 ms (cf. Section 1.2), this amounts to 60 ms
which is approximately equivalent to the typical duration of phonemes. In tests on
the VerbMobil II corpus (cf. Section 5.2.2) it was found, however, that especially for
fast conversational speech the minimum duration of 30 ms (three skips) is still too
large. Hence, for this corpus the two states per HMM segment are merged into a single
state (3-state HMM topology). Since all three transition types (loop, forward, and
skip) are still allowed, the dwell time can be reduced to only 10 or 20 ms per hidden
Markov model. The 3-state HMM topology performed worse on all other corpora, though.

The emission probabilities can be modeled either as discrete probabilities [Jelinek 76], as
semi-continuous probabilities [Huang & Jack 89], or as continuous probability distributions
[Levinson & Rabiner+ 83]. The latter case is applied in the RWTH speech recognition
system. Mixtures densities made of a weighted sum of Gaussian distributions (Eqn. 1.7)
are used to model the continuous probability distributions. The Viterbi approximation
[Viterbi 67] is applied at the density level as well (Eqn. 1.8):

p(xt|st,W ; θ) =
L∑

l=1

csl · N (xt|µsl, Σ,W ; θ) (1.7)

∼= max
l
{csl · N (xt|µsl, Σ,W ; θ)} (1.8)

Here l denotes the index of the density within the mixture of state s, and csl the
mixture weight. µsl is the mean vector of Gaussian density l in state s, and Σ the
covariance matrix. The RWTH system uses a pooled diagonal covariance matrix, i.e. Σ
is independent of s and l.

During training, each mixture is initialized by a single Gaussian density. Later the acous-
tic resolution is increased successively by density splitting. Parameter estimation is per-
formed according to the maximum likelihood principle (Eqn. 1.9) with the expectation
maximization algorithm [Dempster & Laird+ 77], an iterative scheme that guarantees con-
vergence to a local optimum. A more detailed description of the training procedure is
given in [Beulen 99]:
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θ = arg max
θ′

p(X|W ; θ′) (1.9)

Among other reasons, sub-word units were introduced because not all words that are to
be recognized occur in the training data. However, when context-dependent phonemes
are used, there will still be a number triphones in the recognition vocabulary that are
never seen in training. One solution is to fall back to context-independent monophone
models, but more effective are phoneme or state clustering methods. Decision-tree
based top-down clustering algorithms [Hwang & Huang+ 92] at the HMM state level
have prevailed in automatic speech recognition. The basic idea is that a large pool of
generalized HMM states is created. Which of these states is tied to a specific segment of a
specific triphone hidden Markov model is determined by the decision tree. Details of the
state tying approach in the RWTH speech recognition system are presented in [Beulen 99].

Special care is required for triphones at word boundaries. A dummy symbol “#”
is used in the case of within-word modeling to represent the word boundary context
(cf. the first triphone in Figure 1.3). However, coarticulation across word boundaries
occurs frequently in continuous speech, i.e. the last phoneme of a word is affected
by the first phoneme of the successor word, and vice versa. Across-word modeling
[Hon & Lee 91][Odell & Valtchev+ 94] takes explicitly care of word boundary triphones
by modeling transitions both with and without coarticulation. It results in a consistent
reduction of the word error rate at the cost of a significant increase in computational com-
plexity. Thus, special care has to be taken for an efficient implementation of across-word
models. Details about across-word modeling in the RWTH system are given in [Sixtus 02]

1.4 Language Modeling

The aim of the language model is to provide the prior probability p(W ) of a word
sequence independent of the acoustic signal. It covers syntax, semantics, and pragmatics
of a language which does not mean, however, that grammatic rules are explicitly coded
into the language model. Stochastic models that predict the probability of a word given
the sequence of predecessor words (called the history of a word, Eqn. 1.10) have shown
the best performance and are used in virtually every speech recognition system. To
a certain degree they implicitly learn the semantic and syntactic rules of a given language.

In order to estimate the probability distribution from large text corpora (e.g. newspaper
texts), the history has to be limited. Under the assumption that the word sequence follows
an (m−1)-order Markov process [van Kampen 92], the probability of a word depends only
on the (m − 1) predecessor words (Eqn. 1.11), and the corresponding models are called
m-gram language models [Bahl & Jelinek+ 83]:
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p(wN
1 ) =

N∏
n=1

p(wn|wn−1
1 ) (1.10)

∼=
N∏

n=1

p(wn|wn−1
n−m+1) (1.11)

If the lower index n−m + 1 is smaller than one it is set to one with p(w1|w0
1) = p(w1).

As for training of acoustic models, the maximum likelihood principle is also applied for
training of the language model with the perplexity (PP [Bahl & Jelinek+ 83]) as the eval-
uation criterion. The perplexity of a word sequence is defined as the inverse geometric
mean of the language model probability over all words in the sequence (Eqn. 1.12). The
perplexity of a test utterance can be viewed as the average number of possible successor
words at each instant in the search process, which is typically well below the vocabulary
size:

PP (wN
1 ) =





N

√√√√
N∏

n=1

p(wn)





−1

(1.12)

Using the perplexity as training criterion that is to be minimized over the text database
yields the solution that the probability of an m-gram is given by its relative frequency
in the training corpus. However, with increasing history length the number of m-grams
increases exponentially, and even for trigram language models that are used in most
speech recognition systems (m = 3, i.e. the probability of each word is conditioned by
the two predecessor words) and training corpora of several million running words, the
vast majority of trigrams will not be seen in the data or occur too infrequent. Unseen
m-grams would get the probability zero and could never be recognized, which is why
smoothing needs to be applied to ensure that the probability of all m-grams is larger
than zero.

Smoothing methods are based on various discounting schemes [Katz 87][Ney & Essen+ 94]
that reduce the probability mass of observed m-grams to distribute it among the unseen
(backing off) or all (interpolation) m-grams. The amount of discounting mass that is
assigned to each m-gram is typically governed by generalized language model probabilities
based on shorter histories. The leaving-one-out algorithm is the method of choice to
estimate the discounting and generalized language model parameters. A systematic
comparison of smoothing techniques based on the RWTH speech recognition system is
given in [Martin & Hamacher+ 99].

A number of schemes were proposed to increase the performance of language models.
The idea of a language model cache [Kuhn & de Mori 90] is to use the last few hundred
recognized words for adaptation of the language model to the current topic of conversa-
tion. Sequences of words that occur frequently in the same order are pooled to phrases
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which are handled as a single words and effectively increase the history of the language
model [Jelinek 91]. Similar words (e.g. proper names) can be pooled to word classes
[Brown & Della Pietra+ 92] for more robust parameter estimation, and distant m-grams
[Rosenfeld 94] are m-grams with a gap between the current word and the (m − 1)
predecessor words that condition it.

A description of the RWTH language model implementation is given in
[Wessel & Ortmanns+ 97]. The language models used for recognition tests reported in
this work can be characterized as:

• trigram language models

• smoothing is achieved by absolute discounting with interpolation

• smoothing parameters are estimated by leaving-one-out

• the discounted probability is distributed among all trigrams based on singleton
generalized backing-off distributions

• word classes are used for some corpora (cf. Chapter 5)

• phrase language models are used for some corpora, but not those employed in this
work; cache and distant m-gram techniques are not applied

1.5 Search

Based on the two knowledge sources acoustic model and language model, the task of
the search is to find the best word sequence. The optimization criterion is the posterior
probability (cf. Section 1.1), which is proportional to the product of the acoustic and the
language model probability (cf. Eqn. 1.3). Replacing the two terms according to Eqn. 1.6
and 1.11 yields:

W = arg max
W ′

{
N∏

n=1

p(wn|wn−1
n−m+1) ·max

sT
1

{
T∏

t=1

p(st|st−1,W
′) · p(xt|st, W

′; θ)}
}

(1.13)

The search has (at least in theory) to hypothesize all possible word sequences W =
w1, . . . , wN and find the one with maximum likelihood according to Eqn. 1.13. A naive
implementation that computes the probability of all word sequences in infeasible, since
for a given vocabulary size V the number of possible word sequences grows exponentially
with the number N of words in the sequence:

V 0 + V 1 + V 2 + V 3 + . . . + V N =
V N+1 − 1

V − 1
(1.14)

The complexity of the optimization can be reduced significantly by dynamic programming
[Bellman 57], which exploits the mathematical structure of the task and decomposes the
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global into a number of local optimization problems. Two search algorithms based on
dynamic programming have become popular in automatic speech recognition.

In A*-search or stack decoding [Jelinek 69], a time-asynchronous expansion of state
hypotheses is applied which relies on a heuristic estimate of the probability of the
remaining unexpanded path. Convergence to the global optimum is guaranteed if the
estimate is strictly above the true probability. The efficiency of A*-search heavily
depends on the quality of the heuristic estimate.

In the case of Viterbi search [Vintsyuk 71][Ney 84] which is applied in the RWTH system,
state hypotheses are expanded time-synchronous. The advantage is that at each time
frame the likelihood of all hypotheses can be compared with each other, which allows for
efficient pruning techniques. Unlikely hypotheses are omitted early from the optimization
process, which significantly reduces the search space.

A number of methods are applied to further reduce the effort of finding the best word
sequence:

• The pronunciation lexicon is organized as a prefix tree [Ney & Haeb-Umbach+ 92],
which exploits redundancies in the lexicon and reduces the search space.

• Pruning is applied when states are expanded to pursue only the most promising hy-
potheses (beam search [Ney & Mergel+ 87][Ortmanns & Ney 1995]). It may happen
that the globally best word hypothesis is not found, since it could be pruned be-
forehand due to poor likelihood at an intermediate search stage. However, a proper
adjustment of pruning parameters ensures that no significant search errors occur.

• A number of look-ahead techniques are applied to make pruning more efficient. If
the pronunciation lexicon is organized as a prefix tree, the identity of the hypoth-
esized word is not known until the end of the tree is reached, which is why the
language model probabilities can be introduced only at word ends. However, at
each node within the tree the set of possible ending words is limited. Hence, upper
estimates for the language model probability can be propagated backwards into the
tree nodes and integrated earlier into the search process (language model look-ahead
[Steinbiss & Tran+ 94]). Furthermore, the approximate acoustic probability of the
next few acoustic vectors can be estimated in advance using simplified acoustic
models, and subsequently integrated into the search process (phoneme look-ahead
[Ney & Haeb-Umbach+ 92]).

• A large fraction of the computation time in automatic speech recognition systems
is spend for the calculation of the acoustic emission probabilities (cf. Eqn. 1.8).
A number of fast likelihood calculation techniques were proposed to reduce this
effort. Examples are algorithms to structure the search space [Fritsch 97], to
quantize the acoustic vectors [Bocchieri 93], or to partition the acoustic feature
space [Nene & Nayar 1996]. A comprehensive overview of these techniques and
their implementation in the RWTH system is given in [Ortmanns & Ney+ 97]
and [Ortmanns 1998]. In addition, a significant reduction in computation time is
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achieved by parallelized likelihood calculation based on SIMD (single instruction,
multiple data) instructions of the microprocessor [Kanthak & Schütz+ 00].

The idea of multi-pass as opposed to integrated or single-pass search is that a simplified
acoustic and/or language model is used in a first recognition pass. Not only the first
best word sequence, but also competing hypotheses with a similar likelihood are saved
in either a N-best list or a word graph for further processing. In a N -best list, the N
word sequences with highest posterior probability are kept [Schwartz & Chow 90]. A
word graph is a directed acyclic graph that stores intermediate word sequences as arcs
[Schwartz & Austin 91]. In further recognition passes, more elaborate acoustic and/or
language models are used to refine the likelihood of the hypotheses at comparatively low
computational costs, since the search space is largely restricted.

For recognition tests reported in this work, single-pass beam search with conservative
pruning settings and language model look-ahead was applied. Parallelized fast likelihood
calculations were used in all tests, but the other techniques listed above were only applied
in one test were the recognizer was accelerated to almost real-time (Section 6.3.4).



Chapter 2

Adaptive Acoustic Modeling

2.1 Introduction

The acoustic signal contains a lot of variability. On the one hand this is necessary to
discriminate between different speech units (e.g. phonemes), but on the other hand there
are also variations in the speech signal which are irrelevant for the recognition process.
Sources of irrelevant variability are, for example [Sankar & Lee 95]:

• varying transducers and transmission channels

• different speakers, speaking styles, or accents

• a varying ambient or channel noise

The training data contain typically a number of different acoustic conditions (i.e. different
speakers, speaking styles, transmission channels, etc.). A particular test utterance, on the
other hand, has usually only one specific acoustic condition (i.e. a specific speaker with a
particular accent and vocal tract length, a specific transmission channel, etc.) The test
condition may or may not be present in the training data, but it will usually differ from
the mixture of training conditions. This fundamental mismatch between training and test
causes degraded performance of automatic speech recognition systems:

• speaker-dependent systems trained on data from the test speaker significantly out-
perform speaker-independent systems trained on data from different speakers

• gender-dependent systems trained on male or female data only perform usually
better on corresponding test speakers than gender-independent systems

• systems trained on very fast/slow speech outperform universal systems trained on
data with different speech rates in the case of very fast/slow test speakers

• a system that was trained on data collected in a car or over a telephone channel gives
superior performance in the same test environment compared to a system trained
on studio quality microphone data

15
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A schematic view of training and test is shown in Figure 2.1. The left side depicts the
feature space, i.e. the sequence of acoustic vectors X and its generation, and the right
side shows the model space, i.e. the acoustic model θ and its training.

In general, three abstract data levels can be distinguished:

• the training data (first level), which are a collection of different conditions

• a test utterance (third level), which is usually of one specific condition only

• the intermediate reference level (second level), at which the variations caused by dif-
ferent conditions are ideally removed (e.g. vocal tract length normalized or speaker-
adapted acoustic data and models)

In this framework, speech recognition can be regarded as a combination of acoustic
vectors and an acoustic model from specific data levels. There is a mismatch if they do not
belong to the same level. In the case of conventional non-adaptive acoustic modeling, for
example, there is a strong mismatch between test data XTest and the acoustic model θTrain.

Two basic strategies of adaptive acoustic modeling, which are depicted in Figure 2.2,
may be employed to avoid the mismatch: Either condition-dependent acoustic models
θTest are trained such that there is a-priori no mismatch, or the mismatch is removed by
transformation of the acoustic vectors and/or the acoustic model onto a different level.
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Figure 2.1: Schematic view of training and test. Depicted are the feature and the model
space as well as three abstract data levels.
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In the first case (depicted on the left side of Figure 2.2), specialized acoustic models
are trained for each possible test condition (e.g. speaker-dependent or gender-dependent
models, models for fast, average and slow speech, models for microphone and telephone
data, etc.). Since the condition of a particular test utterance is a-priori unknown it is not
clear, however, which of the acoustic models has to be used to recognize the utterance.
Two possible solutions are:

• An own recognition pass is carried out with each specialized acoustic model. Later
the system output is either generated from a combination of the individual recog-
nition results, or by choosing the result with maximum likelihood. Since for each
possible condition and own recognition pass is required, the computational load
increases dramatically, which is why this approach is usually prohibitive.

• The current test condition is determined first (e.g. by means of a speaker or gender
recognition system, a classifier for the rate of speech or bandwidth, etc.), and the
corresponding acoustic model is selected for recognition. This approach is compu-
tationally attractive, as usually only a single recognition pass is required.

In general, the first strategy to use specialized acoustic models has one advantage, but
also some major disadvantages:

Advantage:

• if the test condition occurred frequently in the training data, the acoustic model
matches perfectly to the test condition

Disadvantages:

• a set of discrete conditions has to be defined (e.g. slow, average, and fast speech),
and the training and test utterances have to be assigned to one of these

• the training database is split into smaller pieces corresponding to each condition,
hence, there is less training data available for each specialized acoustic model and
parameter estimation is less robust

• only conditions observed in training can be recognized well

The second strategy (depicted on the right side of Figure 2.2) requires only one universal
acoustic model that is trained on all data. The mismatch is treated explicitly in training
and test by transformation of the acoustic vectors (normalization or feature transfor-
mation), i.e. by reducing the variability of the speech signal during signal analysis, or
by transformation of the acoustic model (adaptation or model transformation), which
amounts to adapting the acoustic model to a specific test condition.
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Figure 2.2: Classification of different adaptive recognition schemes. The shaded box marks
those techniques which will be covered in detail in this work.

Also in this case, the condition of a particular test utterance is a-priori unknown, and
the same two solutions as for specialized acoustic models are applicable: Either the
transformation is repeated for each possible test condition, and own recognition pass
is carried out, and the final recognition output is generated from a combination of the
individual recognition results. Alternatively, the test condition is determined first, and
the acoustic vectors/model are transformed accordingly before recognition.
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Transformation based adaptive modeling has certain advantages:

• the acoustic model is trained on the full training database which results in more
robust parameter estimation

• transformations allow for continuous estimates of the test condition (e.g. the specific
rate of speech measured in phonemes per second) and corresponding normalization
or adaptation

• good results are also achieved for test conditions that were not observed in training

Two disadvantages are:

• suitable transformation functions have to be found that allow for efficient compen-
sation of a certain condition

• much adaptation data is sometimes required to achieve the performance of a spe-
cialized acoustic model

Normalization and adaption in training and test will be discussed in the following section.
Afterwards, a detailed mathematical formulation of normalization and adaptation is pre-
sented. It will show how adaptive acoustic modeling fits into the framework of statistical
speech recognition.

2.2 Normalization and Adaptation

In Figure 2.3, the schematic view of training and test is depicted again, this time showing
the different transformations applied in practice in normalization and adaptation.
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As explained in the previous section, the mismatch between test data XTest and the
acoustic model θTrain in the case of non-adaptive acoustic modeling is strong. Normal-
ization transforms the acoustic vectors to a different level, whereas adaptation amounts
to transforming the acoustic model.

Adaptation schemes (e.g. maximum likelihood linear regression
[Leggetter & Woodland 95]) are capable to adapt an acoustic model trained on
different conditions directly to one specific test condition (θTrain → θTest). For this
reason, adaptation is usually successful even when carried out in test only.

Normalization of acoustic vectors (e.g. vocal tract length normalization [Lee & Rose 96])
results in a transformation into the reference condition. For this reason, there is often
a moderate gain in recognition accuracy if normalization is applied in test only, since
a minor mismatch between X̃ and θTrain remains. The best performance is typically
achieved if both training and test data are normalized (no mismatch between X̃ and θ̃).

Adaptation or normalization in training alone is counterproductive. In this case,
the acoustic model is adapted to a reference condition, but cannot cope well with
test conditions that deviate from the average (mismatch between XTest and θ̃,
e.g. [Welling & Kanthak+ 99][Gales 01]).

2.3 Mathematical Framework

As was shown in Chapter 1, the statistical approach to automatic speech recognition
amounts to finding the most probable word sequence W , i.e. the one that maximizes the
product of the language model probability p(W ) and the acoustic probability p(X|W ; θ)
(cf. Eqn. 1.3 and 1.4). X denotes the sequence of acoustic vectors and θ is the acoustic
model:

W = arg max
W ′

{p(W ′) · p(X|W ′; θ)} (2.1)

The acoustic probability is typically modeled with first order hidden Markov models. In
the Viterbi approximation, the maximum over all possible alignments sT

1 between HMM
states S and acoustic vectors X is used (cf. Eqn. 1.6). The probability of each alignment
is given by the product over all time frames of the transition and emission probability:

p(X|W ; θ) ∼= max
sT
1

T∏
t=1

{p(st|st−1,W ) · p(xt|st,W ; θ)} (2.2)

Equations 2.1 and 2.2 are employed in conventional non-adaptive modeling where no
distinction is made under which condition the acoustic signal was recorded. In the previous
sections it was shown, however, that the acoustic data from training and test do not
match. They usually originate from different conditions (different speakers, speaking
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styles, transmission channels, etc.) which can be expressed mathematically by a new
condition-dependent parameter α (Eqn. 2.3). For simplicity it is assumed that only the
emission probabilities are affected by the variable recording condition (Eqn. 2.4):

p(X|W ; θ) → p(X|W ; θ, α) (2.3)

∼= max
sT
1

T∏
t=1

{p(st|st−1,W ) · p(xt|st,W ; θ, α)} (2.4)

To handle the unknown parameter, it is treated as a continuous valued hidden variable
that has to be integrated out (Eqn. 2.5). To avoid integration problems, the maximum
approximation is applied at this stage as well (Eqn. 2.6):

p(X|W ; θ) =

∫
dα p(X,α|W ; θ)

=

∫
dα p(α|W ; θ) · p(X|W ; θ, α) (2.5)

∼= max
α
{p(α|W ; θ) · p(X|W ; θ, α)} (2.6)

Thus, for adaptive modeling Bayes’ decision rule in the maximum approximation can be
rewritten as:

W ∼= arg max
W ′

{
p(W ′) ·max

α
{p(α|W ′; θ) · p(X|W ′; θ, α)}

}
(2.7)

The prior distribution p(α|W ; θ) is often assumed to be uniform.

The training corpus contains a number of conditions r = 1, . . . , R. For each training
condition, acoustic data Xr along with the transcriptions Wr are given. Since the condition
dependent parameter αr is unknown, adaptive training of a normalized acoustic model
(cf. Eqn. 1.9) becomes a complex optimization problem:

θ̃ ∼= arg max
θ

R∏
r=1

max
α
{p(α|Wr; θ) · p(Xr|Wr; θ, α)} (2.8)

In practice, the parameter α̂r of each condition is often estimated beforehand by
some function h(·). In the simplest case (e.g. in the case of histogram normalization
[Dharanipragada & Padmanabhan 00]), α̂r depends on the acoustic data only (Eqn. 2.9).
However, h(·) may also be text-dependent, and it may require an own acoustic model
(e.g. in the case of vocal tract length normalization [Lee & Rose 96]):

α̂r = h(Xr) (2.9)

When the parameters α̂r are estimated, the training data are normalized and the acoustic
model θ̃ is trained as usual by maximum likelihood:
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θ̃ = arg max
θ

R∏
r=1

p(Xr|Wr; θ, α̂r) (2.10)

In practice, the dependency of the acoustic model from the condition r has to be defined.
Typically is implemented by transformations, whereby the functional form of the acoustic
model is usually fixed and only the transformation parameters are estimated from data.
As shown in the previous section, there are two possible realizations to match different
conditions and derive adapted probabilities p̃(·):

In normalization, the transformation fα(·) is applied to the acoustic vectors:

X → X̃ = fα(X) (2.11)

p(X|W ; θ̃, α) = p̃(fα(X)|W ; θ̃) · det

(
dfα(X)

dX

)

= p̃(X̃|W ; θ̃) · det

(
dX̃

dX

)
(2.12)

Here, the Jacobian determinant of the transformation is included. However, in a
classification task the Jacobian determinant can be omitted in some cases because the
transformation is assumed to be independent of the word sequence W . In other cases
(e.g. in vocal tract length normalization) it is usually assumed to be irrelevant.

In adaptation, the inverse transformation is applied to the acoustic model (Eqn. 2.13).
For notational simplicity, the symbol f−1

α (·) is used for the inverse transformation:

θ̃ → θ = f−1
α (θ̃) (2.13)

p(X|W ; θ̃, α) = p̃(X|W ; f−1
α (θ̃))

= p̃(X|W ; θ) (2.14)

Even though adaptation and normalization are equivalent in this framework, both
techniques are relevant in practice. The main challenge of adaptive modeling is to find
suitable transformation functions fα(·) or f−1

α (·) that can compensate for the effects
of a certain condition, and to estimate their parameters reliably on adaptation data.
In some cases, the transformation function fα(·) has a simple functional form and
allows for efficient parameter estimation (e.g. spectral warping as in vocal tract length
normalization, which depends on a single parameter to be estimated from data), whereas
the corresponding inverse transformation function f−1

α (·) for acoustic model adaptation
cannot be derived easily or is much more complex (and vice versa).

The focus of this work will be on normalization techniques, i.e. during signal analysis the
acoustic vectors are transformed into the reference form. Existing and novel transforma-
tions and parameter estimation methods will be proposed and evaluated.
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2.4 Classification of Normalization Techniques

There are different ways to class normalization techniques in more detail. Based on
whether they are derived from some physical model we can distinguish between model
based and data distribution based normalization.

There are a number of environmental and speaker-dependent variations whose impacts
on the speech signal are to some extent predictable. Model based normalization tries
to account for such variability. It is based on some model for speech production,
transmission, or perception. A small number of model parameters are estimated on
adaptation data and applied according to the underlying model to account for the
undesired variability. Well-known speaker normalization techniques like vocal tract
[Lee & Rose 96] and speaking rate normalization [Mirghafori & Fosler+ 95] are model
based approaches. Other algorithms that fall into this category are channel normalization
schemes like cepstral mean normalization and a number of noise suppression techniques.

If the effect of the environment is not predictable or too complex, normalization
techniques that are independent of any model for speech production, transmission, or
perception may be applied. These data distribution based techniques aim at transforming
the acoustic vectors into a domain that is more suitable for automatic speech recognition.
The transformation parameters are obtained from the distribution of the training and
test data. Examples are feature space transformations like the Gaussianization technique
[Gopinath 00] or feature space matching like stochastic matching [Sankar & Lee 95] and
histogram normalization [Dharanipragada & Padmanabhan 00].

In Chapter 3, an overview of these and other normalization techniques proposed in the
literature will be given. The published results will be discussed and open questions to be
addressed in this work will be worked out in Chapter 4.

2.5 Normalization and Signal Analysis

Normalization amounts to a transformation of the acoustic vector. Typically it is not
the fully processed acoustic vector that is transformed, but in most cases normalization
is carried out at intermediate stages of signal analysis. Normalization may either
be achieved by adapting parameters of existing signal analysis components (e.g. by
modifying the frame shift to normalize the speaking rate) or by introducing additional
components (e.g. an additional spectral warping step for vocal tract length normalization).

Figure 2.4 shows a typical signal analysis front-end, similar to the one used at RWTH
(cf. Figure 1.2). A number of normalization techniques and the stage where they are
applied during signal analysis are listed.
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Figure 2.4: Overview of signal analysis components and stages were normalization may
be applied.

A speech frame is first obtained by applying a Hamming window to a sequence of
preemphasized speech samples. The frame shift, i.e. the time between successive acoustic
vectors, may be modified to normalize the speaking rate.

A line spectrum is obtained from the speech frame by means of a Fourier transform.
Vocal tract length normalization and some noise suppression techniques transform the
line spectrum. Alternatively, these techniques may also be applied to the filter bank
coefficients.

The line spectrum is warped according to the Mel-scale to account for the reduced
spectral resolution of the human ear towards higher frequencies. Afterwards the
warped spectrum passes a bank of overlapping triangular bandpass filters. VTN may
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be implemented by a modification of the center frequencies, and all spectral warping
functions (Mel-scale, VTN) can be integrated into the cepstrum transformation of the
log-magnitude spectrum as will be described in Section 6.7.

