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Chapter 1

Introduction

All current NLP technologies make mistakes. Applications based on these
technologies can tolerate mistakes if they have some reliable idea of when
they are likely to be made. For instance, in a speech recognition dialog sys-
tem, low confidence in the analysis of a user’s utterance can lead the system
to prompt for a repetition. This strategy has the potential to significantly
improve the usability of the system, but it will be effective only to the extent
that accurate estimates of correctness are available.

The binary classification problem of assessing the correctness of an NLP
system’s output is known as confidence estimation (CE). It has been ex-
tensively studied for speech recognition, which is arguably the most mature
NLP technology, but is virtually unknown in other natural language appli-
cations. The motivation for our workshop was to apply CE techniques to
another non-trivial area of NLP, measure their performance, and attempt
to draw conclusions that would be applicable to the study of CE for NLP
as a distinct topic of research.

Due to a strong interest in machine translation on the part of the work-
shop sponsors, as well as the existence of a parallel workshop on the topic
to provide data, MT was a natural choice for our base NLP task. In ret-
rospect, however, it was probably not an ideal choice, at least not given
the aims stated in the previous paragraph. The infamous MT evaluation
problem and the poor performance of our state-of-the-art base system cre-
ated difficulties for the application of standard CE techniques, as described
below, and led us into areas that were very specific to MT. Despite this, we
were able to draw some conclusions about CE in general from our exper-
iments. Our work also represents a concrete first step in the difficult but
very pertinent problem of CE for MT.
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In the rest of this chapter we first provide some background on confidence
estimation, then describe the workshop activities, and finally give an outline
of the report that follows.

1.1 Confidence Estimation

The goal of CE is to characterize the behaviour of a base NLP system that
produces an output y given an input x. One way of doing so, which we will
call weak CE, is to build a classifier that takes x and y as input and returns
a score intended to be monotonic with probability of correctness. Decisions
such as whether or not to prompt a user to repeat an utterance can then be
based on thresholding this score, and the threshold can be adjusted so as to
optimize performance in different situations.

A related approach, which we will call strong CE, is to return a direct
estimate of the probability of correctness. This is slightly more flexible than
weak CE, since in principle it eliminates the need to re-tune thresholds for
different conditions in which the final system will be used. Provided the
costs for different courses of action are known (and provided probability
estimates are accurate), the optimal action for a given input pair can be
determined dynamically from the probability of correctness using standard
decision theory. Note that it is straightforward to convert a weak CE score
into a probability estimate (see [15] for an example of this).

About half of the CE work reported in the speech recognition literature
is devoted to each of these approaches. Both are typically evaluated accord-
ing to how well they separate correct and incorrect examples, and strong
CE is additionally evaluated according to the accuracy of its probability es-
timates. Section 2.5 gives details about the standard evaluation techniques,
and further reading can be found in [40] and [22].

Another axis along which CE techniques differ is whether or not there
is a separate “CE layer” distinct from the base NLP system. Many speech
recognition approaches, eg [43], simply derive confidence scores directly from
quantities in the base system. When the latter is probabilistic, these scores
can be the probability estimates required for strong CE. Typically these are
not the same scores used as search criteria to establish the output word se-
quence in the first place, but rather posterior probabilities p(y|x) calculated
from an nbest list or from a word lattice as in [20, 43].1 A major advan-

1Note that p(y|x) is not necessarily the same as p(correct|x, y). For problems like speech
recognition, in which there is only one right answer, the two expressions are equivalent.
However, for problems like MT with potentially many right answers, p(correct|x, y) is a
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tage of this technique, apart from simplicity, is that it is unsupervised (with
respect to confidence estimation).

Approaches in which the CE portion is separate from the base system
predominate in the literature. This is a typical binary classification problem
where a vector of features is extracted (the most useful features come from
the base system), and a classifier is trained on a corpus of examples x, y
labeled for correctness. The advantages of using a separate CE layer are
mainly due to modularity. They include: separating the problem of deter-
mining the best output from that of assigning correctness, for which different
feature sets and learning techniques may be optimal; allowing quicker and
easier (partial) adaptation to new domains by re-training only a small CE
layer rather than an unwieldy base system; and the potential for developing
a CE infrastructure common to more than one base system or application.
Systems using this approach have employed a wide range of machine learn-
ing algorithms, including Adaboost [6], naive Bayes [39], Bayesian nets [25],
neural networks [13, 19, 42, 45], boosting [25], support vector machines
[21, 45], linear models [12, 19, 25], and decision trees [19, 25, 26, 45].

Although by far the bulk of work on CE concerns speech recognition,
there are a few recent efforts in other fields, such as information retrieval
[23]. For MT, the only previous work is by members of our workshop. Ueff-
ing et al [41] describe several methods, including posterior probabilities, for
estimating the correctness of individual words in MT output. Gandrabur
and Foster [11] describe the use of a neural-net CE layer to sharpen proba-
bility estimates for text predictions in an interactive translators’ tool.