The dynamic range of the filter bank coefficients is typically compressed with the
logarithm or a similar function. At this stage, noise suppression and feature space
matching techniques have been applied successfully.

The discrete cosine transform is applied to uncorrelate the filter bank channels. Further
spectral smoothing is achieved by omitting the highest cepstral coefficients. Channel
normalization is usually applied at the log filter bank or cepstrum, as a convolutional
disturbance to the speech signal is multiplicative in the spectral domain, but additive
in the cepstral domain. Vocal tract length normalization and noise suppression can be
implemented here as well.

Finally, the cepstrum vector is augmented with time derivatives and optionally further
transformed by linear discriminant analysis. Speaking rate normalization can be achieved
by interpolation at the cepstrum stage or by modified calculation of the time derivatives.
A number of feature space matching and transformation schemes are applied to the final
acoustic vectors, which could be either the (augmented) cepstrum or the LDA-transformed
vector.



26 CHAPTER 2. ADAPTIVE ACOUSTIC MODELING



Chapter 3

Normalization: State of the Art

Normalization techniques have been applied for a long time in automatic speech recogni-
tion. Some of these (e.g. cepstral mean normalization) have become a standard element of
modern speech recognition front-ends which blurred the borderline between signal analysis
components and additional normalization components (cf. Section 1.2). Furthermore, the
variety of normalization techniques published in the literature is so large that a compre-
hensive overview is hard to give. For these reasons, only the most common techniques and
those related to research results presented in this work will be summarized in this chapter.
According to the classification introduced in Section 2.4, normalization techniques will be
divided into model based and data distribution based schemes.

3.1 Model Based Normalization Schemes

3.1.1 Vocal Tract Length Normalization

In 1977, Wakita proposed a normalization scheme based on a frequency axis warping
during signal analysis [Wakita 77]. The idea was to remove the shift in formant
frequencies caused by different lengths of the speakers’ vocal tracts. He applied VTN
for the improved recognition of isolated vowels. The idea was later revivided by Kamm
et al. [Kamm & Andreou+ 95] during a summer workshop at Johns Hopkins University,
which triggered new research in this field.

Most papers published subsequently about vocal tract length normalization addressed one
or more of the following topics:

• type of the frequency axis warping function (linear, non-linear) and its implemen-
tation (time domain, frequency domain, cepstral domain)

• reliable estimation of the warping factors in training

• efficient warping factor estimation in test (with respect to word error rate, required
adaptation data, and computational overhead)

• gain in recognition accuracy achieved by VTN under different conditions (clean vs.
noisy environment, small vs. large training corpora, small vs. large vocabulary)

27
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• comparison of VTN with adaptation techniques, sequential application of VTN and
adaption schemes (e.g. MLLR)

In the following, a number of publications that are of particular interest will be discussed
in detail.

Acero and Stern proposed a bilinear transformation in the cepstrum domain already in
1991 that resulted in non-linear warping of the frequency axis [Acero & Stern 91]. Even
though they did not call it vocal tract length normalization, it was essentially the same.
Acero and Stern found a clear distinction in warping factors between male and female
speakers, and they achieved a 10% relative reduction in word error rate on the Census
database.

In 1996, Eide and Gish investigated the impact of different frequency warping func-
tions and of the amount of training data on the recognition performance with VTN
[Eide & Gish 96]. Warping factors were estimated speaker-wise using the median posi-
tion of the third formant. Best performance was reported with a non-linear warping
function, but the differences to linear warping were small. On the SwitchBoard corpus, a
reduction in word error rate of 8% relative was obtain when 5 hours of training data were
used, which reduced to 6% relative when the full training corpus of 63 hours was utilized.

Eide et al. investigated also methods to enrich the training corpus with additional
normalized data, but could not reduce the word error rate any further.

At the same conference, Lee and Rose presented a paper on VTN with a number of
new and successful ideas [Lee & Rose 96]. They estimated warping factors in a maximum
likelihood framework. For training speakers, an iterative procedure was proposed, whereby
an acoustic model was trained on one half of the normalized training data, which was
then used to estimate warping factors for the other half. Subsequently the data sets were
swapped and the warping factors for the first half were re-estimated with a new acoustic
model trained on the second half of data. It was found that more than one iteration
reduced the word error rate on the training data, but not anymore on the test data.

For test data, Lee and Rose proposed a Gaussian mixture model (GMM) based warping
factor estimation. For each warping factor, a GMM was trained on all unnormalized
training data with that warping factor. Each test utterance was scored with all GMMs
and the warping factor corresponding to the model with maximum likelihood was used for
recognition. On a telephone based connected digit recognition task, Lee and Rose achieved
a reduction of word error rate of 15% relative. That compared to a 20% reduction by the
baseline two-pass VTN approach, where the transcription of a first recognition pass was
used for text-dependent warping factor estimation.

VTN in training and test performed better than gender-dependent modeling, since
more training data could be utilized (cf. Section 2.1). Instead of re-sampling the speech
waveform in the time domain, Lee and Rose proposed furthermore to incorporate linear
frequency axis warping into Mel-frequency warping by modifying the center frequencies
and bandwidths of the filter bank channels.
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Wegmann et al. obtained warped spectra by linear interpolation from the original
discrete-frequency spectrum [Wegmann & McAllaster+ 96]. They applied a piece-wise
linear warping function and proposed a fast warping factor scheme similar to the one
of Lee and Rose by training one generic model of normalized speech. This model was
trained in an iterative fashion. The current generic speech model was used to estimate
new warping factors, and on the normalized data a new generic model was trained. Only
voiced frames were used for warping factor determination. On the SwitchBoard corpus,
the word error rate could be reduced by 12% relative for gender-independent and by 6%
relative for gender-dependent acoustic modeling.

In 1997, Zhan and Westphal compared warping factor estimation based on the
median position of the first three formants with maximum likelihood estimates
[Zhan & Westphal 97]. They found that the latter approach consistently outperformed
formant-based estimates. A piecewise-linear warping function yielded better results than
the non-linear function proposed by Eide and Gish.

To accelerate the grid search over all warping factors in two-pass VTN, Zhan and
Westphal proposed to keep the alignment between acoustic vectors and HMM states
from the first recognition pass fixed when performing the grid search for the best warping
factor. In the optimal setup, the word error rate could be reduced by 9% relative on a
5k-word vocabulary Spanish spontaneous speech scheduling task.

Gouvêa and Stern proposed an enhanced scheme for warping factor estimation based
on the median frequency of the first three formants [Gouvêa & Stern 97]. They fitted
a linear warping function that did not necessarily had to insect the origin. In return
they got consistently better results in clean and noisy conditions with word error rate
reduction of up to 15% on the Resource Management database. At least five sentences
were required to estimate a warping factor reliably. A data-driven non-linear warping
function gave an additional minor improvement in recognition accuracy.

An approach for warping factor estimation based on the pitch was proposed by Chu et al.
[Chu & Jie+ 97]. Their approach was slightly inferior to maximum likelihood estimates
with respect to the recognition accuracy, but saved computation time. It was shown
that spectral warping by modifying the filter bank was more robust than re-sampling in
the time domain. Under mismatch conditions (training on male or female speakers only,
test on both genders) more than 30% relative reduction of error rate was obtained on a
Mandarin digit recognition task.

Pye and Woodland studied the combination of VTN and MLLR on clean large vocabulary
corpora, namely different Wall Street Journal test sets [Pye & Woodland 97]. They
applied spectral warping by adapting the filter bank center frequencies and did a grid
search for the warping factor based on the transcription from a first recognition pass
(two-pass VTN). It was found that MLLR gave typically a somewhat larger gain in
recognition performance than VTN, but the gain of both techniques was to a large
extent additive. They also confirmed that the gain by VTN reduced when more training
data and a larger vocabulary were used. With the 15 hour WSJ0 training corpus,
Pye and Woodland achieved reductions between 12% and 15% relative on two 5k and
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20k-word vocabulary test sets. With the 66 hour WSJ0+1 training database, however,
the improvement reduced to between 7% and 8% on the 64k-word vocabulary test set.

McDonough et al. proposed an extension to VTN called all-pass transform
[McDonough & Byrne+ 98]. Based on a bi-linear frequency axis warping function
they showed that VTN can be expressed as a linear transformation in the cepstrum do-
main. A major advantage was that the Jacobian determinant of the transformation could
be taken into account (cf. Section 2.3) to keep the probability distributions normalized.
Recognition tests on the SwitchBoard corpus yielded reductions in word error rate by 7%
relative for the bilinear transform, and 8% relative for the more general all-pass transform.

The VTN setup of RWTH was presented by Welling et al. in the same year
[Welling & Haeb-Umbach+ 98]. They investigated VTN and MLLR on the Wall Street
Journal corpus with a 5k-word vocabulary test set. With two-pass recognition, the word
error rate was reduced by 11% relative in gender-independent, and by 4% relative in
gender-dependent mode. On the German SieTill database consisting of connected digit
strings, Welling et al confirmed that the gain of VTN increased when simple acoustic
models were used. Finally they proposed an alternative scheme for fast warping factor
estimation in test based on one Gaussian mixture model for normalized speech similar to
the technique proposed by Wegmann et al. On the WSJ corpus, this approach performed
almost as good as two-pass VTN.

Further results with fast warping factor estimation were published by Welling et al. in
1999 [Welling & Kanthak+ 99]. They proposed a simple method to omit silence frames
from the warping factor estimation based on the observation counts of each density
in the Gaussian mixture model. In addition, they suggested a simplified non-iterative
maximum likelihood scheme for warping factor estimation in training. They found
that a low resolution acoustic model (single densities) gave better results than more
complex mixture density models. The two-pass approach could be improved by using
unnormalized acoustic models for the first recognition pass, which on the other hand
increased the gap between two-pass and fast VTN. A word error rate reduction of 9%
relative was achieved with Gaussian mixture model based fast VTN on the 5k-word
vocabulary Wall Street Journal test set, whereas two-pass VTN yielded up to 17%
relative WER reduction. On the German spontaneous speech task VerbMobil I, the
reduction was 5% relative at best.

Westphal et al. compared maximum likelihood warping factor estimation with a new
criterion based on linear discriminant analysis [Westphal & Schultz+ 98]. The new
criterion lead to a faster convergence in iterative warping factor estimation of training
data, and the derived speaker cluster were more discriminant. With respect to the word
error rate, the new criterion performed slightly worse on the German VerbMobil I task
and slightly better on a Chinese dictation task.

Haeb-Umbach investigated in how far cepstral mean normalization and VTN reduce
speaker-dependent variations [Haeb-Umbach 99]. He applied Fisher variate analysis to
measure inter-speaker variability of phonemes before and after normalization. He found
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that not only VTN but also cepstral mean normalization reduces inter-speaker variability
by a large extend. In VTN, sentence-wise warping factor estimation compensated for
more variations according to this criterion, which was confirmed by lower word error
rates in recognition tests on the Wall Street Journal database.

The interaction between VTN and MLLR was further investigated by Uebel and Wood-
land [Uebel & Woodland 99]. They confirmed that the gain in recognition performance
by VTN was smaller than by MLLR, but largely additive in the case of unconstrained
MLLR. After several iterations of constrained MLLR, which alone was slightly inferior
to unconstrained MLLR, there was no gain observed by VTN. Uebel and Woodland also
compared piece-wise linear warping, bi-linear warping, and an approximation to both
by linear transformation in the cepstrum domain. They found only little differences in
performance between these techniques. Without MLLR, the word error rate could be
reduced by up to 6% relative on the SwitchBoard Corpus.

Natio et al. combined phoneme-dependent measures derived from auditory models
with speaker-dependent measures derived from a vocal tract model to obtain non-linear
warping functions with two free parameters [Naito & Deng+ 99]. Their estimates of the
vocal tract length were based on formant frequencies of two specific Japanese vowels.
The derived warping functions resembled closely a linear warping functions, which is
why only a minor improvement over baseline VTN was achieved on a Japanese phoneme
recognition task.

Dolfing evaluated the efficiency of two maximum likelihood criteria for warping factor
estimation [Dolfing 00]. One was text-dependent similar to two-pass VTN with the
preliminary transcription replaced by the reference transcription in a supervised manner.
The other resembled the GMM based text-independent warping factor estimation of Lee
and Rose. Based on an internal dictation database he compared the word error rate
obtained by these techniques with an optimal error rate by choosing the warping factor
with the lowest word error rate. If warping factors were estimated in a speaker-wise
fashion, the text-dependent criterion yielded about 90% of the maximum possible
reduction in WER. Sentence-wise estimation of the warping factor left more room for
improvements, which is why is that case only about 70% of the maximum possible gain
was achieved. Preliminary experiments with the text-independent estimation indicated
that its performance was only slightly inferior to the text-dependent technique, but
conclusive recognition result were not reported.

Cox presented a method to implement VTN at the cepstrum stage [Cox 00]. As
Mel-frequency axis warping is approximately a logarithmic scaling of the frequency axis,
linear frequency axis warping amounts to a constant frequency shift in the Mel-frequency
domain. This fact was used to derive a transformation matrix that compensates for the
shift in the cepstrum domain. The functional form of this type of frequency axis warping
was similar to highly constrained MLLR with only four free parameters. Phoneme
recognition tests in supervised normalization mode using the Wall Street Journal
database showed reduced error rates only if the means of single-density acoustic models
were adapted. A normalization of the test data did not yield the same improvement. A
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minor additional gain was found when a different amount of warping was allowed at dif-
ferent spectral bands. The overall reduction in phoneme error rate was 4% relative at best.

In 2001, Pitz et al. showed that VTN equals a linear transformation in the cepstrum
domain for arbitrary invertible frequency axis warping functions [Pitz & Molau+ 01].
This allowed in principle to account for the Jacobian determinant of the transformation,
which is typically omitted in maximum likelihood warping factor estimation.

Yet another approach for fast warping factor estimation was presented in the same year
by Emori and Shinoda [Emori & Shinoda 01]. They applied bi-linear frequency axis
warping in the cepstrum domain and proposed an approximation to compute the warping
factor from cepstral coefficients. On a Japanese isolated-word recognition task they
achieved similar performance in supervised mode like maximum likelihood estimation at
smaller computational costs. Better results were achieved if only vowels were used for
estimation, but comparable result for maximum likelihood estimation were not given.

In summary, the following conclusions can be drawn from the previous work:

• There were typically only minor differences between linear and non-linear frequency
axis warping functions. For simplicity, linear or piece-wise linear warping was ap-
plied in most cases.

• Different implementations of spectral warping were chosen. Similar results were
achieved by spectral interpolation or filter bank modification in the frequency do-
main, or by transformations in the cepstrum domain.

• For warping factor estimation, most groups applied maximum likelihood estimation
schemes which had proved to be more robust than estimates based on formant
frequencies.

• In training, both iterative and non-iterative methods for warping factor estimation
were used.

• In test, two maximum likelihood techniques for warping factors have prevailed: Text-
dependent two-pass recognition based on a preliminary transcription from a first
recognition pass, and text-independent fast estimation schemes based on simplified
acoustic models. The second approach has a much lower computational overhead,
but the gain in recognition performance is also lower compared to two-pass VTN.

• With larger training corpora and more complex recognition tasks, the gain achieved
by VTN typically decreased from WER reductions well above 10% relative to well
below that value.

• The gain in recognition accuracy by VTN and MLLR is to a large extent additive,
even though vocal tract length normalization can be viewed as a special case of
a highly constrained MLLR. As it relies on only one free parameter, VTN can be
applied successfully even if only very little data is available for parameter estimation.
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3.1.2 Speaking Rate Normalization

The rate of speech, which is directly linked the process of speech production, is another
factor that influences the recognition accuracy of automatic speech recognizers. It was
found early that very fast and very slow speakers have on average significantly larger
word error rates (e.g. [Pallett & Fiscus+ 94]). There were a number of publications that
identified why the recognition accuracy deteriorates for these speakers, how to determine
the rate of speech (ROS), and how to improve the recognition of fast speakers. Some
publications of general relevance and those related to normalization in the acoustic
feature space will be summarized here.

In 1995, Siegler and Stern reported on a number of experiments on the Wall Street Journal
corpus aimed at improving the recognition accuracy for fast speakers [Siegler & Stern 95].
They proposed to use the average phoneme rate per second instead of the average word
rate. A significantly increased word error rate (more deletions and substitutions) was
found for speakers whose rate of speech differed by more than one standard deviation
from the mean ROS. The phoneme rate measured on erroneous recognition transcripts
was found to be closely linked to the one derived from the reference transcription, though
it was systematically lower. Attempts to improve the recognition accuracy by adapting
the codebooks to fast speech were unsuccessful. An improved modeling of transition
probabilities yielded about 5% relative reduction in word error rate for all speakers.
Modifications of the pronunciation dictionary by two simple phonetic rules and by adding
compound words again did not improve the recognition accuracy.

Mirghafori et al. presented a detailed analysis why recognition performance degrades
for fast speakers [Mirghafori & Fosler+ 95]. Based on the Wall Street Journal and the
Resource Management evaluations, they found an increase in word error rate by about
a factor of three for the fastest speakers. A mismatch of the acoustic vectors caused by
stronger coarticulation in fast speech was verified. Furthermore they found the phonemic
duration constraints imposed by their HMM topology to be inappropriate for high rates
of speech, where sometimes phonemes are omitted altogether. To cope with the acoustic
mismatch, the acoustic model was adapted to the fastest speakers, which yielded a 14%
relative reduction in the word error rate on the Wall Street Journal task for fast, but at
the same time a 10% relative increase for slow speakers. The temporal constraints of the
HMM were relaxed by modified transition probabilities, shorter HMM topologies, and
pronunciation variants to model phoneme omissions. Each of these methods gave some
improvement for fast speaker, but slightly hurt the overall recognition accuracy. The
largest WER reduction for fast speaker of 16% relative was achieved by a combination
of emission and transition probability adaptation.

In 1999, Richardson et al. presented cepstrum length normalization as a powerful
technique for speaking rate normalization [Richardson & Hwang+ 99]. They defined the
rate of speech by the length of an individual phoneme relative to its average duration
in the training data, and found that a Gamma distribution described the observed
distribution best. To cope with variable rates of speech, they normalized the speaking
rate by stretching or squeezing each sentence. Best performance was achieved with
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one stretch factor per sentence based on the average phoneme duration calculated in a
first recognition pass. According to the stretch factor, new time frames were created in
the cepstrum domain by band-limited interpolation between neighboring frames. An
alternative modification of the frame shift in signal analysis yielded almost the same
result. Experiments on the Wall Street Journal database and an in-house collected
data revealed reductions in word error rate of 16% relative for fast speakers and no
performance degradation for regular speaking rates. Further experiments showed that
the gain in recognition performance achieved by cepstrum length normalization was
additive to the gain obtained by unsupervised MLLR.

Pfau et al. investigated different methods to improve the recognition performance on
very fast and slow speakers [Pfau & Faltlhauser+ 99]. Speaking rate adapted acoustic
models were derived by maximum-a-posteriori (MAP) re-training of the baseline model
on speech data of the corresponding category. To reduce variations, maximum likelihood
based vocal tract length normalization and pronunciation variants were applied in
training and test. In recognition tests on the VerbMobil I corpus with monophone models
it was found that pronunciation variants and VTN gave larger that average reductions
in word error rate on especially slow and fast speech. A combination of both techniques
yielded relative reductions in WER between 16% and 20% in these categories. MAP
re-training gave a somewhat smaller gain in recognition accuracy, which was also not
additive to the improvements achieved by VTN.

A variable frame rate was proposed by Zhu and Alwan to improve speech recognition in
general [Zhu & Alwan 00]. They first derived a large number of acoustic vectors with
a small frame shift of 2.5 ms. Next, the Euclidean distance between adjacent frames
weighted by the frame energy was computed. Based on the distance, some frames were
discarded and others kept. This way formant transitions were described more detailed by
more time frames, whereas steady parts of the signal were represented by fewer acoustic
vectors. Zhu and Alwan reported improvements on a phoneme recognition task as well
as on the TiDigits database. The proposed variable frame rate algorithm proved also to
be more robust in conditions with additive noise.

In 2000, Faltlhauser et al. proposed to use Gaussian mixture models for the estimation of
the rate of speech, since these had already been successfully applied for gender and speaker
recognition as well as in vocal tract length normalization [Faltlhauser & Pfau+ 00]. They
trained three GMMs for slow, medium, and fast speech on the VerbMobil I corpus.
In two third of all cases the classification of the test data was correct. There were
many confusions between neighboring classes but almost none between the two opposite
categories. A continuous ROS estimate reasonably close to the phoneme rate determined
on the reference transcription was obtained by combining the GMM scores with an
artificial neural network.

In the same year, Pfau et al. presented results for a combination of vocal tract length
and speaking rate normalization [Pfau & Faltlhauser+ 00]. Variable speaking rate was
accounted for by modifying the number of acoustic vectors with linear interpolation in
the cepstrum domain. It closely resembled the cepstrum length normalization proposed



3.1. MODEL BASED NORMALIZATION SCHEMES 35

by Richardson et al. The gain in recognition performance of both normalization schemes
was essentially additive on the VerbMobil I corpus.

In summary, the following conclusions can be drawn from the previous work:

• The number of phonemes or vowels per unit time, and the duration of phonemes
relative to their average duration were used as text-dependent measures of the rate
of speech.

• Text-independent ROS measures were based on Gaussian mixture models.

• Different methods were proposed to cope with especially fast and slow speakers,
some of which were based on normalization in the acoustic feature space.

• The acoustic mismatch could be reduced by adaptation of acoustic models to fast
speech, or with speaking rate normalization by cepstrum length interpolation and
variable frame shift. In some cases, a performance improvement on fast speech came
at the cost of lower recognition accuracy for average or slow speakers.

• The mismatch in HMM duration modeling was handled by adaptation of transition
probabilities and shorter HMM topologies.

• Phonetic mismatch was handled by supplementing pronunciation variants with typ-
ical phoneme omissions.

• Feature space normalization proved to be successful. The relative reduction in word
error rate was typically larger than 10% relative for speakers with especially large
deviation from the average rate of speech.

• Vocal tract length normalization was found to be especially successful of very fast
and very slow speakers.

• The performance gain by speaking rate normalization was shown to be additive to
maximum likelihood linear regression and vocal tract length normalization.

3.1.3 Channel Normalization

The speech waveform produced by a speaker is transmitted over some channel before
it reaches the recording device, and the channel disturbs the original speech signal.
Convolutional distortions are multiplicative in the spectrum domain. Due to the
logarithmic compression before the cosine transform (cf. Section 1.2), multiplicative
distortions become additive in the cepstrum domain. Thus, the simplest and most
effective case of channel normalization is to subtract the cepstral long-term mean
(cepstral mean normalization) which will remove time-invariant distortions introduced by
the transmission channel and the recording device. Baseline cepstral mean normalization
is nowadays part of virtually every speech recognition system. More advanced channel
normalization techniques have been investigated by a number of research groups and
shall be introduced in the following.
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Huang et al. reported on a number of enhancements of their speech recognition system in
1995 [Huang & Acero+ 95]. One of these was an improved cepstral mean normalization
scheme, which was based on independent mean estimates for speech and silence frames.
For normalization, the posterior probability of the actual frame to be a speech or silence
frame was estimated from the frame energy. Then, the cepstral mean value to be
subtracted was derived by linear interpolation between the speech and silence means
weighted with the posterior probability. Huang et al. found a minor improvement over
baseline cepstral mean subtraction in non-mismatch conditions, but up to 25% relative
word error rate reductions in strong mismatch conditions.

Naik pointed out that one of the assumptions for cepstral mean subtraction, namely
zero mean for the speech content in the cepstrum, does not hold for short training or
test utterances [Naik 95]. Thus, subtracting the cepstral mean will not only remove
the channel distortions but also some speech information. Naik proposed a different
cepstral mean estimate based on the position of poles in the linear predictive coding
(LPC) cepstrum. For two simulated channels it was shown that the pole-filtered channel
estimate introduced a smaller error than the cepstral mean estimate. Recognition tests
on the Timit database yielded more than 15% reduction in word error rate relative to
standard cepstral mean subtraction.

Among other spectral filtering techniques, Junqua et al. investigated the effect of cepstral
mean subtraction [Junqua & Fohr+ 95]. They found that subtracting the utterance-wise
long-term cepstral mean gives better results than the short-term cepstral mean derived
from only a few time frames. Cepstral mean subtraction gave a larger reduction in
Mel-frequency cepstrum based signal analysis than relative spectral processing (RASTA).
The overall best result on a telephone based name spelling task was achieved with a
MFCC front-end including first and second derivatives, and long-term cepstral mean
normalization.

In 1997, Westphal studied differed extensions of the standard long-term cepstral mean
subtraction [Westphal 97]. He showed that speaker-wise performed better than utterance-
wise normalization, and that the efficiency of standard cepstral mean subtraction depends
on the silence fraction of the speech signal. To overcome this limitation, it was suggested
to compute the cepstral mean on speech frames only, which gave 6% relative WER
reduction on the VerbMobil I task, but a slight increase in error rate on the SwitchBoard
corpus. Another approach with two separate mean values for speech and silence that
were interpolated according to the silence fraction did not perform better than baseline
CMS. However, there were some improvements reported on the SwitchBoard task when
the difference between the speaker-wise cepstral means for speech and silence and the
overall mean obtained on the full database were combined.
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In summary, the following conclusions can be drawn from the previous work:

• Even though it is conceptually simple, cepstral mean normalization was found to
consistently improve the recognition accuracy in tasks with and without mismatch
between training and test.

• Long-term performed better that short-term mean subtraction.

• Improvements over the baseline approach were achieved in some cases when cep-
stral mean estimates were derived separately on speech and silence frames, and
interpolated during normalization.

3.1.4 Noise Suppression

The performance of automatic speech recognition systems usually drops dramatically in
the presence of noise. For this reason, noise robustness is a research field of its own which
goes beyond the scope of this work. Normalization in the acoustic feature space is one of
many possible ways to improve the robustness of speech recognizers [Junqua & Haton 99].
Spectral subtraction [van Compernolle 89], for example, is a standard techniques in noise
suppression. It is a model based normalization scheme which relies on the model that the
noise is additive in the spectral domain. The contribution of noise is estimated in speech
pauses and subtracted from the signal. Some of the feature space matching techniques
introduced in Section 3.2.2 can also be regarded as noise suppression schemes.

3.2 Data Distribution Based Normalization Schemes

3.2.1 Feature Space Transformation

Based on statistics of the speech signal, there are some techniques that transform acous-
tic vectors into a domain that is in general more suitable for automatic speech recognition.

In their 1991 paper, Acero and Stern proposed a number of normalization schemes based
on affine cepstrum transformations to counteract a severe degradation of recognition per-
formance when different microphones were used in training and test [Acero & Stern 91].
Some of these techniques required parallel recordings with both microphones in order
to estimate the mapping parameters. These techniques were further developed as
reported by Liu at al. [Liu & Acero+ 92]. Instead of parallel recordings, a histogram of
signal-to-noise ratios was derived for both microphones, and a non-linear transformation
function was obtained by histogram mapping. Under strong mismatch conditions, the
word error rate could be more than halved.

Neumeyer et al. applied affine transformations of different complexity to the acoustic
vector. They compared transformations in the feature and model space, and tested
their efficiency on native and non-native speakers on the Wall Street Journal corpus
[Neumeyer & Sankar+ 95]. Even though some improvements could be obtained by
feature space transformations, they were typically outperformed by adaptation in the
model space.
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Gopinath showed how to transform multi-dimensional random variables of unknown
distribution into Gaussian random variables [Gopinath 00]. The technique called
Gaussianization results in uncorrelated and normal distributed dimensions and makes
parameter estimation in high-dimensional feature space more robust. Gopinath showed
that Gaussianization can be applied as a non-linear feature transformation. Preliminary
tests revealed a minor performance improvement on the Broadcast News corpus when
Gaussianization was applied instead of logarithmic compression to the filter bank channels.

In summary, affine transformations in the feature space (e.g. at the cepstrum stage)
improved the recognition accuracy under mismatch conditions, but were inferior to affine
transformations of the acoustic model (adaptation).

3.2.2 Feature Space Matching

Most data distribution based normalization techniques rely on the principal idea of map-
ping acoustic vectors from the test data space into the training data space to minimize
the mismatch between training and test. The techniques proposed in the literature differ
mainly in the following ways:

• the domain in which the mismatch is determined (feature or model space)

• the functional form of the transformation (parametric or non-parametric)

• the method for estimating the transformation function (supervised or unsupervised)

• the signal analysis stage at which the feature space is mapped

There have been numerous publications on supervised mapping in the spectral and
cepstral domain. In 1992, for example, Matsuko and Hirowo proposed a piecewise-
linear mapping between cepstrum vectors from test speakers into a reference space
[Matsukoto & Hirowo 92]. The transformation was computed phoneme-wise and later
smoothed to maintain continuity in the mapped space. The phoneme error rate of a recog-
nizer with single density monophone models could be reduced significantly by this method.

Neumeyer and Weintraub proposed a piece-wise linear mapping in the cepstrum domain
that was unsupervised but relied on a small amount of simultaneous recordings on differ-
ent channels (e.g. clean and noisy) [Neumeyer & Weintraub 94]. The transformation was
based on a set of multi-dimensional linear least-squares filters. Tests were carried out on
the Wall Street Journal database transmitted over clean and noisy channels. Whereas
under mismatch conditions the word error rate increased by a factor of 2.5 relative to the
baseline, it was only a factor of 1.4 after normalization. Neumeyer and Weintraub found
almost the same improvements regardless whether clean training data were mapped to
the noisy test domain or vice versa.

In 1995, Sankar and Lee investigated transformations in the feature and model
space to minimize the mismatch between test utterances and the acoustic model
[Sankar & Lee 95]. Their stochastic matching technique was unsupervised and did not
require simultaneous recordings. However, it relied on knowledge about the functional
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form of the mapping. Sankar and Lee showed that if the transformation was assumed
to be a differentiable function with an additional bias term, the EM algorithm could
be used to iteratively estimate the parameter of the transformation that maximized the
likelihood of the data given the model, and vice versa. Experiments were reported for
the Resource Management database with the identity function and an additive bias in
the cepstral domain. They showed consistent reductions of the word error rate of well
above 50% relative under mismatch conditions (microphone vs. telephone recordings)
without cepstral mean normalization. Estimating two bias parameters for speech and
silence further improved the recognition performance. In connection with cepstral mean
normalization, feature and model space transformations yielded approximately the same
reduction in word error rate in the order of 30% relative.

In 1999, Giuliani proposed another unsupervised technique to match the acoustic space
of the training and test data, which could be used in online recognition [Giuliani 99].
The main idea was to describe the training and the test data space by two Gaussian
mixture models with 128 densities each. If the training data model was used as an initial
estimate for the test data model, the update of the densities during re-training could be
interpreted as the mismatch between training and test, and used for subsequent feature
space matching. The transformation function was an additive term derived by summing
up the differences between the training and test GMM densities, weighted by the distance
between the density and the current test vector.

Based on Italian speech corpora, Giuliani presented test results for matched and
mismatch conditions (close talking vs. hands-free microphone, dictation training data
vs. connected digit test data). In the matched case, 17% relative reduction of word
error rate was achieved by normalizing the acoustic vectors, which compared to 19%
obtained by incremental MLLR. Also in the mismatch case, normalization was slightly
inferior to incremental adaptation with word error rate reductions well above 50% relative.

An unsupervised histogram-based mapping technique that also makes no assumption
about the functional form of the transformation was proposed in 2000 by Dharanipragada
and Padmanabhan [Dharanipragada & Padmanabhan 00]. It was based on the idea of
mapping the cumulative distribution of the test data to the cumulative distribution of the
training data. Under certain assumptions, this resulted in a simple text-independent his-
togram matching procedure which was non-parametric, non-linear, and computationally
inexpensive. In the case of microphone mismatch, Dharanipragada and Padmanabhan
achieved a relative reduction in word error rate of over 30%, which was of the same order
as improvements achieved by unsupervised MLLR. The gain of normalization and MLLR
was to a large extent additive.

Two years earlier, the same basic technique of matching cumulative distributions was suc-
cessfully applied in speaker identification by Balchandran [Balchandran & Mammone 98].
Unfortunately, they evaluated the procedure on artificially distorted data only. An addi-
tional smoothing factor had to be introduced to avoid over-compensation.

In another publication by Padmanabhan, the histogram mapping technique was further
extended [Padmanabhan & Dharanipragada 01]. Linear interpolation between the
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points of the non-linear mapping function reduced quantization errors. In addition, a
text-dependent extension was proposed, in which the mapping function was estimated
in a maximum likelihood framework. The aim was to get robust estimates of the
transformation with only a few adaptation sentences. On the same test corpus as in
their previous paper, a minor improvement over supervised MLLR was achieved with the
maximum likelihood based transformation function.

Hilger and Ney applied a parametric histogram normalization technique at the filter
bank stage [Hilger & Ney 01]. Only four bins (quantiles) of the cumulative histograms
were estimated, and piece-wise linear and power transformation functions were fitted
to these bins according to a minimum squared error criterion. Normalization was
applied in test only, and the reference histogram was averaged over all filter channels
on the training data. It was shown that even single word utterances were sufficient to
estimate the transformation function reliably, which made this technique useful for online
applications. The power function turned out to be more robust than the piece-wise linear
transformation. Recognition tests on a number of noisy speech corpora (recordings in car
environment) yielded significant performance improvements proportional to the degree
of mismatch between training and test. Histogram normalization proved to be superior
to other noise suppression schemes investigated by the authors (e.g spectral subtraction).

In summary, the following conclusions can be drawn from the previous work:

• Many feature space matching procedures proposed in the literature were either su-
pervised or required simultaneous recordings from the different environments. Under
these idealized conditions, a large gain in recognition performance could be obtained.

• The transformation parameters were estimated in different spaces: Most supervised
techniques as well as the histogram-based methods relied on distributions of the
training and test data. The stochastic matching of Sankar and Lee transforms the
test data to better match the acoustic model, and the Gaussian mixture model based
approach of Giuliani derives the transformation function from simplified acoustic
models for training and test data.

• The stochastic matching technique of Sankar and Lee is unsupervised but makes
assumptions about the functional form of the transformation.

• The Gaussian mixture model based approach of Giuliani relies on the assumption
that the mismatch can be expressed by deviations of prototype vectors describing
the training and test data space.

• The histogram-based method of Dharanipragada and Padmanabhan is unsupervised
and non-parametric. As it relies on global statistics of the speech data, a larger
amount of adaptation data is required to estimate the transformation reliably.

• If the number of histogram bins is reduced and a parametric transformation function
is fitted to the discrete histogram points, histogram normalization can be applied
successfully even if only little adaptation data (e.g. single words) are available.

• Performance gain by feature space matching is to some extent additive to adaptation
schemes like maximum likelihood linear regression.



Chapter 4

Aims of this Work

Based on the RWTH large vocabulary speech recognition system (described in
[Ney & Welling+ 98] and [Sixtus & Molau+ 00], for example), state-of-the-art model
based and data distribution based normalization techniques in the acoustic feature space
shall be developed, studied, and improved.

Long-term cepstral mean normalization has proved to be an efficient scheme for chan-
nel normalization (cf. Section 3.1.3). It will be a fixed part of the baseline system.
Normalization takes place on a sentence-wise level unless there are demands for online
recognition as in the VerbMobil II task, where a sliding window will be used.

In addition, cepstral variance normalization will be part of the baseline system for those
tasks were it helps to reduce the word error rate.

Speaking rate normalization will not be further pursued in this work. These techniques
typically improve the recognition performance for fast or slow speakers, but do not help
for the majority of “average” speakers (cf. Section 3.1.2). In addition, it was shown that
vocal tract length normalization, which will be one of the focal points in this work, is
especially effective on critical speakers with a much higher or lower than average rate of
speech.
In the case of conversational speech as in the VerbMobil II corpus, the HMM topology
of the baseline system will be modified for improved recognition of fast speech (cf. Sec-
tion 1.3).

Vocal tract length normalization in the maximum likelihood framework is a well-
established normalization scheme that proved to be more or less effective on every database
it was applied to (cf. Section 3.1.1). Some of the results of other groups shall be validated
and a number of open issues shall be addressed in Chapter 6 this work:

I Whereas the reduction of word error rate is typically well above 10% relative in
the case of “simple” tasks or acoustic models (acoustic modeling that is not state-
of-the-art, training on small databases, small vocabulary), it reduces to well below
10% for large vocabulary systems with advanced acoustic modeling trained on a
large amount of data. The baseline text-dependent two-pass VTN scheme shall be
optimized in such a way that it consistently yields a significant reduction in word

41
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error rate in the order of 10% relative on difficult tasks and in variable environments.
Among the issues to be addressed are improved estimates of the warping factor on
speech frames, the influence of the warping function, re-estimation of the phonetic
decision tree and the LDA transformation matrix on normalized data, and iterative
warping factor estimation.

II Different text-independent approaches for fast warping factor estimation were pro-
posed in the literature. These proved to approximately halve the computation time
in comparison to two-pass VTN, but in most cases the gain in recognition perfor-
mance reduced significantly at the same time. A comparison of different Gaussian
mixture model based warping factor estimation schemes shall be carried out. The
aim is to find a method that gives the same optimum recognition performance as
two-pass VTN without an increase in the real-time factor compared to the baseline
system without vocal tract length normalization.

III For application in online systems it is not only desirable to have a low word error
rate, but also only little or no delay between speech recording and the recognition
output. Text-independent warping factor estimation shall be modified to minimize
the time delay introduced by signal analysis, and it shall be proven that VTN can
be applied successfully in online speech recognition.

IV Different ways of implementing frequency axis warping in either the time, the fre-
quency, or the cepstrum domain were proposed in the literature. Many of these
techniques are either limited to certain frequency axis warping functions, or they
possibly suffer from problems like quantization and interpolation errors, or a mod-
ified bandwidth. A simplified signal analysis front-end shall be proposed that in-
tegrates all spectral warping (Mel-frequency and VTN warping) into the discrete
cosine transform.

Among the data distribution based normalization schemes, histogram normalization seems
to be the most promising one (cf. Section 3.2.2). Histogram normalization is widely used
in image processing, but the application in automatic speech recognition is still largely
unexplored. It is an unsupervised technique that does not require simultaneous recordings
and makes no assumption about the functional form of the transformation. It was shown
that histogram normalization significantly improves the recognition accuracy in mismatch
conditions, and that it is computationally attractive. There are a number of open issues
and limitations that shall be addressed in Chapter 7 of this work:

V So far, histogram normalization has been applied at either the filter bank stage or
to the final acoustic vector (in this case at the cepstrum stage). It has not been
investigated before, at which stage in signal analysis histogram normalization is
most appropriate. Hence, this technique shall be applied at all possible stages to
find out where it is most effective, and sequential normalization at different stages
shall be investigated as well.

VI All results published so far were achieved with only the test data being normalized.
As a normalization technique, however, additional gain in recognition accuracy is
to be expected, when both training and test data are mapped to the same reference
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condition (cf. Section 2.2). The effect of histogram normalization in training and
test shall be investigated in this work.

VII Histogram normalization is based on two assumptions about the global statistics of
the speech signal and the orientation of the feature space axes. The first assump-
tion shall be relaxed by considering the variable silence fraction in the utterances.
Furthermore, a new rotation based normalization scheme shall be introduced that
matches the principal feature space axes with the largest data scatter and overcomes
the second assumption of histogram normalization.

VIII In previous work, feature space matching has proved to be an effective way of coping
with large mismatch between training and test data (e.g. different microphones,
recordings in clean vs. noisy environments). However, it might also reduce speaker
and channel dependent variations in the speech signal. For this purpose, histogram
normalization and feature space rotation shall be evaluated on corpora with different
degrees of mismatch.

IX It is to expect that the gain in recognition performance obtained by vocal tract
length normalization and histogram normalization/feature space rotation is to some
extent additive as both account for different variations (frequency shifts vs. different
global data distribution) and have a different functional form. To which extent the
gain is additive shall be examined in this work.

Development will take place in the framework of a within-word system, as at the time
of evaluation of most algorithms an across-word system was under development and not
yet established at RWTH. In the end, the proposed techniques will also be tested with a
system including across-word triphone models [Sixtus 02].
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Chapter 5

Corpora and Recognition Setup

5.1 Introduction

The normalization methods studied in this work will be evaluated on a variety of cor-
pora with different vocabulary sizes, complexities (isolated words vs. continuous speech),
acoustic conditions (office vs. telephone and car recordings), and speaking styles (planned
vs. spontaneous speech). The corpora will be introduced in detail in the following sections
together with the baseline recognition setup optimized for each task.

5.2 Clean Acoustic Conditions

5.2.1 North American Business News

The North American Business News (NAB) corpus consists of business texts from the
Wall Street Journal (WSJ). The texts were read by journalists and recorded under clean
studio conditions [Pallett & Fiscus+ 93]. The WSJ0 and WSJ1 training corpora were
collected by the American National Institute of Standards and Technology.

Recognition tests will be carried out on the NAB November ’94 H1 development test
set with a 20k-word vocabulary [Pallett & Fiscus+ 95][Kubala 95]. The test set contains
2.7% unknown words. The statistics of the training and test corpora are summarized
in Table 5.1. Average condition duration is the amount of data available for histogram
and covariance matrix estimation discussed in Chapter 7. The recognition setup can be
summarized as follows:

• 20 filter bank channels

• 16 Mel-frequency warped cepstral coefficients

• sentence-wise long-term cepstral mean normalization and energy normalization

• LDA on seven adjacent MFCC vectors, reduction to 32 dimensions

• 3000/7000 decision-tree based generalized within-word/across-word triphone states
plus one silence state
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Table 5.1: Statistics of the NAB 20k training and test corpora.

Corpus Training Test
WSJ0+1 DEV-94 H1

Language English
Speaking Style planned
Bandwidth microphone
Overall Duration [h] 81.4 0.8
Silence Fraction [%] 27 19
Average Condition Duration [s] 796 146
# Speakers 284 20
# Sentences 37 571 310
# Running Words 643 754 7 387
# Running Phonemes 2 685 482 -
Trigram LM Perplexity - 124.5

• gender-independent acoustic within-word/across-word models with up to 597k/694k
Gaussian mixture densities

• 6-state HMM topology

• trigram language model

5.2.2 VerbMobil II

VerbMobil was a German speech-to-speech translation research project (phase I:
1993-96, phase II: 1997-2000) for spontaneous speech in the domain appointment
scheduling (scenario A) and information desk (scenario B) [Wahlster 00]. The joint
effort of numerous universities, speech technology companies, and research institutes
was funded by the German Ministry for Education, Science, Research and Technol-
ogy (BMBF). VerbMobil covered three languages, namely German, English and Japanese.

In the second project phase, VerbMobil was extended by a remote PC maintenance
task (scenario C) to allow comparison with existing commercial speech technology
products. At that time, the Lehrstuhl für Informatik VI of RWTH Aachen contributed a
German LVCSR system [Sixtus & Molau+ 00][Kanthak & Sixtus+ 00] that will be used
for the experiments reported in this work. In addition, a speaker-dependent recognizer
for scenario C and a probabilistic machine translation module were provided by the
Lehrstuhl für Informatik VI.

In the framework of the VerbMobil project, a corpus of German spontaneous speech
was collected and annotated [Burger & Weilhammer+ 00]. Speech data were gathered at
different sites over three channel types:
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• close-talking microphones

• room microphones

• various telephone channels (mobile, wireline, wireless)

For the experiments reported here, German microphone training data from all three
scenarios will be used. The corpus consists of 49 hours of speech data collected with a
close-talking microphone, and 14 hours collected with a room microphone.

Recognition tests will be carried out with a 10k-word vocabulary on two different
speaker-independent corpora, the 1999 development test corpus for scenario A and B
(DEV99AB) with an out-of-vocabulary (OOV) rate of 1.9%, and for scenario B alone
(DEV99B, OOV rate = 2.0%). Both were recorded with close-talking microphones.

The second corpus is a subset of the first. It is characterized by a domain mismatch (the
majority of training data were collected in scenario A) and a minor acoustic mismatch
(most training data were collected with a different close-talking microphone type). The
statistics of the training and test corpora are summarized in Table 5.2.

For the rapid development and test of algorithms as well as for experiments under
mismatch conditions, the smaller development corpus DEV99B will be employed. Final
results for speaker normalization will be given for the full DEV99AB corpus.

The VerbMobil II recognition setup can be summarized as follows:

• 20 filter bank channels

Table 5.2: Statistics of the VerbMobil II training and test corpora.

Corpus Training Test
CD1-41 DEV99B DEV99AB

Language German
Speaking Style spontaneous
Bandwidth microphone
Overall Duration [h] 61.5 0.5 1.6
Silence Fraction [%] 13 11 11
Average Condition Duration [s] 140 112 112
# Speakers 857 6 16
# Sentences 36 010 336 1 081
# Running Words 560 837 4 346 14 662
# Running Phonemes 2 308 741 18 040 59 820
Class-Trigram LM Perplexity - 74.6 62.0
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• 16 Mel-frequency warped cepstral coefficients, 16 first derivatives, second derivative
of the energy

• short-term cepstral mean and variance normalization in a symmetric sliding window
of two seconds length

• LDA on three adjacent MFCC vectors including the derivatives, reduction to 33
dimensions

• 2500/3500 decision-tree based generalized within-word/across-word triphone states
plus one silence state

• gender-independent within-word/across-word acoustic models with up to 456k/579k
Gaussian mixture densities

• 3-state HMM topology

• class-trigram language model as of October 1999

Informal tests have shown that the class trigram language model used for the final
VerbMobil II evaluation yields consistent reductions in word error rates of about 1.5%
absolute on the DEV99AB corpus, and 2.8% absolute on the DEV99B corpus compared
to the language model used here. However, this has no impact on the evaluation of the
algorithms that will be presented in this work.

5.3 Degraded Acoustic Conditions

5.3.1 EuTrans II

EuTrans was a research project on example-based machine translation techniques for
text and speech input in a traveler task domain (phase I: 1996, phase II: 1997-2000)
[Casacuberta & Llorens+ 01]. The project was supported by the European Union
ESPRIT Long Term Research Program with an overall of four project partners located
in Spain, Italy, and Germany. EuTrans covered three languages, namely Italian, Spanish,
and English.

One work package involved the collection of an Italian spontaneous speech corpus over
wireline telephone [di Carlo 00]. In the second phase of the project, the Lehrstuhl für
Informatik VI of RWTH Aachen contributed acoustic models trained on this corpus, and
a probabilistic machine translation system.

The telephone training and test data were collected in the same environment, but the
channel quality varied significantly between different recording sessions. Recognition tests
will be carried out with a 2k-word closed vocabulary on the final evaluation test set. The
statistics of the training and test corpora are summarized in Table 5.3. The EuTrans II
recognition setup can be summarized as follows:
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Table 5.3: Statistics of the EuTrans II training and test corpora.

Corpus Training Test
D1.3c/d EVAL00

Language Italian
Speaking Style spontaneous
Bandwidth telephone
Overall Duration [h] 7.9 0.8
Silence Fraction [%] 32 33
Average Condition Duration [s] 104 119
# Speakers 276 25
# Sentences 3 187 300
# Running Words 52 700 5 555
# Running Phonemes 250 749 26 853
Trigram LM Perplexity - 28.6

• 15 filter bank channels

• 12 Mel-frequency warped cepstral coefficients, 12 first derivatives, second derivative
of the energy

• sentence-wise long-term cepstral mean normalization, variance normalization, and
energy normalization

• LDA on three adjacent MFCC vectors including the derivatives, reduction to 25
dimensions

• 1500/3000 decision-tree based generalized within-word/across-word triphone states
plus one silence state

• gender-independent within-word/across-word acoustic models with up to 96k/121k
Gaussian mixture densities

• 6-state HMM topology

• trigram language model

5.3.2 CarNavigation

CarNavigation is a German isolated-word database that was collected by the Lehrstuhl
für Informatik VI of RWTH Aachen for Panasonic Technology Inc. / Speech Technology
Laboratory.

The training data were recorded in a quiet office environment with a close-talking
microphone, and they consist of isolated words and spelling sequences.

The closed-vocabulary test sets consist of isolated-word utterances recorded in various
environments. The office test set was collected under the same conditions as the training
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data. Two other test sets were recorded in cars (city and highway traffic) with the speaker
sitting on the passenger seat and the microphone mounted above the speaker on the visor.

Each test set consists of 2 100 equally probable unique words which were uttered only
once. There is no overlap in vocabulary among the test sets, and between the training
and test corpora. Because of bad recording quality, 31 utterances were removed from the
office test set, but the 2 100 word recognition vocabulary remained the same.

The statistics of the training and test corpora are summarized in Table 5.4. The CarNav-
igation recognition setup can be summarized as follows:

• 20 filter bank channels

• 16 Mel-frequency warped cepstral coefficients

• short-term cepstral mean and (optional) variance normalization in a symmetric slid-
ing window of two second length

• LDA on nine adjacent MFCC vectors, reduction to 33 dimensions

• 700 decision-tree based triphone states plus one silence state

• gender-independent acoustic models with up to 22k Gaussian mixture densities

• 6-state HMM topology

• zerogram language model

Pruning (cf. Section 1.5) will be deactivated (full search) and the recognizer will be forced
to recognize exactly one word for each test utterance.

Table 5.4: Statistics of the CarNavigation training and test corpora.

Corpus Training Test
Office Office City Highway

Language German
Speaking Style planned
Bandwidth microphone
Overall Duration [h] 18.8 1.7 1.7 1.8
Silence Fraction [%] 60 69 73 75
Average Condition Duration [s] 785 425 450 468
Average SNR [dB] 21 21 9 6
# Speakers 86 14 14 14
# Running Words 61 742 2 069 2 100 2 100
# Running Phonemes 189 996 16 842 17 184 17 117
Vocabulary - 2 100 2 100 2 100



Chapter 6

Vocal Tract Length Normalization

6.1 Motivation

Vocal tract length normalization is a model based normalization scheme (cf. Section 2.4)
that relies on a model of speech production by the human speech apparatus, in particular
on the size of the vocal tract (Figure 6.1).

The vocal tract, i.e. the position and shape of the different organs of speech, determines
the sound that is generated. The simplest model for the vocal tract is a uniform tube of
length l between the vocal cords and the lips [Eide & Gish 96]. The tube is closed at one
and open at the other end (Figure 6.2).

Figure 6.1: Photograph of a mid-sagittal section of a human head (left) and a
schematic plot of the organs of speech (right). The pictures were taken from
http://www.phon.ox.ac.uk/∼jcoleman/phonation.htm
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l

Figure 6.2: The human vocal tract can be modeled by a uniform tube of length l that is
open at one end.

According to this model, formant center frequencies of the speech signal are inverse
proportional to the length of the vocal tract as they occur at odd multiples of l−1.
Since the vocal tract length varies from about 13 cm for female to over 18 cm for male
speakers, there are systematic inter-speaker variations of formant frequencies by up to
25% [Lee & Rose 96]. These variations are irrelevant and to some extend harmful to
automatic speech recognition.

Gender-dependent modeling is one way of coping with variable vocal tract lengths. By
training one acoustic model for female speakers with short vocal tracts and another
for male speakers with long vocal tracts, most of the formant frequency variations are
accounted for. Thus, gender-dependent acoustic models cover more relevant information
of the speech signal which is why they are superior to gender-independent models.
However, as discussed in Section 2.1, splitting of training data among different acoustic
models has certain disadvantages compared to transformations.

The idea of vocal tract length normalization is to transform the speech signal by some
function fα(·) such that the mean formant frequencies for each training and test condition
match those of the reference condition (cf. Section 2.3). In this case, conditions are
synonymic to speakers, since the length of the vocal tract is speaker-dependent. The
reference condition is defined as the mean over all training speakers. Hence, the aim of
VTN is to match the mean formant frequencies of each speaker to the average formant
frequencies over all training speakers.

According to the tube model, formant frequencies are shifted downward linearly with
increasing vocal tract lengths. A straight-forward solution to account for that shift is to
warp the frequency axis during signal analysis (Figure 6.3). Other approaches working in
the time or cepstral domain can achieve a similar effect (cf. Section 3.1.1). In most cases,
the transformation function fα(·) depends on a single parameter α only, which is called
warping factor and describes the amount of spectral warping required for each speaker.

The basic idea of vocal tract length normalization is simple, but its efficient implemen-
tation is not. Most challenging is to estimate the warping factor from data. On the one
hand, the algorithm needs to be robust and give reliable estimates from only little speech
data. On the other hand it should not introduce too much computational overhead to
the speech recognition system.
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Figure 6.3: Principle of vocal tract length normalization: The frequency axis of the speech
signal is warped during signal analysis. Here, a piece-wise linear warping function with
warping factor α is depicted.

Maximum likelihood based techniques have prevailed for warping factor estimation
(cf. Section 3.1.1). In theory, it would be preferable if parameter estimation in training
and test were identical, but in practice the situation in training is different from test. In
training, the reference transcription is given, but no normalized acoustic model. In test,
the transcription in unknown, but the warping factors from the training speakers and
the corresponding normalized acoustic model are available. Hence, different parameter
estimation techniques are usually applied.

The other aspect of vocal tract length normalization is to find a suitable method for
spectral warping, and to incorporate the transformation efficiently into the architecture
of a speech recognition system.