The primary purpose of confidence estimation is to enable broader and
more effective deployment of imperfect NLP technologies, but the basic tech-
niques have several other potential applications, especially in their strong
(probabilistic) form. When a collection of different systems is available for
some task, CE probabilities provide a principled and convenient way of
combining their outputs, one that does not require the base systems to be
statistical themselves. CE can also be used for active learning approaches,
in which human annotation effort is targeted to those examples from which
the model stands to benefit most [27]. Finally, confidence estimates can be
used to calibrate the scores of partial hypotheses during search, leading to
more accurate algorithms [26].

preferable formulation for CE, because it allows high probabilities of correctness to be
assigned to many different hypotheses y simultaneously.

10



1.2 Overview of the Workshop

For MT output, there is a natural distinction between confidence estimation
at the sentence level and at the subsentence level. Different techniques are
appropriate to each case, and different applications can be envisaged for the
resulting classifiers. Our workshop was organized along these lines. Because
sentence-level CE seemed a more straightforward problem, we attacked it
first and spent most of our time on it. Subsentence MT was not tackled
until about halfway though the workshop, and was mostly the responsibility
of one very hard working and competent team member. (In retrospect, our
priorities should have perhaps have been reversed, since subsentence CE
emerged as a more fruitful area for investigation.) The following sections
give an overview of our approaches to both problems.

In both cases, our data was supplied by the Syntax for MT group, and
was generated by the MT system described in [31]. For some experiments,
we also obtained data from an MT system developed at CMU. Details of
both corpora are given in section 2.1.

1.2.1 Sentence-Level Confidence Estimation

In sentence-level CE, the task is to determine whether MT output is cor-
rect for a given source sentence. This has many applications, including
filtering translations for human post-editing or information gathering, com-
bining output from different MT systems, and, possibly, reordering nbest
lists output by the base system.

Since we wanted to investigate learning techniques, the first step for
sentence-level CE was to assemble a corpus of source sentences and their
machine-generated translations, then label each translation as correct or
not. Two problems emerge here:

1. Performance is poor: the proportion of correct translations at the
sentence level is very low. This makes learning and evaluation more
difficult.

2. There is no completely satisfactory automatic method for determining
whether MT output is correct or not at the sentence level, even if
reference translations are available (as they were in our case). This
makes it hard to assemble a reliable corpus of labeled examples.

Our solution to the first problem was essentially to move the goalposts.
Instead of insisting that translations be completely correct, we required only
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that they be better than a given threshold according to an automatic met-
ric. This let us control the number of positive examples by varying the
threshold. The motivation behind this is that different thresholds will cor-
respond to different levels of translation quality that might be useful in
different applications. For instance, a very high threshold might correspond
to human-quality text, a medium threshold might correspond to text that is
sufficient for gisting purposes, and a low threshold might correspond to text
that is sufficient for applications like cross-language information retrieval,
which can make do with only a rough bag of words translation.

Changing the definition of correctness does not of course solve the prob-
lem that the automatic measures of MT quality we threshold against are
unreliable. The methods that are currently popular are based on relatively
crude word and ngram matches between generated and reference transla-
tions. These are reasonably stable for entire texts, but exhibit high variance
at the sentence level. To quantify the variance, and to be able to justify
our choice of a metric to threshold against, we ran our own MT evaluation
exercise. This produced a corpus of approximately 600 sentence pairs with
human-assigned correctness ratings. Although we did not solve the funda-
mental problem of automatic MT evaluation, this study gave us insight into
it, and let us bound the error in our gold-standard correctness assignments.

1.2.2 Subsentence-Level Confidence Estimation

The aim in subsentence-level CE is to tag individual words or ngrams in
MT output. This has potential application in an interactive postediting
environment, where a translator selectively replaces portions of a machine-
generated translation. Another intriguing possibility is to use confidence
scores as a basis for recombining parts of alternate sentence hypotheses in
an nbest list or output from different MT systems.

Subsentence CE has neither of the problems described above for sentence-
level CE. Although entire sentences are only very rarely correct, parts of sen-
tences are much more likely to be correct, and hence the learning problem is
more meaningful. Also, whereas an exact match to a reference translation is
a far too stringent condition at the sentence level, it is quite reasonable for
words or ngrams. This eliminates the noise inherent in the sentence-level
correctness tagging. Subsentence CE is not without problems, however,
because it is not completely clear what it means for parts of a translation to
be correct. For instance, if only one bigram in a machine-generated trans-
lation matches reference translation 1, but three separate unigrams match
reference translation 2, should we tag the bigram or the unigrams as cor-
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rect? Should this decision depend on whether the unigrams occur in the
same order as in reference 2, or in similar positions? Standard MT eval-
uation metrics embody answers to these questions, and we explore various
alternatives in chapter 4.

1.3 Outline of the Report

The rest of the report is structured as follows:

• Chapter 2 describes the experimental setting, giving details of the
corpora we used, our basic method(s) for assigning confidence scores
and probabilities, some practical problems we encountered, and the
techniques we used to evaluate results.

• Chapter 3 concerns our experiments on sentence-level CE, including
the features used for machine learning, evaluations of classification
performance, and the results of some experiments to test potential
applications.

• Chapter 4 deals with our experiments on subsentence-level CE, in-
cluding the features used, the different methods for tagging words and
ngrams as correct or not, and the evaluation of the resulting classi-
fiers. Due to the way the workshop was organized, this chapter can to
a certain extent be read independently from the rest of the report.