In the next section, the baseline procedure of warping factor estimation in training
will be described. Then a number of alternative estimation schemes in test will be
studied. Evaluation criteria are the word error rate and the real-time factor. A number
of optimizations will be proposed to maximize the gain in recognition performance, and
an optimal training procedure based on the previous experiments will be proposed as
conclusion.

6.2 Warping Factor Estimation in Training

Like most normalization techniques, vocal tract length normalization gives best perfor-
mance when both test and training data are normalized (cf. Section 2.2). According to
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Eqn. 2.8, the normalized acoustic model θ̃ should be derived by a joint optimization over
the unknown warping factors and the unknown acoustic model parameters. Assuming
a uniform prior distribution and neglecting the Jacobian determinant, this leads to the
following training criterion:

θ̃ ∼= arg max
θ

R∏
r=1

max
α
{p(Xr|Wr; θ, α)}

∼= arg max
θ

R∏
r=1

max
α
{p̃(Xα

r |Wr; θ)} (6.1)

Here Xα
r denotes the acoustic vectors from speaker r normalized with warping factor α.

For the joint optimization, an iterative training procedure has been proposed in the
literature [Lee & Rose 96]. In each iteration, first the acoustic model parameters are
estimated by maximum likelihood with fixed warping factors from the previous iteration.
Then, the warping factors are re-estimated with the updated acoustic model. By splitting
the training database it is ensured that each warping factor αr is estimated with an
acoustic model that was trained on data excluding speaker r.

Alternatively, the warping factor α̂r for each training speaker r may be estimated before-
hand by some function h(·) (cf. Section 2.2 and Eqn. 2.9) and kept fixed during acoustic
model training (Eqn. 2.10) to avoid the complex joint optimization:

α̂r = h(Xr,Wr, θ0)

= arg max
α

p(Xr|Wr; θ0, α)

∼= arg max
α

p̃(Xα
r |Wr; θ0) (6.2)

The conditional probability of Eqn. 6.2 is computed by forced alignment. A grid search
is carried out for different discrete values of the warping factor α, because a closed-form
solution of the optimization criterion is not obvious [Lee & Rose 96].

Since the reference transcription is known in training, the only free parameter is the
initial acoustic model θ0 used for warping factor estimation. In principle it should be a
normalized acoustic model to match with the normalized acoustic vectors, but as long as
there are no warping factors for training speakers there is also no normalized acoustic
model. One solution is the iterative training procedure described above, but in practice it
turned out that more than one training iteration was not helpful, anyway [Lee & Rose 96].

Welling proposed to use an unnormalized acoustic model of low resolution
[Welling & Kanthak+ 99]. He found that a single density model is the best choice for
θ0, since mixture density models have already adapted to different warping factors and
do not discriminate well between them anymore. A low resolution model captures only
general properties of the speech signal. It nicely approximates the reference condition
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(defined as the average over all training speakers, cf. Section 6.1) and resembles closely a
normalized acoustic model. θ0 is obtained by conventional maximum likelihood training
on unnormalized data:

θ0 = arg max
θ

R∏
r=1

p(Xr|Wr; θ) (6.3)

Once the warping factors are estimated, the training data are normalized (Eqn. 6.4) and
kept fixed during the training of the normalized acoustic model θ̃ (Eqn. 6.5):

Xr → X̃r = fα(Xr) = X α̂r
r (6.4)

θ̃ ∼= arg max
θ

R∏
r=1

p(Xr|Wr; θ, α̂r)

∼= arg max
θ

R∏
r=1

p̃(X α̂r
r |Wr; θ) (6.5)

In this work, the training procedure proposed by Welling is adopted. Iterative re-
estimation of warping factors will be examined in Section 6.4.4.

6.3 Warping Factor Estimation in Test

The situation in test is complicated as well, because according to Bayes’ decision rule
for adaptive acoustic modeling (Eqn. 2.7) there should be a joint optimization over the
unknown word sequence W and the unknown warping factor α. Assuming the prior
distribution p(α|W ; θ) to be uniform and neglecting the Jacobian determinant yields:

W ∼= arg max
W ′

{
p(W ′) ·max

α
p(X|W ′; θ̃, α)

}

∼= arg max
W ′

{
p(W ′) ·max

α
p̃(Xα|W ′; θ̃)

}
(6.6)

Contrary to training, the warping factors of the training speakers and the normalized
acoustic model θ̃ are given, but the word sequence W is unknown. Furthermore, the
identity of the test speaker is usually unknown, which is why warping factors in test have
to be estimated sentence-wise.

In the following sections a number of solutions of different complexity will be studied.
The computational overhead will be investigated in terms of the size of the search space
(average number of active states after histogram pruning) and the real-time factor (RTF)
with fixed pruning thresholds, measured on a 600 MHz Pentium III PC with 1 GB main
memory.
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6.3.1 Full Optimization

If computation time is not an issue, one solution is to do a full optimization of the
recognized word sequence W and the warping factor α (cf. Section 2.1):

max
α
{max

W
{p(W ) · p̃(Xα|W, θ̃)}} (6.7)

In this case, an own recognition pass has to be carried out for each considered warping
factor, and the word sequence that corresponds to the maximizing warping factor is
selected. If n different warping factors are considered, the real-time factor will increase
by a factor of the order of n.

Recognition results for full optimization are summarized in Table 6.1 in the following
section.

6.3.2 Text-Dependent Warping Factor Estimation

To avoid an expensive full optimization, the warping factor α may be determined
beforehand by some function h(·) and kept fixed in the following optimization over the
unknown word sequence W .

In the baseline two-pass recognition approach, h(·) is chosen text-dependent similar to
training (cf. Eqn. 6.2). Since the spoken word sequence W is unknown in test, it is
replaced by the preliminary word sequence Ŵ determined in a first recognition pass on un-
normalized data (Eqn. 6.8). Furthermore, the low resolution acoustic model θ0 is replaced
by the normalized mixture-density model θ̃. Poor discrimination between warping fac-
tors (cf. Section 6.2) is no longer a problem, as the model was trained on normalized data.

Two-pass recognition can be summarized as follows:

1. Determine a preliminary transcription Ŵ in a (non-adaptive) first recognition pass:

Ŵ = arg max
W
{p(W ) · p(X|W, θ)} (6.8)

2. Similar to training, perform a forced alignment for each considered warping factor α̂.
Choose the one that maximizes the conditional probability p̃(·) given the preliminary
transcription and the normalized acoustic model:

α̂ = h(X, Ŵ , θ̃)

= arg max
α

p̃(Xα|Ŵ ; θ̃) (6.9)

3. Second (adaptive) recognition pass on normalized acoustic vectors:

W = arg max
W ′

{p(W ′) · p̃(X α̂|W ′; θ̃)} (6.10)
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Welling found that best performance is achieved when an unnormalized acoustic model
θ is used in the first recognition pass [Welling & Kanthak+ 99]. Given the concept of
adaptation and normalization developed in Section 2.2 this comes as no surprise, as a
model trained on different conditions performs better under the variety of test conditions
than a normalized acoustic model.

For test purposes, the preliminary transcription Ŵ in Eqn. 6.9 may be replaced by the
reference transcription in a supervised manner. This technique is not applicable in real
applications, but it allows to study the dependence of the recognition performance on
errors in the preliminary transcription.

Recognition test results on the VerbMobil II corpus for full optimization, two-pass VTN,
and supervised VTN are summarized in Table 6.1. As expected, supervised VTN yields
best results with respect to the recognition accuracy.

Two-pass VTN gives about the same word error rate as the full optimization, and both
are only little inferior to supervised vocal tract length normalization. Hence, the warping
factor can be reliably estimated beforehand even if the word error rate in the first
recognition pass is of the order of 25%. The reason is that contrary to most adaptation
techniques just one parameter has to be estimated in vocal tract length normalization,
which requires very few data. In addition, mis-recognized words are often phonetically
similar to the correct words, hence, the phoneme error rate is significantly lower than the
word error rate [Wessel & Ney 01].

An improved handling of silence frames introduced in Section 6.4.1 will level out the
remaining difference between two-pass and supervised warping factor estimation.

Two-pass vocal tract length normalization requires approximately twice as much compu-
tation time as conventional non-adaptive recognition due to the two recognition passes.
For the full optimization, 13 recognition passes were required for the different warping
factors. The real-time factor increased by a factor of 14, because in most cases recognition
took place with an inadequate warping factor which lead to a strong mismatch and an
increase of the search space by 7% on average.

Table 6.1: Recognition test results on the VerbMobil II DEV99B corpus for different VTN
schemes in test. Given are the average number of active states after histogram pruning,
the real-time factor, and the word error rate.

VTN Search Space Overall [%]
Warping Factor Estimation States RTF Del - Ins WER

baseline without normalization 5792 13.4 4.1 - 4.7 24.9
full optimization 6214 178.2 4.3 - 4.8 23.0
two-pass 5050 26.2 4.1 - 4.7 22.8
supervised 5032 12.5 4.1 - 4.5 22.3
cheating 6214 178.2 3.7 - 3.2 18.4
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The last line in Table 6.1 gives the result of a cheating experiment. Based on the full
optimization, the warping factor was selected for each sentence that minimized the
word error rate. The experiment shows that if the best warping factor could be guessed
somehow, the word error rate would drop by more than 25% relative. However, this
result should not be compared with the other warping factor estimation techniques,
but with n-best-list or word graph error rates: For each sentence, the best of up to 13
alternative word sequences is chosen.

With two-pass or even supervised VTN, 40% or less of the maximum possible gain in
recognition performance is obtained as indicated by the cheating experiment. This con-
tradicts the result of Dolfing, who reported up to 70% of the possible improvements for
supervised vocal tract length normalization with sentence-wise warping factor estimation
[Dolfing 00]. A closer examination reveals that his frequency axis warping scheme is pre-
sumably sub-optimal. The improvements by supervised VTN relative to the baseline are
comparable, but the cheating experiment of Dolfing reduced the word error rate by a
much smaller amount.

6.3.3 Text-Independent Warping Factor Estimation

The two-pass VTN approach performs as well as the full optimization but still doubles
the real-time factor as it requires a preliminary transcription from a first recognition
pass. This makes it difficult to apply two-pass vocal tract length normalization in online
applications.

Text-independent techniques that will be presented in the following are based on the
observation that the global distribution of acoustic vectors in the feature space varies
for speakers with different warping factors independently of what is spoken. Hence,
by modeling the feature space with simplified acoustic models it will be possible to
use a text-independent function h(·) for warping factor estimation (cf. Eqn. 2.9), and
save the first recognition pass. These techniques, which are otherwise similar to the
text-dependent warping factor estimation, are summarized as fast vocal tract length
normalization.

Wegmann et al. and Welling et al. suggested to model the distribution of normalized
acoustic vectors X̃ by a Gaussian mixture model (GMM) Λ̃ [Wegmann & McAllaster+ 96]
[Welling & Haeb-Umbach+ 98]. After the warping factors α̂r are determined for each
training speaker r as described in Section 6.2, the Gaussian mixture model is trained by
maximum likelihood:

Λ̃ ∼= arg max
Λ

R∏
r=1

p(Xr|Λ, α̂r)

∼= arg max
Λ

R∏
r=1

p̃(X α̂r
r |Λ) (6.11)
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The covariance matrix Σ of the Gaussian mixture model Λ̃ is diagonal and pooled over
all L densities (Eqn. 6.12). The densities are weighted by normalized mixture weights
c1, . . . , cL. As usual, the maximum approximation is applied at the density level for faster
likelihood calculations (Eqn. 6.13):

p̃(x|Λ̃) =
L∑

l=1

cl · N (x|µl, Σ; Λ̃)
L∑

l=1

cl = 1 (6.12)

∼= max
l
{cl · N (x|µl, Σ; Λ̃)} (6.13)

In test, the acoustic vectors are normalized with different warping factors, and the one
with maximum likelihood is selected for recognition:

1. Find the warping factor α̂ that maximizes the likelihood given the simplified acoustic
model Λ̃:

α̂ = h(X, Λ̃)
∼= arg max

α
p̃(Xα|Λ̃) (6.14)

2. Adapted recognition pass as in two-pass VTN (cf. Eqn. 6.10)

And alternative approach was suggested by Lee and Rose [Lee & Rose 96]. It is based
on a set of Gaussian mixture models Λα. Each of them describes the distribution of
unnormalized acoustic vectors Xr from all speakers r with a specific warping factor αr = α:

Λα = arg max
Λ

∏
r:αr=α

p(Xr|Λ) (6.15)

In test, the likelihood of the acoustic vector sequence is calculated with all Gaussian
mixture models, and the warping factor that corresponds to the model with maximum
likelihood is selected for recognition:

1. Find the warping factor α̂ that maximizes the likelihood given the set of Gaussian
mixture models Λα:

α̂ = h(X, Λα)

= arg max
α

p(X|Λα) (6.16)

2. Adapted recognition pass as in two-pass VTN (cf. Eqn. 6.10)

Note that in this case no transformation of acoustic vectors is involved during training
of the Gaussian mixture models, and when the models are applied for warping factor
estimation in test.

The first approach of Wegmann et al. and Welling et al. has the advantage that the
Gaussian mixture model is trained on the whole training corpus. In test, arbitrary
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warping factors can be chosen to maximize the likelihood.

In the second approach of Lee and Rose, each model is trained on a different subset
of the training corpus. It may happen that certain speakers with especially poor or
good acoustic conditions will cause their corresponding Gaussian mixture models to give
systematically lower or higher likelihoods. In early development tests it was found that
warping factor estimates are more robust when the variance of all models is pooled. That
is, each Gaussian mixture model Λα consists of a number of densities with different mean
vectors µα,l and mixture weight cα,l, but all vectors share the same diagonal covariance
matrix Σ:

p(x|Λα) =
L∑

l=1

cα,l · N (x|µα,l, Σ; Λα)

∼= max
l
{cα,l · N (x|µα,l, Σ; Λα)} (6.17)

Another minor disadvantage of the second approach is that a Gaussian mixture model
can only be estimated reliably for those warping factors which occur frequently enough
in the training data. Often the warping factor range has to be limited as there occur
too few speakers with very small or large warping factors in training. Welling found,
however, that the restriction of the warping factor range had no measurable impact on
the word error rate in his tests [Welling 99]. This result has been confirmed on the
corpora considered in this work, where two-pass recognition with a limited warping factor
range 0.88 ≤ α ≤ 1.12 yielded the same word error rate as recognition with an extended
range 0.80 ≤ α ≤ 1.20.

A major disadvantage of the first approach is that the warping factor is estimated by
likelihood comparison of acoustic vector sequences normalized with different warping
factors (cf. Eqn. 6.14). The Jacobian determinant (cf. Eqn. 2.12) is omitted during
training of the Gaussian mixture model Λ̃ and during its application in test, which
may cause systematic estimation errors [Pitz & Molau+ 01]. The problem does not
occur in the second approach, because in this case the acoustic vector sequence is not
transformed. In the adapted recognition pass (Eqn. 6.10) the Jacobian can be neglected,
as all acoustic vectors are normalized with the same warping factor α̂. Hence, the
likelihoods of competing word sequences are all affected in the same way.

Another minor disadvantage of the first approach is a larger computational overhead as
depicted in Figure 6.4. The signal analysis steps after the Fourier transform have to be
repeated several times, since acoustic vectors normalized with all considered warping
factors are required. In the second approach, these steps need to be carried out only
twice (for the unwarped spectrum and for the best warping factor).

Recognition test results on the VerbMobil II corpus for both fast VTN approaches with
different Gaussian mixture model complexities are summarized in Table 6.2. The first
approach of Wegmann et al. and Welling et al. gives some improvements in recognition
accuracy, but falls clearly short of the text-dependent two-pass VTN. Welling reported
to train 64 densities for the Gaussian mixture model [Welling 99]. For the VerbMobil II
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Figure 6.4: Comparison of the signal analyses for different text-independent warping
factor estimation techniques (left: one Gaussian mixture model Λ̃ for normalized speech,
right: Gaussian mixture models Λα for each warping factor α)

corpus, this number is somewhat small. If the model consists of 128 or more densities,
the warping factors are estimated more reliable and the word error rate further decreases.
This is consistent with Wegmann et al. who reported to use a 256 density Gaussian
mixture model [Wegmann & McAllaster+ 96].

The second approach of Lee and Rose improved by a pooled variance vector outperforms
the first approach. It yields a word error rate similar to two-pass VTN. In addition,
the warping factors are reliably estimated even if fewer densities per Gaussian mixture
model are trained. The same number of densities per model as in the first approach
means that the overall number of model parameters is higher (e.g. for 13 considered
warping factors 13*128 Gaussian densities instead of 128). However, there is no increase
in the number of likelihood calculations, as for each warping factor and each time frame
the acoustic vector distance to all densities of one Gaussian mixture model has to be
computed (e.g. 128 distance calculations per warping factor and time frame).
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Table 6.2: Recognition test results on the VerbMobil II DEV99B corpus for different
text-independent warping factor estimation schemes in test. Given are the the number of
densities per Gaussian mixture model, the average number of active states after histogram
pruning, the real-time factor, and the word error rate.

Fast VTN # Densities Search Space Overall [%]
Warping Factor Estimation per GMM States RTF Del - Ins WER

baseline without normalization 5792 13.4 4.1 - 4.7 24.9
one global GMM 32 5617 13.2 4.5 - 5.0 24.6

Λ̃ for normalized data 64 5472 13.0 4.4 - 5.0 24.5
128 5374 12.9 4.3 - 5.1 24.1
256 5337 12.9 4.3 - 4.9 24.0

GMMs Λα for 32 5180 12.7 3.7 - 4.9 22.9
each warping factor α 64 5194 12.7 3.8 - 4.7 22.6

128 5130 12.7 3.8 - 4.9 22.7
256 5170 12.7 3.9 - 4.8 22.9

With respect to the real-time factor, both approaches perform better than the baseline
even though there was some computational overhead due to warping factor estimation.
The reason is a reduction of the search space by up to 10% at identical pruning settings. It
underlines that normalized acoustic models are more discriminant so that pruning becomes
more efficient. As expected, the approach of Lee and Rose is somewhat faster than the
one of Wegmann et al. and Welling et al., since signal analysis has to be carried out twice
only (Figure 6.4). Whereas the real-time factor is constant for the latter approach, it
decreases in the first with growing densities numbers of the Gaussian mixture model Λ̃.
This surprising result has two reasons:

• The recognizer used quantized references and parallelized fast likelihood calculations
(cf. Section 1.5). Hence, the number of distance calculations had only a limited
impact on the overall real-time factor of the off-line system with conservative pruning
settings.

• Warping factor estimation improved with increasing number of densities leading to
a smaller number of active states during search. This more than leveled out the
increased number of distance calculations for warping factor estimation.

Given the figures in Table 6.2 the conclusion could be drawn than the complexity of the
Gaussian mixture model has a negligible impact on the real-time factor. For systems
working at real-time as presented in the next section, however, likelihood calculations
make up for a significant amount of computation time. In this case, tighter pruning
settings to compensate for increased computational overhead during warping factor
estimation result immediately in measurable performance degradation.

In all subsequent experiments, the second approach of Lee and Rose with 128 densities
per Gaussian mixture model and a pooled covariance matrix was used for fast warping
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factor estimation. The density number was chosen because it gave superior performance
on a variety of corpora.

6.3.4 Incremental Warping Factor Estimation

In online recognition tasks it is desirable to have only little delay between speech
recording and the output of the recognition result. This does not only require a fast
recognizer, but also a signal analysis with minimum delay between recording and the
start of search. So far, the warping factor was estimated sentence-wise on the whole test
utterance before the recognition started. Text-independent warping factor estimation as
presented in the previous section, however, does allow for an incremental warping factor
estimation without additional delay (Figure 6.5).
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Figure 6.5: Signal analysis for fast VTN with incremental warping factor estimation.
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The signal analysis steps after the Fourier transform are carried out twice. The acoustic
vectors normalized with the currently best warping factor are used for recognition. The
unnormalized acoustic vectors are immediately evaluated with the Gaussian mixture
models and the probabilities p(X|Λα) are accumulated over time. Once a speaker change
is detected (e.g. at the end of an utterance), the probabilities are reset and warping
factor estimation starts from scratch again.

Problematic may be the first few acoustic vectors of a new speaker, when the warping
factor has not yet settled. In this case, unnormalized acoustic vectors could be used in
recognition for a predefined initialization time.

Table 6.3 summarizes recognition test results for fast vocal tract length normalization
with sentence-wise warping factor estimation, and for incremental warping factor
estimation with different initialization times. During initialization, the warping factor
was forced to be 1.0, i.e. the vectors remained unnormalized. In general, sentence-wise
warping factor estimation is more robust as it is based on more time frames. An
initialization for incremental estimation is not necessary, as the word error rate changed
only marginally when the estimated warping factor was used right from the beginning.
In fact, there was a tendency to larger word error rates for increasing initialization times,
since an ever growing part of each sentence remained unnormalized.

In Table 6.4, recognition test results are reported for two systems which were accelerated
to almost real-time by a number of acceleration techniques (cf. Section 1.5) described in
[Sixtus & Molau+ 00] and [Kanthak & Sixtus+ 00]. Fast vocal tract length normalization
with incremental warping factor estimation was successfully applied in the RWTH speech
recognition system used in the final VerbMobil II evaluation [Kanthak & Sixtus+ 00]. It
proves that vocal tract length normalization can significantly reduce the word error rate
in online applications.

Table 6.3: Recognition test results on the VerbMobil II DEV99B corpus for sentence-wise
and incremental warping factor estimation with different initialization times.

Fast VTN Overall [%]
Warping Factor Estimation Del - Ins WER

sentence-wise 3.8 - 4.9 22.7
incremental without initialization 3.8 - 5.2 23.3
incremental with 1s initialization 4.0 - 4.9 23.4
incremental with 2s initialization 4.0 - 5.0 23.5
incremental with 3s initialization 4.0 - 5.0 23.5
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Table 6.4: Recognition test results on the full VerbMobil II DEV99AB corpus for two
systems accelerated to almost real-time. Given are the average number of active states
after histogram pruning, the real-time factor, and the word error rate. The baseline
system without normalization is compared to a VTN system with incremental warping
factor estimation.

System Search Space Overall [%]
States RTF Del - Ins WER

baseline without normalization 1839 1.3 5.8 - 3.9 25.1
fast VTN / incremental warping factor estimation 1771 1.2 5.5 - 3.5 23.5

6.4 Optimizations

Whereas efficient warping factor estimation schemes have been established at this stage,
there are still a number of aspects that need to be considered to obtain best performance
by VTN. Some of these will be discussed in the next section. In the end, the complete
procedure for optimized vocal tract length normalization in training and test is summa-
rized.

6.4.1 Frame Weighting

Wegmann et al. and Welling et al. reported that only speech frames should
be used for the estimation of warping factors [Wegmann & McAllaster+ 96]
[Welling & Haeb-Umbach+ 98]. Silence frames contain no information about the
vocal tract length of the speaker, so they may only disturb the estimation. In the
case of text-dependent warping factor estimation it is easy to omit silence frames, as
there is an alignment between acoustic vectors and HMM states (cf. Figure 1.3). For
the text-independent approach, Wegmann et al. used a “harmonicity feature” whereas
Welling et al. applied the heuristics that the Gaussian mixture density with most
observations is the “silence” density [Welling & Kanthak+ 99]. All acoustic vectors which
are closest to that density are regarded as silence vectors and subsequently omitted in
the probability accumulation.

A negative side effect of leaving some times frames out is that the number of acoustic
vectors used for warping factor estimation varies for different warping factors. The
more the evaluated deviates from the true warping factor, the larger is the acoustic
mismatch. Consequently, more speech frames are aligned to the silence mixture or
density and do not contribute to the average sentence score used for warping factor
estimation, i.e. to the negative log-likelihood of the sentence divided by the number of
time frames. In practice, this discontinuity has the effect that especially in the case
of short sentences the score as a function of the warping factor may not have a well
defined minimum, which leads to some scatter in the estimated warping factors. An
example is shown in Figure 6.6. The score over all 762 time frames of a test sentence
from the VerbMobil II corpus has a clear minimum at α = 1.04, but the warping factor
estimated on speech frames only is ill-defined (α = 1.12) because of their variable number.
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Figure 6.6: Average negative log-likelihood (score) of one sentence from the VerbMobil II
corpus as a function of the warping factor (dashed lines). The number of speech frames
as a function of the warping factor is plotted with bars. The best warping factors are
marked with a vertical line.

To overcome this limitation, two alternative methods of frame weighting were evaluated.
Instead of omitting silence frames, each acoustic vector is weighted by a factor z(x)
related to its energy (Eqn. 6.18). This technique boosts speech frames in a similar way
as the method described above, but avoids discontinuities and the related problems.
It also avoids mismatch since this method can be used in training and test, whereas
before different criteria for the definition of a silence frame were used for text-dependent
warping factor estimation in training and text-independent estimation in test.

As weight z(x), the frames’ energy e(x) estimated on the magnitude spectrum (Eqn. 6.19)
and the zeroth cepstrum coefficient c0(x), which is proportional to the logarithm of the
frame energy (Eqn. 6.20), were used:

p(X|Λ) =
T∑

t=1

z(xt) · p(xt|Λ) (6.18)

e(x) =
1

N/2

N/2−1∑
n=0

|x(e2πj n
N )| (6.19)

c0(x) =
1

N

N/2−1∑
n=0

lg |x(e2πj n
N )| (6.20)

Recognition test results are summarized in Table 6.5. Both weights work equally well
here, but additional tests on other corpora have shown that using the frames’ energy e(x)
gives marginally better results. In fact, on this corpus it slightly hurt to omit silence
frames by the heuristic method of Welling, but the differences were all very small.
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Table 6.5: Recognition test results on the VerbMobil II DEV99B corpus for warping factor
estimation on all frames, on speech frames only, and for frame weighting with the frames’
energy e(x) and the zeroth cepstrum coefficient c0(x).

Fast VTN Overall [%]
Warping Factor Estimation Del - Ins WER

using all frames 3.8 - 4.9 22.5
omitting silence frames 3.8 - 4.9 22.7
frame weight with e(x) 3.9 - 4.6 22.3
frame weight with c0(x) 3.8 - 4.8 22.3

6.4.2 Warping Functions

The model of the vocal tract introduced in Section 6.1 predicts a linear shift of formant
frequencies depending on the length of the vocal tract. A direct implementation of linear
frequency axis warping is difficult, however, due to the limited bandwidth of the acoustic
signal.

Telephone audio data are typically sampled at 8 kHz and microphone data at 16 kHz.
The Nyquist theorem states that frequencies larger than half the sampling frequency
cannot be reconstructed from the sampled signal, i.e. the bandwidth is limited to 4
kHz for telephone and 8 kHz for microphone data. Linear warping of a line spectrum
changes the bandwidth [Lee & Rose 96]: It either requires higher frequencies beyond the
bandwidth (for α < 1) or the highest frequencies are discarded (for α > 1), which re-
sults in information loss. Hence, a piece-wise linear warping function is often applied.
Up to a limiting frequency ω0 of 3.5 / 7 kHz (telephone and microphone data, re-
spectively) at the unwarped frequency axis, the spectra are warped linearly with the
warping factor α. Above that limiting frequency they are warped with another factor
which is chosen such that the bandwidth remains unchanged (Eqn. 6.21 and Figure 6.3)
[Wegmann & McAllaster+ 96][Welling & Haeb-Umbach+ 98]:

ω → ω̃ = fα(ω)

=

{
α · ω ω ≤ ω0

ω0 + π − ω0

π − ω0/α
· (ω − ω0/α) ω > ω0

(6.21)

ω0 =
7

8
π (6.22)

The warping function has an upper limit of α = 8/7 ∼= 1.14, since for larger warping
factors the bandwidth is exceeded before the limiting frequency ω0 is reached. For some
male speakers, however, warping factors as large as 1.2 are observed (cf. Figure 6.11). For
this reason, the turning frequency was re-defined in a symmetric fashion to be 3.5 / 7 kHz
at the unwarped frequency axis for α ≤ 1, and at the warped frequency axis for α > 1
(Eqn. 6.23 and Figure 6.7, left). Uebel and Woodland also applied a symmetric piece-wise
linear function in their tests [Uebel & Woodland 99]:
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ω0 =





7
8π α ≤ 1

7
8 · απ α > 1

(6.23)

The modification had no measurable impact on the word error rate, but the warping
factor range could now be extended beyond α = 1.14 to avoid possible side effects from
a limited warping factor range.

As an alternative to piece-wise linear warping with a turning point, a power warping
function was tested (Eqn. 6.24 and Figure 6.7, right). It is not perfectly consistent with
the linear shift of formant frequencies predicted by the simple tube model (cf. Section 6.1),
but it is reasonably close to linear frequency axis warping and has no discontinuity:

ω → ω̃ = fα(ω)

=
(ω

π

)α

· π (6.24)

Recognition test results for both functions are presented in Table 6.6.

Table 6.6: Recognition test results on the VerbMobil II DEV99B corpus for different
frequency axis warping functions.

Two-Pass VTN Overall [%]
Warping Function Del - Ins WER

symmetric piece-wise linear 5.0 - 3.9 23.9
power function 5.2 - 4.1 24.3



6.4. OPTIMIZATIONS 69

There are only minor differences in the word error rate, but the piece-wise linear function
performs slightly better [Molau & Kanthak+ 00], which confirms the findings of other
groups (cf. Section 3.1.1).

6.4.3 Re-estimation of CART and LDA

Vocal tract length normalization removes undesired variations from the speech signal.
Formants are shifted to reference positions which results in more discriminant acoustic
vectors as shown by the superior recognition performance. It is to expect that re-
estimation of the phonetic decision tree (CART) and the LDA transformation matrix on
normalized training data improves the acoustic modeling and further reduces the word
error rate.

In initial re-estimation tests, no gain in recognition accuracy was observed, which was
in accordance with earlier results of Welling [Welling 99]. After system optimization,
however, a minor but consistent performance improvement was obtained on all inves-
tigated corpora. Table 6.7 gives the result for the full VerbMobil II DEV99AB test
corpus. The same improvement of 0.4% absolute was obtained on the same corpus with
an across-word VTN system [Sixtus 02]. The missing improvements in earlier systems
might have been caused by sub-optimal procedures for warping factor estimation and
acoustic model training.

6.4.4 Iterative Warping Factor Estimation

In Section 6.3.3 a warping factor estimation scheme for test speakers was introduced that
is based on a set of Gaussian mixture models Λα. It avoids systematic errors possibly
introduced by neglecting the Jacobian determinant, because there is no transformation
of the acoustic vector involved. The problem still persists at an earlier stage, however, as
the individual Gaussian mixture models are trained according to warping factors of the
training speakers (cf. Eqn. 6.15). These were derived by a procedure where the Jacobian
should have been taken into account: The training data are normalized with different
warping factors, and the one that maximizes the likelihood is chosen (cf. Eqn. 6.2).

Table 6.7: Recognition test results on the full VerbMobil II DEV99AB corpus for re-
estimation of the phonetic decision tree and the LDA transformation matrix on normalized
training data.

Two-Pass VTN Overall [%]
Estimation of CART and LDA Del - Ins WER

baseline without normalization 5.1 - 4.4 25.7
on unnormalized training data 4.9 - 4.0 23.8
on normalized training data 5.4 - 3.7 23.4
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It was explained in Section 6.2 that the acoustic model θ0 used to determine the warping
factors of training speakers should at be a normalized model. Since at the beginning there
are no normalized data available, an unnormalized single density model is used instead.
Once the warping factors are estimated, however, a new single density model θ̃0 may be
trained on normalized data, and warping factor estimation may be repeated in an iterative
fashion:

θ̃0
∼= arg max

θ

R∏
r=1

p̃(X α̂r
r |Wr; θ) (6.25)

This approach is similar to the iterative training procedure of Lee and Rose
[Lee & Rose 96]. However, the training corpus is not split and the acoustic model
is of low resolution, which significantly reduces the computation time.

Recognition test results for re-estimated warping factors on the VerbMobil II corpus are
summarized in Table 6.8. A marginal improvement is observed for one or two extra
iterations of warping factor estimation. Unfortunately, the improvements were not con-
sistently obtained on all corpora. One additional iteration was helpful in all cases when
the original decision tree and LDA transformation matrix were used. However, when the
decision tree and the LDA transformation matrix were re-estimated on normalized data
and the warping factor estimation was repeated, the word error rate deteriorated slightly
on some corpora. This is consistent with earlier results of Lee and Rose [Lee & Rose 96],
who also reported increasing word error rates on test data for more than one iteration of
warping factor estimation. Thus, warping factors are typically not re-estimated because of
substantially higher computational costs and a negligible gain in recognition performance
at best.

Table 6.8: Recognition test results on the full VerbMobil II DEV99AB corpus for iterative
estimation of warping factors in training.

Two-Pass VTN Overall [%]
Single Density Model θ0 Trained on CART/LDA Trained on Del - Ins WER

unnormalized data (first iteration) unnormalized data 4.9 - 4.0 23.8
normalized data (second iteration) 5.3 - 3.7 23.6
normalized data (third iteration) 5.2 - 3.9 23.9
unnormalized data (first iteration) normalized data 5.4 - 3.7 23.4
normalized data (second iteration) 5.3 - 3.5 23.5
normalized data (third iteration) 5.4 - 3.5 23.3
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6.5 Conclusions

Given the experimental results presented in the previous sections, the following baseline
procedure for vocal tract length normalization starting from an existing system without
VTN is proposed to achieve maximum recognition performance:

1. Train a low-resolution (single density) acoustic model θ0 on unnormalized training
data X (cf. Eqn. 6.3).

2. Estimate warping factors α̂r for the training speakers r using θ0 and the reference
transcription (cf. Eqn. 6.2).

3. Normalize the training data with the calculated warping factors (cf. Eqn. 6.4).

4. Re-estimate the decision tree and LDA transformation matrix on the normalized
training data X̃.

5. For two-pass VTN, train an unnormalized acoustic model θ on unnormalized data X
with the new decision tree and LDA transformation matrix for the first recognition
pass (cf. Eqn. 6.8).

6. For fast warping factor estimation (cf. Eqn. 6.16), train Gaussian mixture models
Λα (cf. Eqn. 6.15) for each warping factor α on all unnormalized training data Xr

from speakers r with warping factor αr = α. Use the new LDA transformation
matrix.

7. Train a normalized acoustic model θ̃ (cf. Eqn. 6.5) on the normalized data X̃ with the
new decision tree and LDA transformation matrix for the final adaptive recognition
pass (cf. Eqn. 6.10).

A symmetric piece-wise linear function is applied for spectral warping (cf. Eqn. 6.21 and
6.23) with warping factors ranging from 0.80 to 1.20 in steps of 0.02. All acoustic vectors
are considered for warping factor estimation in training and test, but weighted with their
energy (cf. Eqn. 6.18 and 6.19).

6.6 Final Results for Different Corpora

Using the procedure proposed in the previous section, vocal tract length normaliza-
tion was applied to different large-vocabulary speech corpora, namely VerbMobil II,
North American Business News 20k, and EuTrans II. Results for within-word sys-
tems are summarized in Table 6.9, and for across-word systems in Table 6.10. For each
task, the word error rate of optimized baseline systems without VTN is given as reference.

Fast VTN achieves in general about the same word error rate as two-pass VTN, which
means that the full gain in recognition performance can be realized without an increase
of the real-time factor. The reduction in word error rate ranges between 8% and 9%
relative for the within-word systems, which is of the same order as the improvement
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Table 6.9: Within-word system recognition test results for different large vocabulary cor-
pora and different acoustic conditions. Given are word error rates for optimized baseline
systems without vocal tract length normalization, and for two-pass and fast VTN.

Corpus VTN Overall [%]
Del - Ins WER

VerbMobil II baseline without VTN 5.1 - 4.4 25.7
DEV99AB fast 5.4 - 3.7 23.5

two-pass 5.4 - 3.5 23.3

NAB 20k baseline without VTN 1.5 - 2.2 12.5
fast 1.5 - 2.2 11.5
two-pass 1.4 - 2.2 11.6

EuTrans II baseline without VTN 4.2 - 3.1 16.5
fast 3.5 - 3.4 15.3
two-pass 3.9 - 2.9 15.1

obtained by across-word models alone.

A combination of vocal tract length normalization and across-word models achieves rela-
tive word error rate reductions between 11% and 16% compared to the baseline within-
word system without normalization, i.e. the gain in recognition performance by both
techniques is not fully additive. In a complex speech recognition system, a differentiation
between errors caused by inappropriate vocal tract or coarticulation modeling is not pos-
sible. The only interpretation is that some of the recognition errors that are avoided by
normalization are also not made by across-word modeling, and vice versa.

Table 6.10: Across-word system recognition test results for different large vocabulary cor-
pora and different acoustic conditions. Given are word error rates for optimized baseline
systems without vocal tract length normalization, and for two-pass and fast VTN.

Corpus VTN Overall [%]
Del - Ins WER

VerbMobil II baseline without VTN 5.3 - 3.6 23.3
DEV99AB fast 4.3 - 3.4 21.4

two-pass 4.6 - 3.3 21.6

NAB 20k baseline without VTN 1.4 - 2.0 11.5
fast 1.3 - 2.2 11.0
two-pass 1.5 - 2.2 10.9

EuTrans II baseline without VTN 3.9 - 3.2 15.7
fast 4.2 - 2.4 14.7
two-pass 4.2 - 2.7 15.0
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On the EuTrans II corpus, across-word models yielded only a comparatively small im-
provement in recognition performance. A possible explanation is the small training corpus
of only 8 hours of speech data. There are probably too few across-word contexts observed
during training to get a similar gain as on the large training corpora. In this case, warping
factors were estimated in a speaker-incremental fashion, i.e. all previous sentences of a
speaker were used for warping factor estimation in addition to the current sentence. This
had essentially no effect on the within-word results, but slightly improved the across-word
results for VTN.

6.7 Integrated Frequency Axis Warping

In this section, a novel concept to derive Mel-frequency cepstral coefficients (MFCCs)
directly from the magnitude spectrum of the speech signal will be introduced and an-
alyzed. A number of successive steps of the traditional signal analysis including VTN
frequency axis warping are integrated into the cepstrum transformation, which avoids
possible quantization and interpolation errors. The same idea of merging successive sig-
nal analysis step after the Fourier transform into a single step was proposed by Yu and
Waibel [Yu & Waibel 00], but they followed a completely different approach.

6.7.1 Motivation

The signal analysis front-end of a speech recognition system was described in Section 1.2.
Here we concentrate on the steps between the Fourier and the cosine transform. Every
10 ms, the Fourier transform is applied to a short segment of the speech signal which
yields a spectrum with 512 spectral lines in the RWTH system. The magnitude
spectrum is warped according to the Mel-scale [Davis & Mermelstein 80] in order to
adapt the frequency resolution to the properties of the human ear. Independently of
this psycho-acoustic explanation it was shown that the Mel-scale is the optimal choice
to reduce the spectral resolution at high frequencies [Mashao 96]. Then, the spectrum
is segmented into a number of critical bands by means of a filter bank, which typically
consists of overlapping triangular filters. The dynamic range of the filter bank coefficients
is reduced by taking the logarithm, and the discrete cosine transform is applied to get
raw MFCC vectors.

Mel-frequency warping and the filter bank can be implemented easily in the frequency
domain (Figure 6.8). One method is to transform the magnitude spectrum, i.e. to
compute a Mel-warped spectrum by interpolation from the original discrete-frequency
magnitude spectrum [Wegmann & McAllaster+ 96]. The advantage is that the following
triangular filters all have the same shape and can be placed uniformly at the Mel-warped
spectrum. However, the quantization may be critical due to the large dynamic range of
the magnitude spectrum.

Another way is to place the triangular filters non-uniformly at the unwarped spectrum
[Lee & Rose 96] and thereby implicitly incorporate Mel-frequency scaling. However,
quantization errors may occur if the spectral resolution is not appropriate. The lowest
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Figure 6.8: Schematic plot of different triangular filter bank implementations for Mel-
frequency warping. The filters are either uniformly distributed at the Mel-warped spec-
trum, or non-uniformly at the original spectrum.

filters could be placed at a very few spectral lines only, and the maximum of one of
the filters may fall just in-between two spectral lines. In addition, the filters should
not be triangular and symmetric anymore, but bend according to the shape of the
Mel-function at the position of the filter. Finally, this approach is problematic in the
case of vocal tract length normalization with linear frequency axis warping, as the
bandwidth changes which may place the highest filters beyond the Nyquist frequency
[Lee & Rose 96][Chu & Jie+ 97].

Last but not least, it is not clear how many filters are required and which filter shape
is optimal. Triangular filters are occasionally replaced by trapezoidal or more complex
shaped ones derived from auditory models.

An alternative first presented in [Molau & Pitz+ 01a] is to omit the filter bank and com-
pute cepstral coefficients directly on the log-magnitude spectrum. It avoids possible prob-
lems of the standard approaches by integrating spectral warping into the discrete cosine
transform. A comparison of the traditional signal analysis with the integrated approach
proposed here is shown in Figure 6.9.

6.7.2 Integration of Frequency Axis Warping into DCT

Ignoring spectral warping for a moment, cepstral coefficients ck are defined as follows:

ck =
1

2π

π∫

−π

dω lg |X(ejω)| · ejωk (6.26)
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Figure 6.9: Comparison of the traditional MFCC signal analysis with the integrated
frequency axis warping approach.

Depending on whether or not a filter bank is used, |X(·)| denotes either the filter bank
coefficients or the magnitude spectrum.

The sequential application of a monotone invertible frequency axis warping function
g : [−π, π] → [−π, π] and the discrete cosine transform can be expressed as follows:

ω → ω̃ = g(ω)

ck =
1

2π

π∫

−π

dω̃ lg |X(ejg−1(ω̃))| · ejω̃k (6.27)

To incorporate frequency axis warping into the cosine transform, we change the inte-
gration variable and apply the derivative of the warping function dω̃/dω (Eqn. 6.28).
The continuous integral is then approximated in the standard way by a discrete sum
(Eqn. 6.29):

ck =
1

2π

π∫

−π

dω lg |X(ejω)| · ejg(ω)k · g′(ω) (6.28)

∼= 1

N

N/2−1∑
n=0

{
lg |X(e2πj n

N )| · cos[g(2πn/N) · k] · g′(2πn/N)
}

(6.29)
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Eqn. 6.29 describes how frequency axis warping can be integrated in general into the
cosine transform. It leads to a compact implementation of the vector of warped cepstrum
coefficients c with only a few lines of code. The transformation reduces to a matrix
multiplication (Eqn. 6.30) of a transformation matrix U (Eqn. 6.31) and the log-magnitude
spectrum m. Since U depends only on the fixed frequency axis warping function g(ω) and
its derivative, it can be computed beforehand:

c ∼= U ·m c, m ∈ RN/2 U ∈ RN/2×N/2 (6.30)

c =
(
c0, c1, . . . , cN/2−1

)

m =
(
lg |X(e2πj 0

N )|, lg |X(e2πj 1
N )|, . . . , lg |X(e2πj

N/2−1
N )|

)

Ui,j = cos{g(2πi/N) · j} · g′(2πi/N) i, j = 0, . . . , N/2− 1 (6.31)

Specific equations for Mel-frequency warping and VTN warping as well as recognition test
results will be given in the following two sections.

6.7.3 Integration of Mel-Frequency Warping

Mel-frequency warping µ(ω) is usually carried out according to Eqn. 6.32 (adapted from
[Young 93]) with fs denoting the sampling frequency:

ω → ω̃ = µ(ω)

= 2595 · lg
(

1 +
ωfs

2π · 700Hz

)
(6.32)

For integration into the cosine transform, the Mel-warping function needs to be normalized
(Eqn. 6.33) to meet the criterion µ̃(π) = π. In addition, the derivative µ̃′(ω) is required
(Eqn. 6.34):

µ̃(ω) = π · µ(ω)

µ(π)

= d · lg
(

1 +
ωfs

2π · 700Hz

)
(6.33)

d =
π

lg
(
1 +

fs

2 · 700Hz

)

µ̃′(ω) =
d · fs

(2π · 700Hz + ω · fs) · ln(10)
(6.34)

Replacing g(ω) and g′(ω) in Eqn. 6.29 by µ̃(ω) and µ̃′(ω) yields the desired transformation
matrix for Mel-frequency cepstral coefficients.
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Figure 6.10: Comparison of cepstrum coefficients 1 (left) and 15 (right) for a test sentence
from the VerbMobil II corpus. Depicted are the traditional filter bank approach and the
cosine transform with integrated Mel-frequency warping.

Figure 6.10 shows the effect of the modified signal analysis on two cepstrum coefficients
for a test sentence from the VerbMobil II corpus. Whereas the lower order coefficients
are almost identical, the differences increase for higher coefficient. Main reason is the
missing filter bank, which reduces the spectral resolution before the cosine transform.

Recognition test results for integrated Mel-scaling on the VerbMobil II corpus are
summarized in Table 6.11. The integrated approach is not only coequal to the baseline
approach with filter bank, but even yields marginally better results on this corpus.

6.7.4 Integration of VTN Frequency Warping

Vocal tract length normalization is like Mel-frequency warping a technique that relies
on frequency axis warping of the magnitude spectrum. One possible implementation of
VTN is to modify the location of filters in the filter bank (cf. Figure 6.8) just as for Mel-
frequency scaling [Lee & Rose 96]. Another method that is applied in the RWTH speech
recognition system is to compute a warped spectrum by interpolation from the original
discrete-frequency magnitude spectrum [Wegmann & McAllaster+ 96][Welling 99].

Table 6.11: Recognition test results on the full VerbMobil II DEV99AB corpus for different
Mel-frequency warping methods. Results are given for the baseline filter bank approach,
and for the cosine transform with integrated Mel-frequency warping.

Mel-frequency Overall [%]
Warping Del - Ins WER

baseline 4.9 - 4.8 25.7
integrated 5.0 - 4.4 25.3
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From the equations presented in Section 6.7.2 it is clear that VTN frequency axis warping
can also be fully integrated into the cepstrum transformation.

The frequency axis warping function να : [0, π] → [0, π] for vocal tract length normaliza-
tion needs to be monotone and invertible. As discussed in Section 6.4.2, this holds for all
typical VTN warping functions in order to prevent loss of information.

To avoid complicated case distinctions for different warping factors and frequencies, we
re-write the symmetric piece-wise linear warping function (cf. Eqn. 6.21) in the following
convenient form:

ω → ω̃ = να(ω)

= βωω + κω (6.35)

The parameters βω and κω depend formally on ω, but in practice they can take on two
values only (with the limiting frequency ω0 as defined in Eqn. 6.23):

βω =

{
α ω ≤ ω0
π − α · ω0

π − ω0
ω > ω0

(6.36)

κω =

{
0 ω ≤ ω0

(α− 1) · π · ω0
π − ω0

ω > ω0
(6.37)

Mel-warping is applied after the magnitude spectrum is warped by vocal tract length nor-
malization. Hence, the combination χ(ω) of VTN and Mel-frequency warping (Eqn. 6.38)
and its derivative (Eqn. 6.39) become:

χ(ω) = µ̃(να(ω))

= d · lg
(

1 +
{βωω + κω} · fs

2π · 700Hz

)
(6.38)

χ′(ω) =
d · βω · fs

(2π · 700Hz + {βωω + κω} · fs) · ln(10)
(6.39)

Cepstrum coefficients with integrated VTN and Mel-frequency warping are obtained
by replacing g(ω) and g′(ω) in Eqn. 6.29 by χ(ω) and χ′(ω). In this case, and own
transformation matrix U (cf. Eqn. 6.31) has to be calculated for each warping factor. As
the number of considered warping factor is typically limited (e.g. to 21 discrete values
in the range 0.80 ≤ α ≤ 1.20), the transformation matrices can still be computed be-
forehand. During normalization, the correct matrix for frequency axis warping is selected.

The integration of spectral warping into the cosine transform lead to an interesting
observation. When the filter bank was omitted and the integrated approach was used to
estimate the warping factors of the training speakers, their distribution became smoother
than before. Figure 6.11 shows the corresponding histograms of warping factors for
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Figure 6.11: Warping factor distribution of the VerbMobil II training speakers. The
left histogram was obtained in the traditional way with filter bank and frequency axis
warping by linear interpolation of the discrete-frequency spectra, the right histogram
with integrated VTN and Mel-frequency warping.

male and female speaker in the VerbMobil II training corpus. The difference is even
more prominent if the histograms are compared with the old distributions reported by
Welling [Welling & Kanthak+ 99]. A closer inspection revealed that linear interpolation
of spectral lines during VTN frequency axis warping was one of the reasons for the
uneven distribution observed before. A similar smooth warping factor histogram could
be obtained by the traditional approach when the spectral lines were interpolated
in the logarithmic domain. Another reason was the initial beam size used for the
forced alignment in warping factor estimation (cf. Eqn. 6.2), which was too small. It
turned out, however, that the word error rate was unaffected by the improved distribution.

Recognition test results for the full VerbMobil II DEV99AB corpus are summarized in
Table 6.12. Both with fast and two-pass vocal tract length normalization, the integrated
approach performs similar to the baseline approach. The results reported here were ob-
tained without decision tree and LDA transformation matrix re-estimation on normalized
data, which is why the baseline recognition results differs from those reported earlier.

Table 6.12: Recognition test results on the full VerbMobil II DEV99AB corpus for the
traditional and the integrated VTN and Mel-frequency warping approach.

Spectral VTN Overall [%]
Warping Del - Ins WER

baseline fast 4.5 - 4.5 23.8
integrated 5.0 - 4.1 24.0
baseline two-pass 4.4 - 4.3 23.8
integrated 4.9 - 4.1 24.0
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6.7.5 Improved Spectral Smoothing

One advantage of integrated frequency axis warping is a better control over the amount
of spectral smoothing. The standard triangular filter bank reduces the spectral resolution
from the original 512 spectral lines in the RWTH signal analysis to typically 15/20
filter bank channels (telephone/microphone data). The cosine transform yields at most
the same number of Mel-frequency cepstral coefficients. Using all coefficients makes no
sense, however, because it would reduce the cepstrum transformation to a plain linear
transformation. After linear discriminant analysis, the resulting acoustic vector would be
identical with or without the cosine transform. In practice, only the first 12/16 cepstral
coefficients (telephone/microphone data) are typically calculated and used, which has an
additional spectral smoothing effect.

When the filter bank is omitted and spectral warping as well as the cosine transform
are applied to the log-magnitude spectrum, the spectral resolution is not yet reduced.
The number of cepstrum coefficients computed and used for further processing is the
only factor that controls the amount of spectral smoothing. It is possible to derive a
larger number of cepstral coefficients and preserve more spectral information, for example.

Figure 6.12 illustrates these effects. The left side shows the traditional approach and
the right side the integrated frequency axis warping approach without filter bank. The
magnitude spectrum of a vowel was taken from an utterance of the VerbMobil II corpus
and warped according to the Mel-frequency (solid line). In the standard approach, it was
first processed by a 20 channel filter bank. The filter bank coefficients are symbolized
by the horizontal lines (left). They preserve some of the early spectral peaks, but most
of the pitch signature is removed. Next, the cosine transform was calculated to derive
16 Mel-frequency cepstral coefficients. The inverse cosine transform was applied to these
coefficients for demonstration purposes yielding the smoothed spectrum (dashed line).
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Figure 6.12: Comparison of spectral smoothing by the traditional signal analysis with
filter bank (left) and by the integrated frequency axis warping approach (right). The
amplitude is shown in a logarithmic scale. Details are given in the text.
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The fine structure of the original Mel-warped spectrum is completely removed, what
remains is the energy distribution in different spectral bands.

In the integrated approach on the right side, 16 Mel-frequency cepstral coefficients were
derived directly from the logarithm of the unwarped magnitude spectrum. The inverse
cosine transform was applied again to visualize the smoothed spectrum, which looks
similar to the smoothed filter bank spectrum. By increasing the number of cepstral
coefficients, more spectral information is preserved. Doubling the number of cepstrum
coefficients maintains the first peaks of the pitch, whereas fine structures at higher
frequencies are still smoothed out.

In the RWTH signal analysis, the cepstrum vector is further processed by mean (and
possibly variance) normalization (cf. Figure 1.2). It is augmented by time derivatives,
and a number of successive cepstrum vectors are transformed by linear discriminant
analysis, which reduces the size of the acoustic vector. Hence, by increasing the number
of cepstral coefficients it is left to the LDA transformation to find those coefficients and
linear combinations of them that discriminate best between the different LDA classes.
This makes integrated frequency axis warping more similar to the approach of Yu and
Waibel, who apply only one unified linear transformation to derive the reduced acoustic
vector from the log-magnitude spectrum [Yu & Waibel 00].

Table 6.13 summarizes recognition test results on the full VerbMobil II DEV99AB corpus
with a variable degree of spectral smoothing. The number of cepstrum coefficients taken
from the integrated approach was increased starting at 16, which is identical to the
number of cepstral coefficients in the traditional signal analysis. The raw cepstrum vector
was augmented with the full first derivatives, and the second derivative of the energy.
Three consecutive augmented cepstrum vectors were fed into the LDA transformation.
In order to avoid side effects, the dimensionality of the acoustic vector after the LDA
transformation was kept fixed at the original value of 33. The optimal number of
cepstrum coefficients was found to be 64, which gave a clear reduction in word error rate
over the baseline system.