• Chapter 5 describes the MT evaluation exercise we carried out.

• Chapter 6 summarizes our results and contains some pointers for future
work.
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Chapter 2

Experimental setting

In this chapter, we introduce the experimental setting of our work on con-
fidence estimation for machine translation.

In section 2.1, we give details about the different corpora we used, and
describe how we derived the data that we needed for our task from these
corpora.

Section 2.2 sets out our approach to confidence estimation, and in par-
ticular explains how we cast it as a machine learning problem. We describe
the automatic evaluation measures used to assign correctness to individual
translation hypotheses, and address the scaling problem that arises when
these measures are calculated from differing numbers of reference transla-
tions.

We then briefly present in section 2.3 the two machine learning meth-
ods used in our experiments: naive Bayes and the multi-layer perceptron.
Section 2.4 gives details on how we solved a number of practical problems
related to handling very large datsets with potentially tens of millions of
examples.

Finally, we close the chapter with a description in section 2.5 of the
metrics used to evaluate performance on the confidence estimation task,
in both its strong and weak variants, and a discussion of some of their
properties. We also discuss the bootstrap technique used to derive error
bars on these statistics.

2.1 Corpora

In order to learn confidence estimation for machine translation, we gathered
data from two MT systems from ISI and CMU that participated in the
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Chinese-to-English track of the 2003 NIST evaluation. These systems rely
on different technology and are described in the proceedings of the evaluation
[30]. Both systems are trained on a very large training set. For our purpose,
we considered the output of these systems on various collections of Chinese
source sentences:

1. 993 sentences from the evaluation set of the 2001 NIST competition,
each with 4 reference translations.

2. 4107 sentences from an additional multi-reference LDC corpus, each
with 1 to 4 reference translations.

3. 565 sentences from the same multi-reference LDC corpus, each with 4
reference translations.

4. 878 sentences from the evaluation set of the 2002 NIST competition,
each with 4 references.

In addition, the evaluation set of the 2003 NIST competition was available.
It was meant to be used as a final “blind” test set, but was actually never
used during the workshop.

The two candidate systems produced a list of most probable translations
for each sentence, the so-called N-best list. Each N-best list contains between
101 and 16384 hypothesis translations for the same source sentence. For the
ISI system we obtained N-best lists for all sentences, while for the CMU
systems, we obtained N-best lists for only the 993 sentences from the 2001
NIST evaluation and the 878 sentences for the 2002 NIST evaluation. In
addition, the size of the lists was limited to 1000 hypotheses for the CMU
system.

The available data was split into three datasets used to carry out our
machine learning experiments:

• The training set is used to estimate the parameters of our models. For
the ISI system, the training set consisted of the N-best lists from the
first two collections, amounting to 993+4107 = 5200 N-best lists. For
the CMU system, the training set consisted of the first 700 N-best lists
from the first collection.

• The validation set is used to tune some hyper-parameters of the learn-
ing process, such as the model structure, number of iterations of the
training procedure, etc. For the ISI system, we used the 565 N-best
lists from the third collection as validation set. For the CMU system,
we used the last 293 sentences from the first collection.
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• The test set is used to evaluate the final performance of the model, af-
ter training and optimisation. For both systems, the test set consisted
of the 878 N-best lists from the fourth collection. Note that after tun-
ing the hyper-parameters of the learning process on the validation set,
it is possible to re-train the model on the combined training+validation
sets.

In the context of our work, we would like to estimate the confidence
in each proposed translation (at the sentence level). Using the N-best list,
each source sentence therefore potentially generates between 101 and 16384
examples. In general, we considered these to be independent examples, but
took some steps to try to compensate for this rather strong assumption, as
described in section 2.2.3.

2.2 Automatically Identifying Correct Translations

As explained in the introduction, confidence estimation in MT is concerned
with determining whether a given machine-generated translation is correct
or not. In general, we make this judgment by analyzing the source text, the
target hypothesis, and possibly extra information related to the translation
task.

To formalize the CE task, we introduce a feature vector x representing
an hypothesis, and a binary variable c indicating whether the translation
is correct or not. The features in x may capture different aspects of the
translation and will be detailed later, in the chapters related to the ac-
tual experimental results. In particular, they differ for sentence-level and
subsentence-level confidence estimation. In general, for a given example
(s, h) consisting of a hypothesis translation h for source sentence s, features
in x may depend on s and/or h, but may not depend, for example, on the
reference translation for s (which would be unavailable at testing time).

Our basic technique is to define a parameterized function f(x; θ) (where
θ is a parameter vector) intended to be correlated with the true probability of
correctness P (c = 1|x). This is very general: once we have such a function,
we can make correctness decisions by comparing f(x; θ) to a threshold, which
can be set appropriately for any particular application. We experimented
with three different ways of establishing f :

1. Using a single component of the input vector x (θ is empty in this
approach).

2. Doing regression against an MT evaluation metric.
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3. Directly estimating the probability of correctness, so that:

f(x; θ) = P̂ (c = 1|x; θ), (2.1)

where P̂ (c = 1|x; θ) is an estimate of the true probability of correct-
ness.