It can be concluded that cepstral coefficients above 16 still contain information that
is relevant for the speech recognition process. Even if much of the original spectral
fine structure including the pitch is preserved when as many as 64 cepstral coefficients
are calculated, linear discriminant analysis is able to extract the important pieces of
information. It is to expect that at a certain point LDA parameter estimation becomes
a serious problem, though. In the above setup with 64 cepstral coefficients, the full LDA
transformation matrix was of dimension {(64 + 64 + 1) ∗ 3}2, i.e. 387× 387. The number
of matrix elements to be estimated from data increased by a factor of 15 compared to
the baseline case with 16 cepstral coefficients.

Note that the baseline result could not be improved by simply doubling the number of
filter bank channels and cepstral coefficients (second line in Table 6.13). The reason are
probably increasing quantization errors especially of the lower filters when the bandwidth
of each filter is halved.
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Table 6.13: Recognition test results on the full VerbMobil II DEV99AB corpus for inte-
grated spectral warping with an increasing numbers of cepstral coefficients, and with an
enlarged acoustic vector. Results for the traditional approach are gives as the baseline.

Spectral # MFCC Dimensionality of Overall [%]
Warping the Acoustic Vector Del - Ins WER

baseline 16 33 4.9 - 4.8 25.7
32 5.2 - 4.5 25.9

integrated 16 5.0 - 4.4 25.3
32 5.0 - 4.6 25.4
48 5.2 - 4.5 25.1
64 5.2 - 4.2 24.9
80 5.1 - 4.4 25.2

baseline 16 48 5.0 - 4.4 25.2
integrated 64 4.6 - 4.8 24.3

In another experiment the size of the LDA-transformed vector was increased by 50%, as
more spectral information might require a larger acoustic vector for optimum performance.
The word error rate indeed further decreased by half a percent (Table 6.13). However, the
same performance gain was obtained when the size of the acoustic vector of the baseline
system was increased by the same amount. In both cases, the computation time for
training and test increased significantly.

6.7.6 Results for Different Corpora

Integrated spectral warping was tested on two different large-vocabulary speech recog-
nition corpora with and without vocal tract length normalization. The results for
VerbMobil II were presented in Tables 6.11, 6.12 and 6.13. If the number of cepstrum
coefficients is left unchanged, the recognition performance is similar to the traditional
signal analysis approach. Omitting the filter bank and integrating Mel-frequency warping
into the cepstrum transformation simplifies the signal analysis (no filter bank parameters
need to be optimized), avoids possible interpolation and quantization problems, and leads
to a more compact implementation of the MFCC front-end. Concepts like vocal tract
length normalization that rely on warping the frequency axis can be easily integrated as
well. When the number of cepstrum coefficients was increased, a 4% relative reduction
of the word error rate could be achieved.

Results for the North American Business News corpus are summarized in Table 6.14.
Note that the VTN results reported here were obtained without decision tree and LDA
transformation matrix re-estimation, which is why the baseline results differ from those
reported earlier. The presented approach yields again the same word error rate as the
traditional signal analysis. However, increasing the number of cepstrum coefficients did
not further improve the recognition accuracy in this case. As the NAB corpus consists of
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Table 6.14: Recognition test results on the NAB 20k corpus for the traditional and the
integrated VTN and Mel-frequency warping approach.

Spectral # MFCC VTN Overall [%]
Warping Del - Ins WER

baseline 16 - 1.5 - 2.3 12.5
integrated 16 1.5 - 2.3 12.4
integrated 64 1.6 - 2.2 12.5
baseline 16 fast 1.4 - 2.3 11.9
integrated 1.5 - 2.2 11.8
baseline 16 two-pass 1.4 - 2.4 11.8
integrated 1.4 - 2.2 11.7

read speech, it lacks spontaneous speech phenomena that make the recognition task more
difficult. It might be concluded that fewer spectral information is sufficient to characterize
clean read speech.

6.8 Summary

Vocal tract length normalization is a model based technique that aims at reducing
inter-speaker variations of mean formant frequencies by warping the frequency axis
during signal analysis.

The baseline procedure of warping factor estimation in training and test was introduced,
and a number of optimizations and improvements were implemented and tested. Piece-
wise linear frequency axis warping turned out to be superior to non-linear warping.
Weighting of acoustic vectors during warping factor estimation, and re-estimation of the
phonetic decision tree and the LDA transformation matrix proved to be helpful, whereas
iterative warping factor estimation in training yielded only a negligible gain at best.

The optimized vocal tract length normalization scheme in training and test yielded
consistently large improvements of 8% to 9% relative by two-pass recognition on all
corpora under investigation. In addition it was shown that the full gain in recognition
accuracy can be obtained without an increase in computation time. This was achieved by
text-independent warping factor estimation based on a Gaussian mixture models trained
on unnormalized data. The requirements of online recognition were met by incremental
warping factor estimation.

A novel integrated frequency axis warping approach was developed that merges a number
of successive signal analysis steps into a single one. The filter bank can be omitted, the log-
arithm is applied directly to the spectral lines, and all frequency axis warping schemes are
integrated into the cepstrum transformation. The approach avoids possible quantization
and interpolation problems of other techniques and yields a compact implementation of
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Mel-frequency cepstral coefficients by a simple matrix multiplication of the log-magnitude
spectrum. It was shown that integrated frequency warping yielded the same recognition
performance as the traditional approach with filter bank. In addition, it allows for a
better control over the amount of spectral smoothing. Increasing the number of cepstral
coefficients without enlarging the acoustic vector improved the recognition performance
on the VerbMobil II corpus.



Chapter 7

Histogram Normalization and
Rotation

7.1 Histogram Normalization

In this chapter, a data distribution based normalization technique (cf. Section 2.4) will be
studied. The idea of histogram normalization will be introduced, the basic normalization
scheme will be evaluated, and a number of extensions will be proposed that increase the
overall gain in recognition performance.

7.1.1 Principle

Histogram normalization (or histogram equalization) is a widely used technique in
image processing, object recognition and computer vision (e.g. [Ballard & Brown 82],
pp. 70–71), but there have been only few applications in speech recognition so far.

The principal idea is as follows: Suppose the training and test data are distributed as
depicted in the two-dimensional example feature space in Figure 7.1. There is a mismatch
between both data sets that may have different reasons as discussed in Section 2.1. The
mismatch will be especially prominent if there are major differences in the recording envi-
ronments. Histogram normalization transforms the test to the training data distribution
by mapping the depicted marginal distributions [Dharanipragada & Padmanabhan 00].
In the generalized approach presented here, both training and test data are mapped to
some pre-defined reference distribution.

Histogram normalization relies on two basic assumptions:

1. The global statistics of the speech signal are independent of what is actually spoken,
i.e. the phoneme frequencies in training and test are similar.

2. The feature space dimensions are oriented such that the variations that are tackled
by histogram normalization are uncorrelated in each dimension.

Under these conditions, each feature space dimension can be mapped independently of
the others - a significant simplification.

85
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Figure 7.1: Schematic distribution of training and test data in a two-dimensional example
feature space. The marginal distributions are plotted along both axes.

The basic normalization algorithm is as follows: First, the reference histogram to which
all data is mapped has to be defined. Usually the overall distribution of the training data
is used for reference. This choice is somewhat arbitrary, as various other distributions
could be used as well. It can be argued, however, that the inherent distribution of the
training data is a good choice to start with.
For each feature space dimension (note that for notational simplicity the dimension index
is omitted in all equations):

1. Compute a normalized histogram p̃(x) on the full training corpus.

2. Compute the cumulative training data histogram P̃ (x) which becomes the reference
histogram:

P̃ (x) =

x∫

−∞

dx′p̃(x′) (7.1)

In the normalization step, the parameter set αr (Eqn. 2.9) of the transformation function
fα(x) (Eqn. 2.11) has to be determined for each condition (cf. Section 2.3). In the case
of histogram normalization, the condition-dependent distributions pr(x) and Pr(x) are
calculated. For each condition r = 1, . . . , R and each feature space dimension:

3. Compute a normalized histogram pr(x) from all data Xr.

4. Compute the cumulative condition-dependent histogram Pr(x):

Pr(x) =

x∫

−∞

dx′pr(x
′) (7.2)
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Finally, the transformation is applied to all data Xr from condition r:

5. Replace each value x by x̃ that corresponds to the same point in the cumulative
reference histogram (Figure 7.2):

x → x̃ = fα(x)

Pr(x)
!
= P̃ (x̃)

x̃ = P̃−1(Pr(x)) (7.3)

Since the normalization depends on the acoustic data only, it amounts to an additional
signal analysis step that is independent of training and test. From the transformed train-
ing data a normalized acoustic model θ̃ is derived (cf. Eqn. 2.10), and the transformed
test data are used for recognition.
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Figure 7.2: Principle of histogram normalization: Data Xr from condition r are trans-
formed such that the cumulative condition-dependent histogram Pr(x) matches the cu-
mulative reference histogram P̃ (x̃).
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Histogram normalization has a number of convenient properties:

• it is text-independent and relies only on global statistics of the speech data

• it is a non-parametric, discrete approximation of a complex non-linear transforma-
tion function and makes no assumption about the functional form of the transfor-
mation

• once the histograms are calculated, histogram normalization can be implemented
by a simple table-lookup, so it is also computationally attractive

Histogram normalization can account for scaling, shifting, or any type of non-linear distor-
tion of each feature space dimension but, due to the assumption of uncorrelated features,
not for possible feature space rotations. In the case depicted in Figure 7.1, basic histogram
normalization will reduce the mismatch significantly but not remove it completely, because
the feature space is rotated by a small amount.

7.1.2 Definition of the Acoustic Conditions

An important aspect of histogram normalization is the definition of the acoustic conditions
r, for which a particular histogram Pr(x) is estimated. The definition is task-dependent
and has to meet the following requirements:

• there has to be enough data for each condition (typically one or more minutes) to
estimate the histogram reliably

• each condition should contain data for only a single speaker in order to allow for
the normalization of possible speaker-dependent variations in the speech signal

• the channel conditions should be constant to allow for the normalization of possible
channel-dependent distortions

Estimating one histogram on the full test corpus meets the first requirement but violates
the other two, whereas sentence-wise normalization would meet only the latter two
requirements but not the first. Hence, in the following analyses, histogram normalization
is applied either turn-wise, i.e. a condition contains all utterances from one speaker in
one conversation (VerbMobil II), or speaker-wise, if all data from a speaker were collected
under identical channel conditions (EuTrans II, CarNavigation). The average amount of
data available for estimating the condition-dependent histograms is listed under “average
condition duration” in the corpus descriptions (Chapter 5).

The first requirement prevents the use of histogram normalization in on-line recog-
nition tasks or on small data samples. There are two solutions if only a few
seconds worth of adaptation data are available: Either a coarse histogram with
fewer bins and appropriate interpolation in-between is estimated, or a paramet-
ric transformation function is applied whose parameters are estimated from his-
togram statistics. These approaches have been investigated in detail by Padmanab-
han and Dharanipragada [Padmanabhan & Dharanipragada 01] and by Hilger et al.
[Hilger & Ney 01][Hilger & Molau+ 02] and are not pursued further in this work.
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7.1.3 Histogram Normalization in Test only

In previous work, histogram normalization has been applied in test only. This is a special
case of the generalized approach presented here. The overall distribution of the training
data is used for reference as well, but only the test data are mapped to the reference
histogram. The data from the individual training conditions and therefore also the
acoustic model remain unnormalized.

In Section 2.2 a theoretic explanation was given why normalization of the test data alone
results often in moderate gain of recognition performance only, whereas full performance
is achieved when both test and training data are normalized. Corresponding recognition
test results are summarized in Table 7.1. Results are presented for the normalization
at different signal analysis stages (discussed in more detail in the following section). As
expected, the best results on the VerbMobil II corpus are obtained when both training
and test data are normalized.

7.1.4 Normalization Stages

Dharanipragada and Padmanabhan proposed a normalization of cepstral features
[Dharanipragada & Padmanabhan 00]. There are, however, a number of stages in the
signal analysis front-end where histogram normalization may be applied (cf. Figure 2.4):

• In the course of signal analysis, the speech waveform is transformed into a sequence
of spectra by means of a Fourier transform. Each individual spectral line could be
regarded as an independent distribution that needs to be normalized. For computa-
tional reasons it is more practical to apply histogram normalization after the filter
bank, which leaves typically 15 or 20 (telephone or microphone data) distributions
for the normalization. As the logarithm is a monotone function, it makes no differ-
ence whether histogram normalization is applied before or after the logarithm. In
practice, spectral log compression before normalization helps to keep quantization
errors small.

Table 7.1: Recognition test results on the VerbMobil II DEV99B corpus for basic his-
togram normalization with and without training data normalization.

Histogram Normalization Overall [%]
Stage Training Data Norm. Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
log filter bank no 5.0 - 4.0 23.8

yes 4.9 - 4.4 23.0
cepstrum no 4.5 - 4.3 24.0

yes 5.0 - 4.7 24.3
after LDA no 4.6 - 4.3 24.2

yes 4.9 - 4.4 24.1
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Histogram normalization of the log filter bank coefficients may help to reduce spec-
tral distortions that are limited to certain frequency bands. It also normalizes the
energy distribution in each frequency band.

• The mean of cepstral coefficients is typically subtracted in order to remove time-
invariant channel transfer functions. In some tasks it also helps to scale cepstral
coefficients to unity variance. Histogram normalization at the cepstrum stage, how-
ever, has a larger degree of freedom. It may not only shift and scale the distribution
of each cepstral coefficient, but also distort it non-linearly.

• Linear discriminant analysis of cepstral coefficients and their time derivatives is a
standard feature of the RWTH large vocabulary speech recognition system (cf. Sec-
tion 1.2), since it consistently improves the recognition accuracy on all tasks
[Welling 99]. The LDA-transformed vector is the one that is finally presented to
the speech recognizer. Hence, applying histogram normalization after linear dis-
criminant analysis will normalize the distribution of acoustic test vectors to that
observed during training of the corresponding acoustic model.

In addition, it is possible to apply histogram normalization sequentially at different
stages in a multi-pass scheme: After the reference distributions are defined, the condition-
dependent histograms of the first normalization stage can be derived in a first signal
analysis pass. In the next pass, the acoustic vectors can be normalized at the first stage,
and the condition-dependent histograms for the second stage can be accumulated, etc.
In the end, the distributions of the acoustic vector components can be normalized at all
stages.

As it is a-priori unknown at which stage of signal analysis histogram normalization
performs best, or if there is a gain by sequential normalization at different stages, all
three stages and combinations were tested. The results for the VerbMobil II corpus are
summarized in Table 7.2.

Table 7.2: Recognition test results on the VerbMobil II DEV99B corpus for basic his-
togram normalization at different signal analysis stages.

Histogram Normalization Overall [%]
Log Filter Bank Cepstrum after LDA Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
yes no no 4.9 - 4.4 23.0
no yes no 5.0 - 4.7 24.3
no no yes 4.9 - 4.4 24.1
yes yes no 4.9 - 4.4 22.9
yes no yes 4.3 - 4.0 22.5
no yes yes 4.9 - 4.2 24.0
yes yes yes 4.9 - 4.3 22.7



7.1. HISTOGRAM NORMALIZATION 91

It turns out that histogram normalization performs well at the filter bank stage, and that
there are only marginal improvements when normalization is performed on cepstrum
or LDA-transformed vectors. A possible explanation is that most of the variations
compensated for by histogram normalization are uncorrelated in the spectral domain.
Note that not the individual filter bank channels are supposed to be uncorrelated, but
that the spectral distortions seem to be restricted to certain frequency bands.

The performance improvement of histogram normalization at different stages is to some
extent additive, but the computational effort increases significantly due to the multi-pass
signal analysis.

7.1.5 Histogram Smoothing

As an example, Figure 7.3 (left) shows the reference histogram for the third log filter
bank coefficient obtained on the VerbMobil II training corpus. It turns out that the
distributions of most filter bank channels, cepstral coefficients, and LDA-transformed
vector components have a similar bimodal shape.

The original distributions can be replaced by mixtures of two Gaussian densities as
reference histogram (Figure 7.3, right) which smoothes data scatter efficiently and results
in better modeling of outliers. The mixtures are fitted to the observed distributions with
a least squared error criterion which better matches the tails of the distribution than
maximum likelihood estimates.

Replacing the observed histograms by Gaussian mixtures as reference helps to improve
the recognition accuracy as shown in Table 7.3 for the VerbMobil II corpus. Even though
the lowest word error rate of 22.5% could not be reduced any further, this result is
now obtained by normalizing the filter bank coefficients alone. The normalization is
much faster and easier if cepstrum and LDA feature vector normalization can be omitted.

Figure 7.3: Reference histogram p̃(x) for the third log filter bank coefficient obtained on
the VerbMobil II training corpus. The bimodal distribution (left) can be well approxi-
mated by a Gaussian mixture with two densities (right).
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Table 7.3: Recognition test results on the VerbMobil II DEV99B corpus for basic his-
togram normalization with a smoothed reference histogram.

Histogram Normalization Overall [%]
Log Filter Bank Cepstrum LDA Del -Ins WER

baseline without normalization 4.9 - 4.4 24.6
yes no no 4.6 - 3.8 22.5
no yes no 5.2 - 4.3 23.9
no no yes 4.9 - 4.2 23.7
yes yes no 4.9 - 4.1 23.2
yes no yes 4.7 - 3.9 22.8
no yes yes 4.8 - 4.4 23.8
yes yes yes 4.8 - 3.8 22.5

Hence, further histogram normalization tests have been carried out at the log filter bank
stage only.

7.1.6 Silence Fraction Treatment

The first assumption of histogram normalization about the global statistics of the speech
signal (cf. Section 7.1.1) is often violated. Even if enough speech data is available to
ensure that the phoneme frequency is about the same for each condition, and even if
the acoustic realization of the phonemes is identical, the histograms may still vary due
to different silence fractions. This has a severe impact on conditions with a much lower
or higher than average silence fraction. In the first case, histogram normalization will
transform a number of acoustic speech vectors to silence and cause more deletions of
words. In the latter case, some silence vectors will be transformed to speech and cause
word insertions.

Figure 7.4 shows a histogram of the condition-wise silence fractions in the VerbMobil II
corpus. Non-speech events like hesitations or transcribed noise items are considered as
“speech” in this context. The average silence fraction is 17%, but the number varies
between 3% and 76% for individual conditions.

Two possible solutions to the problem rely on having separate reference histograms for
speech and silence. In the first solution, two streams of acoustic vectors are fed into
the speech recognizer. One of them is adapted to the speech, the other to the silence
histogram. During recognition it is known at each point in time, if the current state
hypothesis belongs to speech or not. The corresponding acoustic vector can be chosen
for likelihood calculations. A disadvantage of this approach is the discontinuity of the
acoustic vectors at each speech/silence boundary introduced by the different reference his-
tograms. The same problem occurs if a speech/silence detector is used prior to recognition.
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Figure 7.4: Histogram over the silence fractions γr of individual conditions r in the Verb-
Mobil II training corpus. The vertical line marks the average silence fraction of 17%.

A conceptually simpler solution pursued here is to determine the silence fraction of each
condition r beforehand and create condition-dependent reference histograms P̃r(x) from
the speech and silence histogram that are adapted to the observed silence fraction. In this
approach, the discontinuity is avoided and the speech recognizer needs no modifications.

To obtain the speech and silence histograms, a forced alignment with the reference
transcription is carried out on the training data. All acoustic vectors mapped to the
silence mixture are accumulated in the silence histogram p̃sil(x). All other vectors are
accumulated in the speech histogram p̃sp(x). It can be seen that the bimodal structure
of most histograms observed before (cf. Section 7.1.5) is in fact a manifestation of
speech and silence. (Figure 7.5). The first peak can be almost completely attributed to
silence frames, whereas the second peak is mainly caused by more energetic speech frames.

In the normalization step, the silence fraction γr of the actual training or test condition
r has to be determined first. For the training data, it is estimated as before by forced
alignment with the reference transcription. Since in test the correct transcription is
unknown, the silence fraction has to be calculated either in a preliminary recognition
pass (two-pass recognition) or with a dedicated speech/silence detector (e.g. as described
in [Macherey & Ney 02]).

For each condition r = 1, . . . , R, an adapted reference histogram P̃r(x) is computed by
linear interpolation between the speech and silence histograms. Note that the same result
is obtained whether the normalized histograms p̃sil and p̃sp are interpolated before the
cumulative histogram is computed, or whether the cumulative histograms P̃sil and P̃sp are
interpolated (Eqn. 7.4). The latter approach is computationally more efficient, though:
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Figure 7.5: Histogram over the third log filter bank coefficient on the VerbMobil II train-
ing corpus. The left side shows the original reference histogram, on the right side the
histogram is split into speech and silence. The speech and silence histograms are not yet
normalized.

P̃r(x) =

x∫

−∞

dx′p̃r(x
′) = γr · P̃sil(x) + (1− γr) · P̃sp(x) (7.4)

p̃r(x) = γr · p̃sil(x) + (1− γr) · p̃sp(x) (7.5)

P̃sil(x) =

x∫

−∞

dx′p̃sil(x
′) P̃sp(x) =

x∫

−∞

dx′p̃sp(x
′) (7.6)

The adapted reference histograms P̃r(x) are used for normalization of training and
test data as in the basic histogram normalization approach (cf. Section 7.1.1). As an
example, Figure 7.6 shows the reference histogram of the third log filter bank coefficient
for three different silence fractions. The left histogram adapted to a silence fraction

Silence Fraction: 10% Silence Fraction: 30% Silence Fraction: 50%

Figure 7.6: Reference histogram p̃r(x) for the third log filter bank coefficient on the
VerbMobil II training corpus adapted to three different silence fractions γr.
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Figure 7.7: Cumulative reference histogram P̃r(x) for the third log filter bank coefficient
on the VerbMobil II training corpus adapted to three different silence fractions γr.

of 10% is most similar to the original histogram for speech and silence (Figure 7.3
and Figure 7.5, left), because this value is closest to the average silence fraction of
the training corpus. The larger the silence fraction, the more prominent becomes
the first “silence” peak, whereas the second “speech” peak loses significance. The cor-
responding cumulative histograms for different silence fractions are depicted in Figure 7.7.

Recognition test results for histogram normalization of log filter bank coefficients are
summarized in Table 7.4. They show that the treatment of the silence fraction helps
to further improve the recognition performance. In fact, on the EuTrans II corpus,
histogram normalization only improved the recognition accuracy in connection with
silence fraction treatment (see Section 7.4).

In this and all further tests, histogram smoothing was not applied anymore. Informal test
have shown that a smoothed reference histogram gave no further gain in recognition per-
formance. A possible explanation is that the individual histograms of speech and silence
deviate significantly from Gaussian distributions, which is why smoothing by Gaus-
sian mixtures may introduce larger deviations from the original training data distribution.

Table 7.4: Recognition test results on the VerbMobil II DEV99B corpus for histogram
normalization of log filter bank vectors with and without silence fraction treatment.

Histogram Normalization Overall [%]
Silence Fraction Treatment Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
no 4.6 - 3.8 23.0
yes 4.2 - 3.9 21.8
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7.1.7 Histogram, Mean, and Variance Normalization

So far, histogram normalization has been regarded as a supplementary normalization step.
The baseline signal analysis scheme was left unchanged and histogram normalization has
been implemented as an additional module between log compression of the filter bank
coefficients and the cepstrum transformation. Since mean and variance normalization
are carried out at the cepstrum stage, they were implicitly applied after histogram
normalization.

Since the cepstrum transformation is linear, mean normalization can also be carried out
before the discrete cosine transform, i.e. at the same stage as histogram normalization.
There is in fact a close link between these techniques: Mean normalization matches the
means of the training and test data distributions, variance normalization transforms
both distributions to have unity variance, and histogram normalization matches the
overall shape of the training and test data distributions. Furthermore, the feature space
dimension are treated independently of each other in all cases.

The question arises whether mean and variance normalization should be carried out
before histogram normalization at the log filter bank stage, or after histogram normal-
ization at the cepstrum stage. Corresponding recognition test results for the baseline
system and for histogram normalization with silence fraction treatment are summarized
in Table 7.5.

As expected, mean normalization alone yields identical word error rates independently at
which stages it is applied (24.5% vs. 24.6%). This is also true for additional histogram
normalization (23.6% vs. 23.5%).

Variance normalization at the log filter bank stage performs worse than at the cepstrum
stage. Log filter bank variance normalization degrades the recognition performance
significantly both with and without subsequent histogram normalization. The baseline

Table 7.5: Recognition test results on the VerbMobil II DEV99B corpus for mean and
variance normalization of log filter bank and cepstrum coefficients in the baseline system,
and in connection with histogram normalization.

Normalization Steps in the Overall [%]
Order of their Application Del - Ins WER

log filter bank mean 4.6 - 5.0 24.5
log filter bank mean & variance 5.1 - 4.1 25.2
cepstral mean 4.4 - 4.9 24.6
cepstral mean & variance (baseline) 4.9 - 4.4 24.6
log filter bank mean, histogram 4.6 - 4.1 23.6
log filter bank mean & variance, histogram 5.0 - 5.2 26.0
histogram, cepstral mean 4.8 - 4.0 23.5
histogram, cepstral mean & variance 4.2 - 3.9 21.8



7.2. FEATURE SPACE ROTATION 97

setup with cepstral variance and no histogram normalization yields the same word error
rate of 24.6% as a system without variance normalization (contrary to earlier develop-
ment tests when the baseline system was optimized). However, the performance clearly
improves if cepstral variance normalization is applied after histogram normalization.

In summary, best results were achieved when mean and variance normalization were ap-
plied after histogram normalization at the cepstrum stage. This result was confirmed
on other corpora. Dharanipragada and Padmanabhan performed cepstral mean after his-
togram normalization as well [Dharanipragada & Padmanabhan 00]. Note that histogram
normalization transforms the data condition-wise, whereas mean and variance normaliza-
tion are applied sentence-wise or in a sliding window depending on the speech corpus
(cf. Chapter 5).

7.2 Feature Space Rotation

7.2.1 Motivation

The second basic assumption of histogram normalization is that the feature space
dimensions are uncorrelated with respect to the variations accounted for. Previous
experiments have suggested that this requirement is best met at the filter bank, since
histogram normalization performs best at this signal analysis stage (cf. Section 7.1.4).
Still the feature space might not only be distorted and translated, but also rotated by
a small amount (e.g. Figure 7.1), which would not be treated properly by histogram
normalization. In the following, a transformation will be proposed that is able to handle
this type of mismatch between training and test data.

Just as in histogram normalization, training and test data of different conditions shall be
transformed to some reference condition in order to reduce undesired variations in the
speech signal. However, instead of mapping the axes of the feature space independently
of each other, a linear transformation shall be applied to the complete acoustic vector.
The aim is to reduce the differences between the condition-dependent covariance matrices
in training and test.

To account for the type of mismatch depicted in Figure 7.1, the transformation will
be restricted to be a rotation, which changes the orientation of the feature space axes
but preserves Euclidean distances. The rotation will be further restricted to consist of
elementary rotations that only map principal feature space axes.

First, a pathological case of an approximately “circular” feature space shall be considered
where the reference and the condition-dependent covariance matrices are nearly diagonal
with identical values. In this case, the eigenvectors will be oriented arbitrarily and the
eigenvalues are all similar, which would result in undesired arbitrary rotations for different
conditions. If, on the other hand, the feature space is elongated, i.e. if the scatter is non-
uniform in different directions, at least some eigenvectors are well-defined. For this reason,
the eigenvectors will be sorted in descending order of their eigenvalues, and a number of
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elementary rotations will be applied. Only the first condition-dependent eigenvectors with
dominantly larger eigenvalues will be mapped to their corresponding reference eigenvec-
tors. Note that if all eigenvectors are considered at the same time, the transformation is
identical to a principal component analysis (PCA), computed independently for training
and test conditions.

7.2.2 Principle

Just as in histogram normalization, the reference condition has to be defined first. Here,
the covariance matrix Σ̃ obtained from the full training corpus is used as reference. The
corresponding D orthonormal reference eigenvectors ṽ1, . . . , ṽD and eigenvalues λ̃1, . . . , λ̃D

are defined by:

Σ̃ṽd = λ̃dṽd ṽd ∈ RD, ||ṽd||2 = 1, d = 1, . . . , D (7.7)

λ̃1 ≥ λ̃2 ≥ . . . ≥ λ̃D ≥ 0 (7.8)

The eigenvectors are sorted in descending order of their corresponding eigenvalues
(Eqn. 7.8).

During normalization, the covariance matrix Σr of each training and test condition
r = 1, . . . , R is computed from data Xr. Note that for improved readability the condition
index r is omitted in all following equations.

The condition-dependent orthonormal eigenvectors and eigenvalues are calculated and
sorted in the same way as the reference:

Σvd = λdvd vd ∈ RD, ||vd||2 = 1, d = 1, . . . , D (7.9)

λ1 ≥ λ2 ≥ . . . ≥ λD ≥ 0 (7.10)

Note that the eigenvectors are unique except for a scale factor of ±1. If the sign of each
component of an eigenvector is inverted, the same eigenvector basis is obtained with one
axis pointing into the opposite direction. Here the condition-dependent eigenvectors vd

are chosen such that the angles to the corresponding reference eigenvectors ṽd are less
than or equal to 90 degrees, i.e. such that the dot product of all eigenvector pairs is
positive:

ṽd · vd ≥ 0 d = 1, . . . , D (7.11)

A transformation matrix UD that rotates all D condition-dependent eigenvectors to their
corresponding reference eigenvectors is obtained by the product of the two eigenvector
matrices Ṽ and V (Eqn. 7.12). The first matrix is made of the reference eigenvectors
ṽ1, . . . , ṽD, and the second is made of the condition-dependent eigenvectors v1, . . . , vD:

UD = Ṽ · V T UD, Ṽ , V ∈ RD×D (7.12)

Ṽ =
(
ṽ1, . . . , ṽD

)

V =
(
v1, . . . , vD

)
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The matrix UD is of little use, however, because it is to expect that only the direction of
the first few eigenvectors is well-defined as described in the previous section. A transfor-
mation matrix that maps the first eigenvectors only will be constructed stepwise. First,
the rotation matrix Û1 to map the first condition-dependent eigenvector v1 to the first
reference eigenvector ṽ1 is derived. The rotation angle η1 between the two eigenvectors is
computed from their dot product, as they are of unit length:

η1 = arccos(ṽ1 · v1) (7.13)

Since the two eigenvectors are not orthogonal, the Gram-Schmidt algorithm is applied to
v1 in order to obtain an orthonormal basis vector v̂1 lying in the same plane of rotation:

v̂1 =
v1 − (ṽ1 · v1) · ṽ1

||v1 − (ṽ1 · v1) · ṽ1||2 (7.14)

Next, the acoustic vector is projected onto the plane spanned by ṽ1 and v̂1 with the
projection matrix JT

1 :

JT
1 =

(
v̂1, ṽ1

)T
JT

1 ∈ RD×2 (7.15)

It is rotated within the plane with the rotation matrix R1 (Eqn. 7.16) by the angle η1,
and projected back into the original RD×Dspace with the transposed projection matrix
J1 ∈ R2×D:

R1 =

(
cos η1 sin η1

− sin η1 cos η1

)
R1 ∈ R2×2 (7.16)

Finally, a correction term I − J1J
T
1 with the identity matrix I has to be applied that

restores the dimensions orthogonal to the plane of rotation lost in the first projection.
It ensures that all these dimensions remain unchanged. The full rotation matrix Û1 is
derived by:

Û1 = J1R1J
T
1 + I − J1J

T
1 (7.17)

Since eigenvectors are orthogonal, it is possible to repeat the procedure sequentially for
further eigenvector pairs. Each new transformation will have no impact on previous
feature space rotations.

To compute the rotation matrix for the second pair of eigenvectors, the condition-
dependent eigenvector v2 is rotated by Û1, and the corresponding orthonormal basis vector
v̂2 is computed (Eqn. 7.18). Next the rotation angle η2 (Eqn. 7.19) and the second rotation
matrix Û2 are derived (Eqn. 7.20). It rotates the feature space in the plane spanned by
the second condition-dependent and the second reference eigenvector after the application
of Û1:
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v̂2 =
Û1v2 − (ṽ2 · Û1v2) · ṽ2

||Û1v2 − (ṽ2 · Û1v2) · ṽ2||2
(7.18)

η2 = arccos(ṽ2 · Û1v2) (7.19)

Û2 = J2R2J
T
2 + I − J2J

T
2 (7.20)

J2 =
(
v̂2, ṽ2

)
(7.21)

R2 =

(
cos η2 sin η2

− sin η2 cos η2

)
(7.22)

The third and further eigenvectors can be mapped in the same way:

v̂d =
U(d−1)vd − (ṽd · U(d−1)vd) · ṽd

||U(d−1)vd − (ṽd · U(d−1)vd) · ṽd||2 (7.23)

ηd = arccos(ṽd · U(d−1)vd) (7.24)

Ûd = JdRdJ
T
d + I − JdJ

T
d (7.25)

Jd =
(
v̂d, ṽd

)
(7.26)

Rd =

(
cos ηd sin ηd

− sin ηd cos ηd

)
(7.27)

Ud = ÛdÛ(d−1)Û(d−2) . . . Û1 (7.28)

The product of all rotation matrices Û1, . . . , Ûd (Eqn.7.28) yields the condition-dependent
transformation matrix Ud that maps the first d eigenvectors. Ud is equivalent to the
parameter set αr (Eqn. 2.9) of the transformation function fα(x) (Eqn. 2.11) defined in
Section 2.3. It is applied to normalize the acoustic vectors by:

x → x̃ = fα(x)

= Ud · x (7.29)

In the D-dimensional feature space, up to D − 1 rotations may be carried out. The
last dimension matches automatically due to the orthogonality constraint, which is a
nice consistency check for the procedure. The deviation angle ηD between the rotated
Dth condition-dependent eigenvector and the Dth reference eigenvector needs to be zero,
and the resulting rotation matrix U(D−1) must be identical to the matrix UD derived by
equation Eqn. 7.12.

7.2.3 Experimental Results

Feature space rotation may be applied at the same signal analysis stages as histogram
normalization (cf. Section 7.1.4). If applied at the filter bank it now makes a difference
whether the feature space is normalized before or after log compression. Rotation before
log compression may result in negative coefficients, which prevents the successive ap-
plication of the logarithm. For this reason, rotation was only applied after log compression.
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To calculate the reference condition, the covariance matrix Σ̃ and the eigenvector basis
ṽ1, . . . , ṽD are computed on the full training corpus (cf. Eqn. 7.7). It turns out that at
the log filter bank stage the first eigenvalue is significantly larger than all others as shown
in Figure 7.8 for the VerbMobil II training corpus. Note that the logarithm increases the
scatter of the filter bank coefficients, as these are typically small. The feature space has
apparently one preferred direction with large scatter, and along the other principal axes
data scatter is much smaller [Molau & Hilger+ 02]. For this reason, recognition tests
where only the first condition-dependent eigenvector v1 is mapped to the first reference
eigenvector ṽ1 are carried out first.

During normalization, the covariance matrix Σ and the eigenvector basis v1, . . . , vD are
calculated for each training and test condition r = 1, . . . , R (cf. Section 7.1.2). The
first condition-dependent eigenvector v1 deviates typically by a few degrees from the
direction of the first reference eigenvector ṽ1 as shown in Figure 7.9. The figure depicts
a histogram over the condition-wise deviation angles η1 (cf. Eqn. 7.13) calculated on log
filter bank vectors of the VerbMobil II training corpus.

Finally, the condition-dependent rotation matrix U1 for the first eigenvector is derived
(cf. Eqn. 7.17) and the training and test data are transformed (cf. Eqn. 7.29). A
normalized acoustic model is trained (cf. Eqn. 2.10), and the normalized test vectors are
used in recognition.

Recognition test results for feature space rotation at different signal analysis stages are
summarized in Table 7.6. Given are the word error rate, the mean ratio of the first
two reference eigenvalues λ̃1 and λ̃2, and the mean deviation angle η1 between the first
condition-dependent eigenvectors v1 and the first reference eigenvector ṽ1.
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Figure 7.8: Sorted eigenvalues λ̃1, . . . , λ̃D of the reference covariance matrix Σ̃ computed
on log filter bank coefficients of the VerbMobil II training corpus. Note the logarithmic
scale of the ordinate.
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Figure 7.9: Histogram over the deviation angles η1 between the first eigenvectors v1 of the
condition-dependent covariance matrices and the first reference eigenvector ṽ1 computed
on log filter bank coefficients of the VerbMobil II training corpus.

Rotation of log filter bank vectors yielded a clear improvement in recognition accuracy.
The gain was as large as for basic histogram normalization, but smaller than for
histogram normalization with silence fraction treatment.

At the cepstrum stage, the ratio of the first two reference eigenvalues was much
smaller. Consequently, the principal axes were not as well-defined, the deviation angles
increased significantly, and the recognition performance dropped. A detailed analysis
of recognition errors revealed that the performance improved for most conditions with
small rotation angles, but the word error rate almost doubled for a few test conditions
with rotation angles η1 close to 90 degrees, indicating a change in the order of eigenvectors.

When rotating the feature space after linear discriminant analysis, the mean ratio of
the first and second reference eigenvalues and the average deviation angle of the first
eigenvectors were similar to the values observed for the filter bank stage. The reference

Table 7.6: Recognition test results on the VerbMobil II DEV99B corpus for feature space
rotation at different signal analysis stages to map the first eigenvector. Given are the
mean ratio of the first two reference eigenvalues, the mean deviation angle between the
first condition-dependent and the first reference eigenvector, and the word error rate.

Normalization Mean Eigenvalue Mean Deviation Overall [%]

Stage Ratio λ̃1/λ̃2 Angle η1 [deg] Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
log filter bank 6.3 8.4 4.6 - 4.3 23.0
cepstrum 1.4 32.9 5.3 - 5.0 27.8
after LDA 5.4 8.6 5.1 - 4.2 24.1
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covariance matrix Σ̃ was diagonal and the corresponding eigenvector matrix Ṽ was
the identity matrix, which results from the property of linear discriminant analysis to
uncorrelate the feature space dimensions. Normalization after LDA gave the same minor
performance improvement than histogram normalization at this stage (cf. Table 7.2),
but it was inferior to rotation at the log filter bank stage. Hence, the outcome was
comparable to histogram normalization which performed best at the log filter bank stage
as well. Further tests were carried out at this signal analysis stage only.

Note that the order of mean normalization and feature space rotation does not matter as
long as both are applied condition-wise. Even though the mean vector will be different,
the resulting acoustic vector is identical regardless whether first the mean is subtracted
from the vector before it is rotated, or whether mean subtraction is carried out after ro-
tation. In practice, mean (and possibly variance) normalization are applied sentence-wise
or in a sliding window. Informal tests on different corpora have shown, however, that
similar to histogram normalization (cf. Section 7.1.7) cepstral mean/variance normal-
ization after rotation was typically slightly superior to mean normalization before rotation.

In a next set of experiments, the number of condition-dependent eigenvectors mapped to
their corresponding reference eigenvectors was increased. Matching more than the first
eigenvector further reduces the mismatch between the condition-dependent covariance
matrices Σ and the reference covariance matrix Σ̃. However, limits are set by the discrete
order of eigenvectors. The smaller the differences between subsequent eigenvalues, the
larger is the chance that the order of eigenvectors changes and for some conditions
principal axes are mapped that represent different acoustic characteristics.

In practice, it turned out that even the direction of the second principal axis is not well
defined, and that the order of eigenvectors changes for different conditions. The rotation
angles ηd for the second and further pairs of eigenvectors increase significantly as shown
for the VerbMobil II corpus in Figure 7.10. On other corpora they soon became as large
as 90 degree, and a rotation was not sensible.

The corresponding recognition test results are summarized in Table 7.7. They show that
mapping more than the first eigenvector does not improve the recognition accuracy. In

Table 7.7: Recognition test results on the VerbMobil II DEV99B corpus for feature space
rotations to map up to four eigenvectors. The given mean deviation angles refer to the
highest mapped eigenvector.

Feature Space Rotation Mean Deviation Overall [%]
Angle ηd [deg] Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
first eigenvector 8.4 4.6 - 4.3 23.0
first two eigenvectors 10.7 4.6 - 4.3 23.2
first three eigenvectors 19.8 4.0 - 4.6 23.0
first four eigenvectors 21.6 4.3 - 4.8 23.6
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Figure 7.10: Histogram over the deviation angles η1, . . . , η3 between the first three
condition-dependent eigenvectors v1, . . . , v3 and the first reference eigenvectors ṽ1, . . . , ṽ3

computed on log filter bank coefficients of the VerbMobil II training corpus.

fact, whereas on the VerbMobil II corpus the word error rate was of the same order when
the first two or three eigenvectors were mapped, the performance significantly deteriorated
in these cases on other corpora.

7.3 Combination of Histogram Normalization and

Rotation

7.3.1 Motivation

Since feature space rotation overcomes one of the principal limits of histogram normaliza-
tion, it is interesting to see if the gain in recognition performance obtained by applying
both techniques is additive.

The natural order of normalization would be to rotate the acoustic vectors first for
optimal orientation of the feature space dimensions, and then normalize the distribution
of each dimension. On the other hand, histogram normalization with silence fraction
treatment gives a larger gain in recognition performance than feature space rotation. The
deviation angles η1 between the first condition-dependent eigenvectors v1 and the first
reference eigenvector ṽ1 are significantly reduced when histogram normalization is applied
before rotation (Figure 7.11), which could make the estimation of the rotation plane
and angle more reliable and give superior results. From this perspective, feature space
rotation would be concerned with mismatch in the condition-dependent distributions
that remains after histogram normalization.
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Figure 7.11: Histogram over the deviation angles η1 between the first condition-dependent
eigenvectors v1 and the first reference eigenvector ṽ1 estimated on log filter bank vectors
of the VerbMobil II training corpus. Results are given both with and without histogram
normalization before rotation.

7.3.2 Experimental Results

Recognition test results with either normalization technique in different order are
summarized in Table 7.8. Better results were achieved when histogram normalization
was applied before feature space rotation. The word error rate was lower than for feature
space rotation alone (23.0%), but in the case of VerbMobil II not as low as for histogram
normalization with silence fraction treatment (21.8%). Both techniques seem to account
for the same speech signal variations (which can be seen by the reduced rotation angles,
Figure 7.11), but histogram normalization is more efficient.

Table 7.8: Recognition test results on the VerbMobil II DEV99B corpus for the combina-
tion of feature space rotation to map the first eigenvector and histogram normalization
with silence fraction treatment.

Normalization Overall [%]
First Stage Second Stage Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
rotation histogram normalization 4.6 - 4.1 22.8
histogram normalization rotation 4.6 - 3.8 22.4
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7.4 Normalization under Different Mismatch Condi-

tions

Histogram normalization with silence fraction treatment, feature space rotation to map
the first eigenvector, and a combination of both techniques at the log filter bank stage
has been evaluated on different corpora to analyze the performance of these techniques
under various degrees of mismatch between training and test data.

The VerbMobil II corpus contains a minor acoustic mismatch as one part of the training
data was collected with a close-talking, the other with a room microphone. In addition,
the test data were from a different domain and recorded with a different microphone
than most of the training data (cf. Section 5.2.2). Recognition test results were presented
in Tables 7.4, 7.6 and 7.8. Histogram normalization with silence fraction treatment
reduced the word error rate by 11% relative and feature space rotation by 7% relative.
A combination of both techniques gave no further gain in recognition performance.

Recognition tests with the best normalization setup were repeated for an across-word
system. The results are presented in Table 7.9. Even though histogram normalization
with silence fraction treatment still gave a significant improvement in recognition
accuracy, it was smaller than the gain in the case of within-word modeling similar to the
combination of vocal tract length normalization and across-word models (cf. Section 6.6).

Recognition test results for the EuTrans II corpus are summarized in Table 7.10. Both the
training and test data were recorded over wireline telephone, so that there is no explicit
acoustic mismatch (cf. Section 5.3.1). However, the channel quality varied significantly
between different recording sessions. Basic histogram normalization without silence
fraction treatment gave no improvement in recognition accuracy on this corpus. The
transmission channel was more noisy and showed larger variations from one condition to
the next, which is why deviations from the average silence fraction may have had a larger
impact on the recognition accuracy. Silence fraction adapted histogram normalization
yielded a relative error rate reduction of 5%, and feature space rotation improved the
recognition performance by a similar amount. The reductions of both techniques were
again not additive.

Table 7.9: Across-word system recognition test results on the VerbMobil II DEV99B cor-
pus. Given are word error rates for the optimized baseline system without normalization,
and for histogram normalization with silence fraction treatment.

Normalization Overall [%]
Del - Ins WER

baseline without normalization 4.6 - 3.8 21.6
histogram normalization 4.3 - 3.3 20.2
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Table 7.10: Recognition test results on the EuTrans II corpus for histogram normalization
with silence fraction treatment, feature space rotation to map the first eigenvector, and a
combination of both techniques.

Normalization Overall [%]
First Stage Second Stage Del - Ins WER

baseline without normalization 4.2 - 3.1 16.5
histogram normalization - 3.8 - 3.0 15.6
rotation - 3.6 - 3.1 15.8
rotation histogram normalization 3.7 - 3.1 15.5
histogram normalization rotation 3.5 - 3.1 15.6

The CarNavigation database is a task with large mismatch conditions. The training
data were recorded in a quiet office environment, and two of the test sets were recorded
in cars (city and highway traffic, cf. Section 5.3.2). In scenarios with such a mismatch
there is much room for improvements. A standard normalization technique is cepstral
variance normalization. On this task, it lowered the recognition accuracy in the clean
office condition, but clearly improved the baseline result for the city and highway test
sets (Table 7.11).

Histogram normalization reduced the word error rate significantly both with and without
variance normalization. Better results were obtained without this extra normalization
step. The variance of the filter bank channels is already implicitly normalized when the
feature space dimensions are mapped onto the same reference histogram, which is why

Table 7.11: Recognition test results on the CarNavigation test corpora for histogram
normalization with silence fraction treatment, feature space rotation to map the first
eigenvector, and a combination of both techniques. Results are reported with and without
subsequent cepstral variance normalization (CVN).

Normalization WER [%]
CVN First Stage Second Stage Office City Highway

yes baseline without normalization 4.2 20.8 39.7
histogram - 3.6 12.4 21.4
rotation - 3.8 11.7 21.0
rotation histogram 3.7 10.4 19.0
histogram rotation 3.5 8.9 14.6

no baseline without normalization 2.9 31.6 74.2
histogram - 2.6 8.2 14.3
rotation - 2.5 24.0 64.6
rotation histogram 2.4 9.5 18.0
histogram rotation 2.9 7.1 11.1
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Figure 7.12: Histogram over the deviation angles η1 between the first eigenvectors v1 of the
condition-dependent covariance matrices and the first reference eigenvector ṽ1 computed
on log filter bank coefficients of the different CarNavigation test corpora. The rotation
angles increase with the mismatch between training and test data.

a further transformation to unity cepstral variance may be counterproductive. Without
variance normalization, the word error rate was reduced between 10% relative (office) and
81% relative (highway).

When feature space rotation was applied, the rotation angles for the test data increased
with the mismatch. Whereas on the office data the mean rotation angle η1 was 6 degrees,
it increased to 23 degrees on the city and 32 degrees on the highway data (Figure 7.12).

In connection with cepstral variance normalization, feature space rotation even outper-
formed histogram normalization slightly. The reduction in word error rate varied between
10% relative (office) and 47% relative (highway). Without variance normalization, how-
ever, rotation gave only small improvements over the baseline system. This supports the
notion that even though similar variations are accounted for by histogram normalization
and feature space rotation, the mismatch is reduced in a different way. In particular
the variance of the acoustic signal cannot be handled properly by feature space rota-
tion alone. This comes as no surprise, as the feature space axes are rotated but not scaled.

If applied in the right order, feature space rotation and histogram normalization together
performed better than both techniques alone. The best result on the office test data was
achieved when rotation was applied before histogram normalization, and on the city and
highway data when applied afterwards. The experiments show that the normalization
method that gives most gain in recognition performance should be applied first.
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7.5 Summary

Histogram normalization and feature space rotation are normalization techniques in the
acoustic feature space. They aim at reducing the mismatch between training and test
data by mapping different conditions (different speakers, speaking styles, transmission
channels, etc.) to some reference condition. They are model-free and text-independent,
i.e. they only rely on global statistics of the speech signal.

It was shown that histogram normalization is conceptually simple but improves the
recognition accuracy on a variety of corpora. It can be applied to different signal
analysis stages and performs best when log filter bank vectors are transformed.
Normalization of training and test data was superior to normalization of test data
alone. The larger the acoustic mismatch between the recording conditions in train-
ing and test, the larger was the gain in recognition performance. This suggests that
histogram normalization can reduce channel and environmental variations very efficiently.

Feature space rotation is a normalization technique proposed to relax the assumption of
histogram normalization regarding the orientation of the feature space axes. It aims at
reducing the mismatch between condition-dependent covariance matrices and a reference
covariance matrix. For this purpose, transformation matrices were derived that map the
principal axes with the largest data scatter.

It was shown that at different signal analysis stages the feature space is not uniform but
has one preferred direction with especially large scatter. Feature space rotation to match
the first eigenvector performed best at the log filter bank stage similar to histogram
normalization. Matching subsequent principal axes with large scatter did not improve
the recognition accuracy any further. On the three corpora under investigation, the
reduction in word error rate by feature space rotation was typically somewhat lower than
the reduction by histogram normalization with silence fraction treatment.

In the case of major mismatch between training and test data, further improvements
of recognition accuracy were achieved by a combination of histogram normalization and
feature space rotation. Best results were obtained when first the normalization method
was applied that performs alone better.
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Chapter 8

Combination of Normalization
Schemes

8.1 Motivation

Vocal tract length normalization and histogram normalization/feature space rotation are
all carried out during signal analysis and interact in a complex way. VTN frequency axis
warping is applied to the magnitude spectrum, i.e. before the filter bank and therefore
before other normalization schemes. However, the warping factor estimation relies on
likelihood calculations based on the final acoustic vector, i.e. after all other normalization
schemes. Hence, a joint optimization of the warping factor and the speaker-dependent
histograms/covariance matrices would require a complex iterative optimization.

In Chapter 6 it was shown that vocal tract length normalization has only a single free
parameter which can be estimated reliably on small data samples. Histogram normaliza-
tion and feature space rotation are based on a reference histogram and covariance matrix,
which were obtained somewhat arbitrary from the overall training data distribution as
discussed in Section 7.1.3. For these reasons it makes sense to estimate the warping fac-
tors and transformation functions independently of each other on unnormalized data. A
number of informal recognition tests on the VerbMobil II corpus have confirmed that this
variant performs better than estimating warping factors on histogram-normalized data,
or computing speaker-dependent histograms and covariance matrices on VTN-normalized
data.

8.2 Experimental Results for Different Corpora

Recognition test results for VerbMobil II are summarized in Table 8.1. Vocal tract length
normalization was applied in combination with histogram normalization with silence frac-
tion treatment, since additional feature space rotation was not helpful on this corpus. The
word error rate could be reduced by a small amount to the overall best result of 21.6%,
i.e. the gain in recognition performance was only to a small extent additive. The reduction
in word error rate was 12% relative to the baseline system.
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Table 8.1: Recognition test results on the VerbMobil II DEV99B corpus for a combination
of vocal tract length normalization and histogram normalization with silence fraction
treatment.

Normalization Overall [%]
VTN Histogram Del - Ins WER

baseline without normalization 4.9 - 4.4 24.6
fast no 4.4 - 4.7 22.7
two-pass no 4.6 - 4.6 22.6
fast yes 4.8 - 4.1 21.6
two-pass yes 4.3 - 4.4 21.7

In case of EuTrans II, fast and two-pass vocal tract length normalization reduced
the word error rate by 8% relative, and histogram normalization with silence fraction
treatment by 5% relative (cf. Table 7.10). Again, a combination of VTN and histogram
normalization was tested, as feature space rotation did not help in connection with
histogram normalization. On this corpus, the gain in recognition performance was to a
large extent additive and yielded again an overall reduction of up to 12% relative to the
baseline system (Table 8.2).

Table 8.3 summarizes recognition test results for different normalization schemes on
the CarNavigation corpus. Only results without variance normalization are given here,
because they were better than the corresponding results with variance normalization
except for the baseline setup.

Two-pass vocal tract length normalization with speaker-wise warping factor estimation
reduced the word error rate by 21% relative on the clean office data. Similar large reduc-
tions for “simple” tasks (here isolated-word recognition in clean office environments) were
reported for VTN by other groups as well (cf. Section 3.1.1). On the city condition the
gain reduced to 13%, and on the highway data there was essentially no improvement in
recognition accuracy at all. The main reason is that warping factors cannot be estimated
reliably when the word error rate in the first recognition pass is well above 50%.

Table 8.2: Recognition test results on the EuTrans II corpus for a combination of vocal
tract length normalization and histogram normalization with silence fraction treatment.

Normalization Overall [%]
VTN Histogram Del - Ins WER

baseline without normalization 4.2 - 3.1 16.5
fast no 3.9 - 3.0 15.4
two-pass no 3.7 - 3.3 15.1
fast yes 3.5 - 2.9 14.5
two-pass yes 3.5 - 2.8 14.8
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Table 8.3: Recognition test results on the CarNavigation corpora for a combination of
vocal tract length normalization, histogram normalization with silence fraction treatment,
and feature space rotation to map the first eigenvector. Results are reported without
subsequent cepstral variance normalization.