The first approach is very straightforward, but it is widely and success-
fully used in speech recognition—note that the components of x can them-
selves be sophisticated quantities such as posterior probabilities extracted
from the base system, as in [41]. The second and third methods are stan-
dard supervised machine learning problems, requiring a labelled data set
for training as described in the next paragraph. The first two methods are
applicable only to weak CE; the final method is applicable to both the weak
and strong CE scenarios.

In order to learn the parameters θ for probability estimation, we need
a dataset of input-output examples D = {(x(i), c(i))}i=1...n, where x

(i) is an
input example (vector of features) and c(i) is the corresponding label (ie
correctness). Of course, the actual correctness c of MT output is usually
unknown for large datasets. A very restrictive way of defining it would be
to decide that a sentence is correct only if it matches one of the reference
translations. However this is overly strict: too few sentences would pass this
test, and potentially many correct sentences would not (in particular, refer-
ence sentences would usually not pass when tested against other references).
Our solution is to rely on automatic MT evaluation scores, generated using
a set of reference translations, to provide the necessary labels c(i):

c(i) =

{
1, E(x(i), R(i)) ≥ τ
0, else,

where E(x, R) is an automatic evaluation score for x, based on the cor-
respondence between the translation hypothesis it contains and a set of
reference translations R. The correctness threshold τ is set as described
below. To do regression, we learn parameters so as to make f(x; θ) a direct
approximation of E(x, R) (independent of any particular threshold on E for
deciding correctness).

2.2.1 MT Evaluation Measures

In our experiments on sentence-level confidence estimation, we estimate the
correctness by thresholding one of the following measures:1

1Chapter 4 describes the methods for estimating correctness for subsentence-level con-
fidence estimation.
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WERg: Word Error Rate, normalised by the length of the Levenshtein
alignment.

NIST: Sentence-level NIST score, ie weighted average of n-gram precisions.

These two measures were chosen because they were best correlated to
human judgements in the evaluation exercise that we carried out during
the workshop. More details on this evaluation exercise and on automatic
MT evaluation measures will be provided in chapter 5, together with some
analysis of their correlation with human judgement.

WERg provides, for each hypothesis translation h, a score between 0
and 1. 0 is perfection, in that it indicates that the hypothesis h is identical
to one of the reference translations. 1 means that the hypothesis h has
basically no word aligned with either of the reference translations. For
WERg, we threshold such that hypotheses with a WERg below the threshold
are considered correct (c(i) = 1) and hypotheses with a WERg above the
threshold are considered incorrect (c(i) = 0).

NIST provides, for each hypothesis translation h, a positive score. A
NIST score of 0 means that the hypothesis h and the reference translations
have essentially no n-gram in common (the worst score), while higher posi-
tive scores suggest better translations. For NIST, we threshold by assigning
c(i) = 1 to hypotheses h with NIST scores above the threshold, and c(i) = 0
to hypotheses h with NIST scores below the threshold.

By varying the threshold, we can impose more or less stringent conditions
on correctness, and vary the proportion of examples labelled as positive. For
both measures, we considered several thresholds. In particular, we experi-
mented with labels obtained by thresholding such that 30% and 5% of the
examples (in the training corpus) are labelled as correct.

2.2.2 Handling Multiple References

With the thresholding strategy described above, the values of the scores are
treated on the same scale for all sentences. If the threshold of the NIST
score is 6, all sentences that have a NIST score above 6 will be considered
correct, regardless of the source sentence, number of references, etc.

However, the way automatic evaluation scores are calculated for multiple
references introduces a systematic bias with the number of reference transla-
tions. The WERg requires a Levenshtein alignment of the translation with
the reference(s). When there are more references, there is better chance of
finding correct alignments. The NIST score is a weighted average of n-gram
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Figure 2.1: Left: distribution of NIST scores for sentences with 1 (top),
4 (middle) and 11 (bottom) reference translations. Right: Proportion of
examples tagged correct in the training and test set, as a function of the
threshold.

precisions. When there are more references, there is a wider choice of n-
grams and therefore a better chance of finding a match between n-grams
from the proposed translation and those from the reference translations.

This is illustrated in figure 2.1 where we present the distribution of the
NIST score for sentences with various number of reference translations. Part
of the training data (the 2001 NIST evaluation data) actually has up to 11
reference translations, although we only retained 4 of them in our work. In
this comparison, however, we consider all these references. We therefore have
many sentences with only 1 reference, around 1000 with 4 references, and
around the same number with 11 references. Figure 2.1 (left panel) shows
that the distribution of the NIST score varies greatly with the number of
reference translations:

• For sentences with 1 reference (top), the NIST score varies roughly
from 0 to 8, with an average about 4.5;

• For sentences with 4 references (middle), the NIST score varies roughly
from 2 to 10, with an average about 7;

• For sentences with 11 references (bottom), the NIST score varies roughly
from 4 to 12, with an average about 9.

With a threshold of 6, the result will be that almost all sentences with 1
reference are labelled incorrect, while most of the sentences with 4 references
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and almost all the sentences with 11 references will be considered correct.
We would therefore introduce in the labelling of the examples a system-
atic bias depending not on the quality of the translation, but simply on the
number of references translations. One side effect is an inconsistent labelling
between the training set, where the number of reference translation is vari-
able, and the test set, where there are always 4 reference translations. This
is exemplified on the right panel of figure 2.1, where we plot the percentage
of incorrect examples in the training (blue) and test (red) sets. Because most
of the training sentences have only one reference translation, thresholding
at a NIST score of 6 yields around 70% incorrect examples (30% correct),
while on the test set (red curve), there are less than 15% incorrect examples,
and more than 85% correct. The test and training sets are therefore very
different, and this will typically lead to biased results.

In order to compensate for this, we adopt the following strategy:

• For sentences with 11 reference translations, we used only the first 4.

• For sentences with only 1 reference translation, we rescale the scores
with a two-parameter affine transformation such that the distribution
of the rescaled scores is similar to the distribution of the scores of the
sentences with 4 reference translations.

This is done for both NIST score and WERg (separately), and threshold-
ing is done after rescaling. As a consequence, the proportions of correct and
incorrect examples on the training and test sets are similar, and we therefore
expect to limit the bias introduced by the varying number of references.

2.2.3 Feature Normalization

The standard supervised machine learning framework assumes a set of inde-
pendent labelled examples. Our examples potentially violate this assump-
tion because they are grouped into N-best lists, one per source sentence.
Typically, features that depend on the source sentence will be related or
even identical. Even hypothesis-specific features may be related, eg the
length of the target hypotheses in the same N-best list will be related. In
order to compensate for this, we tried two kinds of feature normalisations.
Features that are believed to have no dependency on the specific source sen-
tence are normalised globally in order to have 0 mean and unit variance.
Features that are believed to be very dependent on an N-best list, and to
typically have larger between-sentence variance than within-sentence vari-
ance, are normalised on a source-sentence basis: for each N-best list, the
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feature is normalised to have 0 mean and unit variance. Note that this
implies that the global mean is also 0.

2.3 Machine Learning Techniques

In this section, we describe the machine learning techniques used in our
experiments. We used naive Bayes models for probability estimation, and
multi-layer perceptrons for both probability estimation and regression.

2.3.1 Naive Bayes

To derive the naive Bayes model, we denote the class variable by c as before
(c = 1 for a correct example, and c = 0 for an incorrect example). Each
example is represented by a D-dimensional vector of discrete features x.
The class posteriors can be calculated via the Bayes rule as

P (c|x) =
P (c)P (x|c)∑
c′ P (c′)P (x|c′)

. (2.2)

The key assumption in this model is that the features are statistically inde-
pendent, so that:

P (x|c) =
D∏

d=1

P (xd|c).

Given a sample of N training examples {(x(i), c(i))}i=1...N , the maximum
likelihood estimate of the unknown probabilities are the empirical frequen-
cies

P (c) =
N(c)

N

P (xd|c) =
N(xd, c)

N(c)
d = 1, . . . , D (2.3)

where the N(·) are suitably defined event counts. N(c) is the number of
training examples in class c, and N(xd, c) is the number of examples with
feature value xd in class c.

The maximum likelihood estimates give a value of 0 to the conditional
probability of features that do not appear in the training set for class c. This
can prove harmful as new document that have this feature will automatically
be given a probability P (x|c) = 0, regardless of the other features they may
contain.
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To prevent null estimates, we have considered an absolute discounting
smoothing model imported from statistical language modelling. The idea
is to discount a small constant b ∈ (0, 1) to every positive count and then
distribute the gained probability mass (with a uniform backoff) among the
null counts (unseen events). Thus, for each class, if N(xd, c) = 0 for one or
more possible values of xd, let us denote by N+ the number of features xd

with N(xd, c) > 0 and N0 the number of features xd with N(xd, c) = 0. The
probability estimate (2.3) becomes

P (xd|c) =





N(xd, c)− b

N(c)
if N(xd, c) > 0

b

N(c)

N+

N0
if N(xd, c) = 0

Once the model has been trained this way, conditional probabilities of cor-
rectness are obtained from equation (2.2).

In practice, some features may have continuous rather than discrete do-
mains. In that case, the domain is discretised into a fixed number of bins
(usually around 20). The discretisation is performed in a semi-automatic
manner by setting a minimum and maximum value for each feature. The
range is split in a number of evenly-spaced bins of fixed size. The minimum,
maximum and bin size are set by visual inspection of the histograms of the
features of the examples from the correct and incorrect classes. Given this
information, our naive Bayes implementation includes a function that maps
the continuous feature value xi to the corresponding discrete bin number.
Then the probability estimation procedure is used as explained above on the
discretised features.

2.3.2 Multi-Layer Perceptron

The multi-layer perceptron (MLP, cf. [4]) is a generalisation of linear models
obtained by stacking layers of perceptrons. In our work we use only one
hidden layer, giving a discriminant function for an input x of the form:

f(x; θ) = s (v.h(W.x)) (2.4)

where θ = {W,v}, W is a matrix of input layer weights, and v is a vector
of output layer weights. h(·) is a transfer function which non-linearly trans-
forms the linear combination of inputs W.x. The same transfer function
is used for all “hidden units” j. s(·) is an activation function: for regres-
sion just the identity function; and for probability estimation the so-called
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“softmax” function, similar to logistic regression [18], which transforms the
unconstrained MLP output into the probability estimate P̂ (c = 1|x; θ).