Normalization WER [%]
VTN First Stage Second Stage Office City Highway

baseline without normalization 2.9 31.6 74.2
fast - - 2.8 27.5 67.4
two-pass - - 2.3 27.5 73.1
fast rotation histogram 4.1 11.2 17.7
two-pass 2.9 10.4 16.7
fast histogram rotation 2.8 6.8 11.1
two-pass 2.2 6.6 10.4

Fast VTN, on the contrary, is text-independent and does therefore not depend on the
word error rate. Warping factor estimation is based on Gaussian mixture models that
describe the distribution of acoustic vectors in the feature space (cf. Section 6.3.3). It is
surprising that the warping factor can still be estimated reliably when the distribution
of the training data differs significantly from the test data distribution (mismatch in
the city and highway condition). In connection with variance normalization, fast VTN
was superior to two-pass VTN on all conditions. Without variance normalization, the
performance was typically somewhat worse. The explanation for slightly more robust
warping factor estimates in the first case might be that variance normalization reduces
the mismatch between the Gaussian mixture models trained on office data and noisy
acoustic vectors in test.

The gain in recognition accuracy by vocal tract length normalization and histogram
normalization/feature space rotation was to some extent additive on the CarNavigation
corpus. This is consistent with the underlying model that the former technique accounts
for speaker-dependent variations only, whereas the latter normalization schemes account
for speaker and environmental variations. The overall best results were achieved by
two-pass VTN followed by histogram normalization and feature space rotation.

8.3 Summary

Normalization is a powerful technique to increase the robustness of automatic speech
recognition systems. Irrelevant variations caused by varying transducers and transmission
channels, speakers and speaking styles, as well as ambient or channel noise are reduced
or completely removed.
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In scenarios with a large acoustic mismatch between training and test data the effects
are especially large. As demonstrated in Table 8.4 for the isolated-word CarNavigation
corpus, normalization can make the difference from essentially zero recognition accuracy
to an acceptable level where 90% of all words are correctly recognized. In conditions with
only a speaker mismatch the gain in recognition performance is lower, but the word error
still decreases significantly.

Table 8.4: Effects of different normalization steps on the CarNavigation test corpora.
Results are given for cepstral mean normalization (CMN), histogram normalization (HN)
with silence fraction treatment (HNSIL), feature space rotation to map the first eigenvec-
tor (ROT), and two-pass vocal tract length normalization (VTN).

Normalization Steps WER [%]
Office City Highway

baseline without normalization 2.8 68.0 99.0
CMN 2.9 31.6 74.2
CMN, HN 2.8 10.2 16.6
CMN, HNSIL 2.6 8.2 14.3
CMN, HNSIL, ROT 2.4 7.1 11.1
CMN, HNSIL, ROT, VTN 2.2 6.6 10.4



Chapter 9

Scientific Contributions

The aim of this work was to develop and improve normalization techniques in the acoustic
feature space to remove undesired variations from the acoustic signal and increase the
performance of automatic speech recognition systems.

A classification scheme for different normalization and adaptation schemes was intro-
duced in this work. Based on a model for training and test, common properties of
normalization and adaptation as well as differences between these techniques could be
explained. Adaptive acoustic modeling was introduced into the mathematical framework
of statistical speech recognition, and an overview of normalization techniques proposed
in the literature was given.

Vocal tract length normalization was one normalization technique studied in detail.

The first goal was to achieve a consistently large gain in recognition performance under
variable environments. A number of optimizations and improvements of the baseline two-
pass VTN approach were implemented and tested. Helpful was the weighting of acoustic
vectors with their energy during warping factor estimation, and the re-estimation of the
phonetic decision tree and the LDA transformation matrix on normalized training data.
A vocal tract length normalization scheme in training and test was developed that proved
to yield consistently good performance on all corpora under investigation:

• on the VerbMobil II corpus, a 10k-word vocabulary German conversational speech
task with many spontaneous speech phenomena, the word error rate was reduced
from 25.7% to 23.3%

• on the 20k-word vocabulary North American Business News corpus which is made of
read English texts recorded in clean acoustic conditions, the word error rate dropped
from 12.5% to 11.6%

• on the 2k-word vocabulary EuTrans II corpus of Italian spontaneous speech recorded
over a telephone channel of variable quality, the word error rate was reduced from
16.5% to 15.1%

In summary, consistent improvements of 8% to 9% relative were achieved by two-pass
recognition on a large variety of conditions, namely different vocabulary sizes, languages,
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speaking styles, and recording environments. The word error rate achieved on the
aforementioned corpora was similar to the results obtained by across-word modeling
(23.3%, 11.5% and 15.7%, respectively), but the gain of both techniques was not fully
additive.

In this work it was shown that the full gain in recognition accuracy by vocal tract length
normalization can be obtained without an increase in computation time. Two different
Gaussian mixture model based techniques which are text-independent and require only a
single recognition pass were studied. Warping factor estimation employing GMMs with
pooled variance vector trained on unnormalized data yielded the desired performance. On
all three corpora, the word error rate of text-independent fast VTN was virtually identical
to the two-pass recognition results:

• 23.5% for fast compared to 23.3% for two-pass VTN on the VerbMobil II corpus

• 11.5% for fast compared to 11.6% for two-pass VTN on the North American Business
News corpus

• 15.3% for fast compared to 15.1% for two-pass VTN on the EuTrans II corpus

At identical pruning settings, fast VTN demanded even less computation time than
the baseline system without normalization as the overhead from the warping factor
estimation was more than compensated by more efficient pruning with normalized
acoustic vectors and models.

The requirements of vocal tract length normalization for online recognition were met
by incremental warping factor estimation. Even though this special type of fast VTN
comes at the cost of a slightly reduced gain in recognition performance, it does not
introduce any additional delay in signal analysis which is necessary for online recogni-
tion systems. Fast VTN with incremental warping factor estimation was successfully
applied in the RWTH speech recognition system used in the final VerbMobil II evaluation.

A novel integrated frequency axis warping approach was developed that merges a number
of successive signal analysis steps into a single one. The filter bank can be omitted, the
logarithm is applied directly to the spectral lines, and all frequency axis warping schemes
such as Mel-frequency warping and vocal tract length normalization are integrated into
the cepstrum transformation. The approach avoids possible quantization and interpola-
tion problems of other techniques and yields a compact implementation of Mel-frequency
cepstral coefficients by a simple matrix multiplication of the log-magnitude spectrum.
On the VerbMobil II and North American Business News corpora, integrated frequency
axis warping yielded the same recognition performance as the traditional approach with
filter bank.

It was shown that integrated frequency axis warping allows for a better control over the
amount of spectral smoothing than a fixed filter bank. Increasing the number of cepstral
coefficients without enlarging the acoustic vector did not change the recognition accuracy
on the North American Business News corpus, but lowered the word error rate on the
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VerbMobil II corpus from 25.7% to 24.9%.

Histogram normalization and feature space rotation were the second focal point of this
work. They aim at reducing the mismatch between training and test data by mapping
different conditions (different speakers, speaking styles, transmission channels, etc.) to
some reference condition. Both techniques are model-free and text-independent, i.e. they
only rely on global statistics of the speech signal.

Histogram normalization is widely used in image processing, but the application in
automatic speech recognition has been largely unexplored. It aims at reducing the
mismatch by mapping the condition-dependent cumulative distributions of each feature
vector component to some reference distribution. In this work it was shown that
histogram normalization is conceptually simple but improves the recognition accuracy
on a variety of corpora. It was applied to different signal analysis stages, namely to the
filter bank, to Mel-frequency cepstral coefficients, and to the LDA-transformed acoustic
vector. Sequential normalization at different signal analysis stages was studied as well.
It turned out that histogram normalization performed best when log filter bank vectors
were transformed. Normalization of training and test data was superior to normalization
of the test data alone. On the VerbMobil II corpus, the word error rate could be reduced
from 24.6% to 23.0% by basic histogram normalization in training and test.

Smoothing of the reference histogram was successful in the case of basic histogram
normalization and reduced the word error rate further to 22.5% on the VerbMobil II
corpus. Even though sequential normalization at different signal analysis stages was in
most cases to some extent additive, it could not reduce the word error rate below this
value.

Histogram normalization relies on the assumption that global statistics of the acoustic
signal are identical independently of what is actually spoken. This requirement was
relaxed by the new approach of explicit silence fraction treatment. It was shown that
the recognition accuracy is significantly improved if the reference histogram is adapted
to the silence fraction of each condition. Histogram normalization with silence fraction
treatment reduced the word error rate also on corpora with only a minor or no mismatch
between training and test data. The gain in recognition accuracy depended on the amount
of mismatch:

• on the VerbMobil II corpus with a minor acoustic and scenario mismatch, the word
error rate reduced from 24.6% to 21.8%

• on the EuTrans II corpus with no mismatch but variable telephone channel condi-
tions, the word rate rate dropped from 16.5% to 15.6%

• on the CarNavigation corpus with a large mismatch (training data collected in quiet
office environment, test data recorded in cars), the word error rate reduced from
2.9% to 2.6% on the office test set, from 31.6% to 8.2% on the city test set, and
from 74.2% to 14.3% on the highway test set
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Feature space rotation is a normalization technique proposed to relax the assumption of
histogram normalization regarding the orientation of the feature space axes. It aims at
reducing the mismatch between condition-dependent covariance matrices and a reference
covariance matrix. For this purpose, transformation matrices were derived that map the
principal axes with the largest data scatter.

It was shown in this work that the feature space is not uniform at different signal analysis
stages, but has one preferred direction with especially large scatter. Feature space rota-
tion to match the first eigenvector performed best at the log filter bank stage similar to
histogram normalization. Matching subsequent principal axes with large scatter did not
improve the recognition accuracy any further. On the three corpora under investigation,
the reduction in word error rate by feature space rotation alone was typically somewhat
lower than the reduction by histogram normalization with silence fraction treatment:

• on the VerbMobil II corpus, the word error rate reduced from 24.6% to 23.0%

• on the EuTrans II corpus, the word rate rate dropped from 16.5% to 15.8%

• on the CarNavigation corpus, the word error rate reduced from 2.9% to 2.5% on the
office test set, from 31.6% to 24.0% on the city test set, and from 74.2% to 64.6%
on the highway test set

A combination of histogram normalization and feature space rotation was helpful in
the case of large acoustic mismatch (CarNavigation). On the other two corpora, the
combination performed at best as good as histogram normalization with silence fraction
treatment alone. Both techniques seem to account for the same speech signal variations,
but histogram normalization is more efficient. It was found that in general the normal-
ization technique that performs best on its own should be applied first, i.e. typically
histogram normalization before feature space rotation.

The gain of vocal tract length normalization and histogram normalization/feature space
rotation was to some extent additive. This supports the notion that VTN removes speaker-
specific variations, whereas histogram normalization and feature space rotation account
for both speaker- and environment dependent variations. The combination of the best
setups developed in this work yielded the following improvements in recognition accuracy:

• on the VerbMobil II corpus, the word error rate could be reduced by 12% rela-
tive from 24.6% to 21.6% with fast VTN and histogram normalization with silence
fraction treatment

• on the EuTrans II corpus, the reduction in word rate rate was as well 12% rela-
tive from 16.5% to 14.5% with fast VTN and histogram normalization with silence
fraction treatment

• on the CarNavigation corpus, the word rate reductions were 24% relative on the
office test set (2.9% to 2.2%), 79% relative on the city test set (31.6% to 6.6%)
and 86% relative on the highway test set (74.2% to 10.4%). The reductions were
achieved by a combination of two-pass VTN, histogram normalization with silence
fraction treatment, and feature space rotation.



Chapter 10

Outlook

Different normalization techniques were studied in this work. Whereas vocal tract length
normalization was developed to a point were consistently large improvements are obtained
without an increase of computation time, there are still a number of open questions with
respect to integrated frequency axis warping. It was shown that increasing the number
of Mel-frequency cepstral coefficients helps to improve the recognition accuracy on the
VerbMobil II corpus, but not on the North American Business News corpus. A more
detailed investigation may reveal which information relevant to the recognition process
is captured in higher cepstrum coefficients.

It might also be interesting to combine the approach with the linear transformation
based signal analysis proposed by Yu and Waibel [Yu & Waibel 00]. It has been shown
by different authors that the Mel-scale increases the recognition accuracy, so integrated
Mel-frequency warping may improve an otherwise fully data-driven signal analysis
front-end.

The integrated frequency axis warping approach may help to derive an analytic expression
for proper handling of the Jacobian determinant in vocal tract length normalization that
is so far omitted during warping factors estimation in training. First experiments in that
direction have been reported in [Pitz & Molau+ 01]. Taking the Jacobian determinant
into account may improve the warping factor estimation and yield superior recognition
performance.

Histogram normalization as proposed in this work requires several sentences per speaker
to estimate the condition-dependent distributions reliably. Informal test have shown
that single sentences are not sufficient. To reduce the amount of data required for
histogram estimation, either a parametric transformation functions with larger bin sizes
[Hilger & Ney 01] or efficient smoothing techniques may be helpful. So far, smoothing
of the reference histogram was successful at intermediate stages only, and smoothing
of the condition-dependent histograms estimated on sparse data was not helpful at
all. More elaborate smoothing techniques may combine the robustness of parametric
approaches on little adaptation data with the advantage of being not restricted to a
specific transformation function.
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In this work, the histogram over all training data is taken as the reference histogram
to which all training and test data are mapped. It cannot be ruled out, however, that
other distributions are more appropriate for reference. The same holds for the reference
covariance matrix which is used to define the direction of the principle axes for feature
space rotation.

Text-dependent transformation may be a way to improve the recognition gain by
histogram normalization beyond the silence fraction treatment proposed in this work.
Phoneme-dependent transformation may give a larger degree of freedom and help to
remove further speaker-dependent variations. A similar approach was investigated in
[Padmanabhan & Dharanipragada 01], but there only the test data were normalized at
the cepstrum stage.

It was shown that taking the silence fraction into account improves the basic histogram
normalization approach. The same technique may be applied in feature space rotation:
Two reference covariance matrices may be derived for speech and silence frames, and
a silence-fraction adapted reference covariance matrix could be obtained by linear
interpolation between these. In addition, the current approach of mapping the principal
axes with the largest data scatter could be extended by an additional scaling of the axes
to match their eigenvalues as well.

The complex interaction between vocal tract length normalization and histogram
normalization/feature space rotation, in particular a joint optimization of the warping
factor, histogram and covariance matrix, may be studied in greater detail. Informal tests
have shown that the independent parameter estimation pursued in this work is a good
choice, but an iterative optimization may still be superior.

Finally, a more detailed comparison of the performance of normalization techniques stud-
ied here with adaptation techniques would be desirable. Especially for the CarNavigation
task it would be interesting to see how maximum likelihood linear regression or similar
adaptation techniques perform. A combination of normalization techniques with adapta-
tion of the acoustic model may be another way to improve the recognition accuracy.
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Spracherkennung mit großem Vokabular. Ph.D. Thesis, RWTH Aachen, Computer
Science Department, Aachen, Germany, 1999.

[Bocchieri 93] E. Bocchieri: Vector Quantization for the Efficient Computation of Con-
tinuous Density Likelihoods. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Vol. II, pp. 692–695, Minneapolis, MN, April 1993.

[Brown & Della Pietra+ 92] P. Brown, V. Della Pietra, P. de Souza, J. Lai, R. Mercer:
Class-Based n-gram Models of Natural Language. Computational Linguistics, Vol. 18,
No. 4, pp. 467–479, 1992.

121



122 BIBLIOGRAPHY

[Burger & Weilhammer+ 00] S. Burger, K. Weilhammer, F. Schiel, H. G. Tillmann: Verb-
Mobil Data Collection and Annotation. In: W. Wahlster (Ed.), Verbmobil: Founda-
tions of Speech-to-Speech Translation, Springer Verlag: Berlin, Heidelberg, New York,
pp. 537–549, 2000.

[Casacuberta & Llorens+ 01] F. Casacuberta, D. Llorens, C. Martinez, S. Molau,
F. Nevado, H. Ney, M. Pastor, D. Pico, A. Sanchis, E. Vidal, J. M. Vilar: Speech-
To-Speech Translation based on Finite-State Transducers. Proc. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, Vol. I, pp. 613–616, Salt Lake City, UT,
May 2001.

[Chengalvarayan 99] R. Chengalvarayan: Robust Energy Normalization using
Speech/Nonspeech Discriminator for German Connected Digit Recognition.
Proc. European Conf. on Speech Communication and Technology, Vol. I, pp. 61–64,
Budapest, Hungary, Sept. 1999.

[Chu & Jie+ 97] Y. C. Chu, C. Jie, V. Tung, B. Lin, R. Lee: Normalization of Speaker
Variability by Spectrum Warping for Robust Speech Recognition. Proc. IEEE Int.
Conf. on Acoustics, Speech and Signal Processing, Vol. III, pp. 1127–1130, Rhodes,
Greece, Sept. 1997.

[Cox 00] S. Cox: Speaker Normalization in the MFCC Domain. Proc. Int. Conf. on Spo-
ken Language Processing, Vol. II, pp. 853–856, Bejing, China, Oct. 2000.

[Davis & Mermelstein 80] S. B. Davis, P. Mermelstein: Comparison of Parametric Rep-
resentations for Monosyllabic Word Recognition in Continuously Spoken Sentences.
IEEE Transactions on Acoustic, Speech, and Signal Processing, Vol. 28, No. 4,
pp. 357–366, Aug. 1980.

[Dempster & Laird+ 77] A. P. Dempster, N. M. Laird, D. B. Rubin: Maximum Likeli-
hood from Incomplete Data via the EM Algorithm. Journal Royal Statistical Society,
Series B, Vol. 39, No. 1, pp. 1–38, 1977.

[Dharanipragada & Padmanabhan 00] S. Dharanipragada, M. Padmanabhan: A Nonlin-
ear Unsupervised Adaptation Technique for Speech Recognition. Proc. Int. Conf. on
Spoken Language Processing, Vol. VI, pp. 556–559, Bejing, China, Oct. 2000.

[di Carlo 00] A. di Carlo: Speech-Input Corpus Acquisition. In: Final Report of the
European Union ESPRIT LTR Project No. 30268, EuTrans, pp. 9–10, Sept. 2000.

[Dolfing 00] J. G. A. Dolfing: Exhaustive Search for Lower-Bound Errror-Rates in Vocal
Tract Length Normalization. Proc. Int. Conf. on Spoken Language Processing, Vol. I,
pp. 762–765, Bejing, China, Oct. 2000.

[Duda & Hart 73] R. O. Duda, P. E. Hart: Pattern Classification and Scene Analysis.
John Wiley & Sons, New York, 1973.

[Eide & Gish 96] E. Eide, H. Gish: A Parametric Approach to Vocal Tract Length Nor-
malization. Proc. IEEE Int. Conf. on Acoustics, Speech and Signal Processing, Vol. I,
pp. 346–349, Atlanta, GA, May 1996.



BIBLIOGRAPHY 123

[Emori & Shinoda 01] T. Emori, K. Shinoda: Rapid Vocal Tract Length Normalization
using Maximum Likelihood Estimation. Proc. European Conf. on Speech Communi-
cation and Technology, Vol. III, pp. 1649–1652, Aalborg, Denmark, Sept. 2001.

[Faltlhauser & Pfau+ 00] R. Faltlhauser, T. Pfau, G. Ruske: On-line Speaking Rate Esti-
mation Using Gaussian Mixture Models. Proc. IEEE Int. Conf. on Acoustics, Speech
and Signal Processing, Vol. III, pp. 1355–1358, Istanbul, Turkey, June 2000.

[Fritsch 97] J. Fritsch: ACID/HNN: A Framework for Hierarchical Connectionist Acous-
tic Modeling. Proc. IEEE Workshop on Automatic Speech Recognition and Under-
standing, pp. 164–171, Santa Barbara, CA, Dec. 1997.

[Gales 01] M. J. F. Gales: Adaptive Training for Robust ASR. Proc. IEEE Automatic
Speech Recognition and Understanding Workshop, Madonna di Campiglio, Trento,
Italy, 6 pages, CD ROM, IEEE Catalog No. 01EX544, Dec. 2001.

[Giuliani 99] D. Giuliani: An On-Line Acoustic Compensation Technique for Robust
Speech Recognition. Proc. European Conf. on Speech Communication and Technol-
ogy, Vol. VI, pp. 2487–2490, Budapest, Hungary, Sept. 1999.

[Gopinath 00] R. A. Gopinath: Gaussianization. IMA Workshop: Mathematical Founda-
tions of Speech Processing and Recognition, Minneapolis, MN, Sept. 2000.
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Appendix A

Symbols and Acronyms

A.1 Mathematical Symbols

X sequence of (unnormalized) acoustic vectors x1, . . . , xT

X̃ sequence of normalized acoustic vectors x̃1, . . . , x̃T

Xα sequence of acoustic vectors obtained by warping the frequency axis
with the warping factor α

Xr sequence of acoustic vectors from condition r

W sequence wN
1 of spoken words w1, . . . , wN

Ŵ sequence of recognized words from a first recognition pass

S sequence of hidden Markov model states

T number of time frames

L number of densities in a Gaussian mixture

N number of spoken words

V vocabulary size

K number of cepstrum coefficients

D dimension of the acoustic vector

R number of acoustic conditions

fα generic transformation function with parameter set α

θ set of all parameters of an (unnormalized) acoustic model

θ̃ set of all parameters of a normalized acoustic model

p(W) language model or a-priori probability of the word sequence W
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p(X) a-priori probability of the sequence of acoustic vectors X

p(X|W) acoustic probability of the acoustic vector sequence X given the word
sequence W

p̃(X|W) adapted acoustic probability

p(x|s,W; θ) hidden Markov model emission probability for the acoustic vector x
at state s

p(st|st−1,W) hidden Markov model transition probability for the transition from
state st−1 to state st

sT
1 set of all possible alignments between acoustic vectors X and hidden

Markov model states S

N (µ,Σ) normal (Gaussian) distribution with mean vector µ and covariance
matrix Σ

cl mixture weight for the density with index l

θ0 unnormalized low resolution acoustic model

θ̃0 normalized low resolution acoustic model

Λα Gaussian mixture model trained on unnormalized data from speakers
with warping factor α

Λ̃ Gaussian mixture model trained on normalized data

p(X|Λ) acoustic probability of the acoustic vector sequence X given the Gaus-
sian mixture model Λ

αr frequency axis warping factor of speaker r

α̂r estimated frequency axis warping factor

ω frequency

ω̃ normalized (warped) frequency

ω0 limiting frequency for piece-wise linear frequency axis warping

z(x) weight for the acoustic vector x

e(x) energy of the acoustic vector x

m log-compressed magnitude spectrum

c vector of cepstral coefficients c0, . . . , cK−1

U cepstrum transformation matrix
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g(ω) arbitrary monotone invertible frequency axis warping function

µ(ω) Mel-frequency warping function

µ̃(ω) normalized Mel-frequency warping function

να(ω) VTN frequency warping function, depending on the warping factor α

χ(ω) combined VTN and Mel-frequency warping function

fs sampling frequency

β alternative warping factor for piece-wise linear warping

κ alternative warping factor for piece-wise linear warping

pr(x) probability distribution or histogram of condition r

Pr(x) cumulative probability distribution or histogram of condition r

p̃(x) reference probability distribution or histogram

P̃(x) cumulative reference probability distribution or histogram

p̃sil(x) reference histogram estimated on silence frames only

P̃sil(x) cumulative reference histogram estimated on silence frames only

p̃sp(x) reference histogram estimated on speech frames only

P̃sp(x) cumulative reference histogram estimated on speech frames only

p̃r(x) reference histogram adapted to the silence fraction of condition r

P̃r(x) cumulative reference histogram adapted to the silence fraction of con-
dition r

γr silence fraction of condition r

Σ condition-dependent covariance matrix

Σ̃ reference covariance matrix

vd condition-dependent eigenvector for dimension d

v̂d transformed condition-dependent eigenvector for dimension d

V matrix made of the condition-dependent eigenvectors

ṽd reference eigenvector for dimension d

Ṽ matrix made of the reference eigenvectors

λd condition-dependent eigenvalue for dimension d
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λ̃d reference eigenvalue for dimension d

ηd rotation angle to match the eigenvectors for dimension d

I identity matrix

Ud transformation matrix for acoustic vectors to match d eigenvectors

Ûd transformation matrix for dimension d

Jd projection matrix for dimension d

Rd rotation matrix for dimension d
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A.2 Acronyms

RWTH Rheinisch-Westfälische Technische Hochschule

LVCSR large vocabulary conversational speech recognition

OOV out of vocabulary

ML maximum likelihood

EM expectation maximization

HMM hidden Markov model

GMM Gaussian mixture model

LDA linear discriminant analysis

MFCC Mel-frequency cepstral coefficients

PLP perceptual linear prediction

RASTA relative spectral

CMN cepstral mean normalization

CVN cepstral variance normalization

VTN vocal tract length normalization

MLLR maximum likelihood linear regression

MAP maximum a-posteriori

ROS rate of speech

LPC linear predictive coding

CART classification and regression tree

FFT fast Fourier transform

DCT discrete cosine transform

SNR signal to noise ratio

PCA principal component analysis

SIMD single instruction, multiple data

LM language model

PP perplexity

WER word error rate
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DEL deletion errors

INS insertion errors

DEV development test corpus

EVAL evaluation test corpus

RTF real-time factor

WSJ Wall Street Journal - a speech corpus

NAB North American Business News - a speech corpus

TIDIGITS Texas Instruments connected digit sequences - a speech corpus

TIMIT speech corpus collected by Texas Instruments and transcribed at the
Massachusetts Institute of Technology

SIETILL speech corpus collected by Siemens and the Institute of Phonetics of
Prof. Tillmann at the University of Munich
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• 1987 Mittlere Reifeprüfung, Abschluß ”mit Auszeichnung”

• 1989 Abitur, Abschluß ”mit Auszeichnung”

• 1992 Vordiplom Informatik

• 1997 Diplom Informatik, Abschluß mit ”sehr gut”

• 2003 Promotion Informatik, Abschluß mit ”sehr gut”

Berufstätigkeit:

• 1987-1997 nebenberuflich freier Mitarbeiter an der Archenhold-Sternwarte Berlin

• 1989-1990 Wehrdienst

• 1990-1997 Student

• 1997 wiss. Hilfskraft am Institut für Planetenerkundung der Deutschen Forschungs-
anstalt für Luft- und Raumfahrt

• 1997-2002 wiss. Mitarbeiter am Lehrstuhl für Informatik VI der RWTH Aachen

• seit 2002 IT-Spezialist bei der BMW AG