Parameter estimation, aka training, is done by minimising the empirical
loss using a stochastic gradient descent. The empirical loss is:

C(θ) =
∑

i

`(x(i), E(x(i), R(i)))

(recall that E is the MT evaluation score used to define the correctness of
x). For regression, we use the standard squared-error loss `(x, E(x, R)) =
(f(x; θ)−E(x, R))2. For probability estimation, we use negative log-likelihood:
`(x, c) = − log(cP (c = 1|x)+ (1− c)(1−P (c = 1|x))), where c is derived by
thresholding E as described in section 2.2.

In stochastic gradient descent, examples are presented one at a time,
the output is calculated, and the gradient of the loss for this example is
calculated using back-propagation, which is essentially a convenient way to
derive the gradient of the loss wrt the parameters using the structure of the
model. The parameters are then updated incrementally by moving them
slowly in the direction of the gradient:

θ̂ ← θ̂ − η∇θ `(x(i), E(x(i), R(i)))

where η is a positive learning rate.
In order to ensure good theoretical as well as practical convergence of

the stochastic gradient descent, it is extremely important that the examples
should be presented in random order. This issue will be addressed below. It
should be noted that stochastic gradient descent offers no guarantee against
local minima, but in practice it may actually converge quite fast towards
a minimum, especially when the data is very redundant. Considering that
in our confidence estimation problem, many features are very redundant,
especially for hypotheses relating to the same source sentence, stochastic
gradient descent seems an attractive learning strategy.

To implement MLP training, we used the neural network on-line algo-
rithm provided by the free machine learning library Torch [7], with some
modifications detailed below.

2.3.3 From Maximum Entropy to Multi-Layer Perceptrons

In this section we note some similarities between the popular Maximum En-
tropy technique [3, 36], the Multi-Layer Perceptron and a particular case of
MLP, the Single-Layer Perceptron (SLP), when used for probability estima-
tion.
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All these models involve a log-linear combination of feature functions.
In Maximum Entropy, the posterior class probability is given by:

P (c|x) ∝ exp

(
∑

m

λmfm(c,x)

)
(2.5)

where fm(c,x) are the feature functions, which may depend on the classes.
A Single-Layer Perceptron equipped with a “softmax” layer essentially

implements logistic regression. For each M -dimensional input vector x, the
posterior class probability is given by:

P (c|x) ∝ exp

(
M∑

i=1

wc
i .xi

)
(2.6)

Where wc is the M -dimensional weight vector for class c. There are some
interesting relationships between MaxEnt and SLP. MaxEnt uses a single
parameter vector λ, but potentially richer features. When both models are
trained by maximum likelihood, MaxEnt can actually simulate a SLP by
choosing a specific set of features. With C classes c = 1 . . . C, let us define
the C ×M dimensional vector:

f(c,x) = [ 0, . . . 0︸ ︷︷ ︸
(c−1)×M

,x, 0, . . . 0︸ ︷︷ ︸
(C−c)×M

]

Then the maximum likelihood parameters λ are

λ = [w1,w2, . . .wC ]

So MaxEnt may be used to train and implement a SLP. The reverse is
also true to some extent. Notice that in Maximum Entropy, the feature
functions are arbitrary, but fixed during the learning process. Equation
2.6 uses directly x as input, but in fact x usually contains features calcu-
lated from the data. Using any fixed feature expansion Φ(x) instead of x
is therefore equivalent. In that case, P (c|x) ∝ exp(wc.Φ(x)), where the
weight vector wc (for class c) now has a dimension that matches the feature
space. In order to transform a MaxEnt model (2.5) with F feature functions
f(c,x) = [f1(c,x), f2(c,x), . . . fF (c,x)] into a SLP (eq. 2.6), let us define the
following feature vector:

Φ(x) = [f(1,x), f(2,x), . . . f(C,x)]
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A SLP with parameter vectors

wc = [ 0, . . . 0︸ ︷︷ ︸
(c−1)×F

, λ, 0, . . . 0︸ ︷︷ ︸
(C−c)×F

] (2.7)

will then exactly correspond to the MaxEnt model, as wc.Φ(x) = λ.f(c,x).
Note however that simply training a SLP on Φ(x) will not result in a model
equivalent to MaxEnt, as the weight vectors wc will be independently fit
to the data. In order to ensure an exactly equivalent model, it is necessary
to enforce the constraints of equation 2.7, namely that most parameters
are fixed to 0, and the non-zero part of the vector are identical accross all
different wc.

This exemplifies one key difference between Maximum Entropy and the
Single-Layer Perceptron. As Maximum Entropy may use different features
for different classes, and may use other features in common between several
classes, it offers a compact but powerful representation of the data.

A Multi-Layer Perceptron with a “softmax” layer (eq. 2.4) models the
posterior class probability as:

P (c|x) ∝ exp


∑

j

vcj .h (Wj..x)




If the input weights W are held fixed, fj = h (Wj..x) may be used as a fea-
ture function and this reduces again to a special case of Maximum Entropy.
Usually, however, both input and output weights (W and wc) are estimated
from the data. Both Maximum Entropy and MLP therefore implement some
kind of log-linear combination, but with two main differences:

• Maximum Entropy naturally allows to share feature functions between
classes or tailor specifically some features to a particular class.

• On the other hand, MLPs can “learn” the feature functions fj =
h (Wj..x) from the data by adapting the input weights W.

Although the use of a single transfer function h(·) in MLP may at first
seem overly restrictive, there exist numerous proofs that, under mild condi-
tions on h, MLPs are universal approximators, ie they can approximate any
(continuous) function arbitrarily closely (see, eg [17]).
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2.4 Learning From A Huge Data Set

It is a general principle in machine learning that more data is always prefer-
able. Large data sets allow for stable training procedures, increased gen-
eralization power, and potentially reduce the need for developing complex,
high-level features. Many theoretical results demonstrate improved guaran-
tees on performance for larger training sets. For such reasons, we are lucky
to have at our disposal a very large set of data on which to train and test
our models.

The responsibility of dealing with such quantities of data, however, has
proved to be non-trivial, even on modern, well-equipped systems. Our data
requirement commonly exceeds the available 4GB of memory, and the sheer
quantity of information in its raw form approaches 100GB. As a result we
have invested significant time into developing and discovering methods that,
though of a practical nature, have been critical to the success of our machine
learning approach.

2.4.1 Compression

A primary consideration is the ability to store the entirety of the data set
on disk; our resource contraints required the use of compression even for
this purpose. In order to optimize our access to the compressed data, we
developed a standardized interface for reading and writing compressed files,
and made a systematic comparison of the popular compression methods
gzip and bzip2. Our results are summarized in figure 2.2. We observe a
performance hit of approximately 50% moving from a flat file to the gzip
standard; however, this drop is accompanied by a compressed size reduction
of 87%. Moving to the more recent bzip2 format, we observe an additional
33% drop in compressed size, but the read times increase dramatically by
approximately 700%. Comparisons of compressed write speed produced
qualitatively similar results, though in all cases write speed is significantly
slower than read speed.

Our original choice of compression, bzip2, had been made with respect
to its superior compression ratios. However, while our tests do confirm this
advantage, the speedup of 5 to 10 times observed using gzip easily outweighs
the 50% larger on-disk size, especially considering that a single pass through
the data set requires on the order of 6 hours if it has been compressed using
bzip2. Conversion of all large data files to the gzip format allowed us to
generate features and conduct experiments requiring a full sweep of the
data in roughly one hour.
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Figure 2.2: Performance of gzip and bzip2 in comparison to a flat file. Dark
bars indicate the time taken reading one character at a time, and grey bars
indicate the time taken reading one line at a time. Boxes indicate compressed
size. The file is a 100MB sample of our data set.

2.4.2 Data Caching

For the purposes of training our models via gradient descent, we require
stochastic presentation of the example set. In particular, if the example
stream is not sufficiently randomized, we expect to see dramatically in-
creased overfitting as the model becomes locally adapted to an organized
data set. It is crucial, then, that we present examples in a random way.

Randomizing our data, however, is non-trivial because its size typically
exceeds our available memory by a factor of 10 or more. Furthermore,
random access on disk is extremely expensive, thus we would like a method
of randomization that reads sequentially from the data set. To satisfy these
conflicting goals, we have incorporated a caching system into the Torch
machine learning library. The basic principle of the example cache is that
it is loaded sequentially but unloaded randomly; in this way we provide a
compromise between true randomization and minimal I/O overhead. The
caching process is summarized in figure 2.3.

If the data set consists of n examples {x1, x2, . . . , xn}, and examples are
requested at times t = 1, 2, . . . from a cache of size C, then example xi will
enter the cache at time max(0, i − C). Since any example in the cache is
selected with probability 1

C
at each request, the number of requests r for
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Figure 2.3: Example caching procedure. When an example is requested, a
random element in the cache is selected and removed. The hole is filled by
the next example from disk.

which an example will remain in the cache is a geometric random variable
with expectation C. Thus, the expected time of presentation for example xi

is max(C, i), and in general, ignoring edge effects, the cache does not alter
the expected presentation time of any example. However, the variance of r is
approximately C(C−1), thus for large C the standard deviation of r is about
C. This implies that the necessary cache size should vary roughly linearly
with the degree of data organization, measured by the linear movement
distance required to escape effects of locality.

Since our data are organized into N-best lists of size approximately
16,000, themselves deriving from source sentences in small groups of 1-5,
we estimate that a cache size of approximately 100,000 should be adequate
to achieve sufficient randomness. Empirically, we observe the results in fig-
ure 2.4. We observe large drops in error rate as the cache size grows beyond
successive multiples of the N-best list size, and a cache size of even 50,000
appears to produce results indistinguishable from the fully random condition
on our data. Furthermore, with a cache of at least 100,000 examples, the
variation in performance is extremely low. Our experiments thus confirm
the intuition above, and, as we have enough memory available for a cache
of several million examples, it seems safe to say that the example cache will
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Figure 2.4: Cache performance as measured by classification error of the
resulting model. The vertical lines represent cache sizes equal to one, two,
and three N-best lists. Small dots represent individual trials; the solid line
connects average results for each tested cache size. The largest cache is
equal to the size of the sample dataset; thus it provides completely random
example presentation.

have no perceptible effect on the performance of our models. On the other
hand, since the implementation of the cache allows us to read the data set
from disk (in its compressed form) only once per iteration and in a squential
manner, the time savings are significant over a disk-based randomization
method.

2.4.3 Parallel Training

As a final optimization, we have streamlined the learning process by allowing
large banks of arbitrary MLPs to be trained simulataneously. Though our
data compression and example cache reduce the cost of the training process
significantly, a full run of many iterations is still expensive, requiring on the
order of 10 hours, due to the extensive disk use. It thus remains impractical
to train large numbers of models or to search for optimal parameters in a
sequential way.

To compensate, we have expanded the Torch machine learning toolkit
to train large numbers of arbitrary MLP models at once, sharing the same
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example stream for efficiency. This framework allows us to tune model pa-
rameters in batches, in addition to providing convenient tools for performace
comparison and model selection. We estimate that the time saved by this
method approaches 80-90% as the number of models trained simultanouesly
becomes large (in other words, when training one model, approximately
80-90% of the time is normally spent on disk operations).

2.5 Evaluating Confidence Estimation Performance

As described in the introduction, we are interested in assessing the perfor-
mance of confidence estimation techniques in two slightly different settings:
a strong version requiring accurate probabilities of correctness, and a weak
version requiring only binary classification decisions. The metrics we use for
each task are described in each of the following two sections. In both cases,
they are calculated over a labelled test corpus D = {(x(i), c(i))}i=1...n, where
c(i) is 1 if x(i) is correct, otherwise 0.

2.5.1 Metrics for Probability Estimates

For evaluating probability estimates, a natural metric is the negative log-
likelihood assigned to the test corpus by the model, normalized by the num-
ber of examples in the corpus:

NLL = −
∑

i

log p(c(i)|x(i))/n

= −
∑

x

p̃(x)
∑

c

p̃(c|x) log p(c|x),

where p̃ denotes an empirical (relative frequency) distribution over D. Neg-
ative log-likelihood is the loss function we used to train our MLP classifiers,
and it is related to the loss function used for naive Bayes models (the latter
is −

∑
i log p(x(i), c(i))). As the second line in the above equation shows, it

is also the expected cross entropy between the empirical distribution and
the model distribution, across all contexts x. Thus it can be seen as a kind
of estimated distance from the true distribution to the model distribution.

Log-likelihood has the problem that it is sensitive to the prior probability
of getting correct output from the base system—log-likelihood scores will
tend to be better if the base system is either very bad or very good. Direct
comparisons of log-likelihood scores are therefore not very meaningful if they
pertain to base systems whose performance differs significantly. To address
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this problem, we use normalized cross entropy (nce) scores [29] instead of
plain log-likelihoods. Normalized cross-entropy measures the relative drop
in log-likelihood compared to a baseline (NLLb) that depends on the prior
probability of correctness:

NCE = (NLLb −NLL)/NLLb.

Thus NCE normally ranges from 0 for baseline performance to 1 for perfect
performance. Negative scores are also possible, and indicate performance
worse than the baseline.

To establish the baseline score NLLb, we assume a model that assigns
some fixed probability of correctness, p1, to all examples. Writing NLL as a
function of p1 gives:

NLL(p1) = −(n0 log p0 + n1 log p1)/n

where n0 and n1 are the numbers of correct and incorrect examples in D,
and p0 = 1 − p1. It is easy to show using calculus that this is minimized
when p0 and p1 are set to the corresponding priors, giving:

NLLb = −[n0 log(n0/n) + n1 log(n1/n)]/n.

2.5.2 Metrics for Discriminability

For weak CE, we need to measure only how well our model discriminates
between correct and incorrect examples, rather than the accuracy of its
probability estimates. As described in section 2.2, in this setting we focus
on a discriminant function f(x; θ) with the intention of setting a threshold
that will be optimal for a given application. Evaluating f in the abstract,
for all possible applications, requires techniques that capture classification
performance across the range of all possible thresholds. In this section,
we describe three such techniques: minimal classification error rate, ROC
curves, and IROC.

Classification Error Rate

The most intuitive measure is simply the proportion of errors made by the
“best” classifier over the test corpus. Given an optimum threshold τ̂ , and a
decision procedure characterized by:

g(x) =

{
1, f(x; θ) ≥ τ̂
0, else,
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the classification error rate is defined as:

CER =
∑

i

(1− δ(g(x(i)), c(i)))/n,

where δ() is 1 if its arguments are equal, otherwise 0. To set τ̂ , we optimize
either on a separate validation corpus or directly on D. The former method
gives an unbiased estimate of CER; the latter gives an overoptimistic esti-
mate, but one that is convenient to calculate and useful for comparing the
relative performance of different classifiers on the test set. In both cases, we
use as a baseline the error rate min(n1, n0)/n of a classifier that assigns all
examples to the most frequent class.

ROC Curves

There are four basic statistics that describe the performance of any binary
classifier, shown in table 2.1. Since three numbers are required for a com-
plete characterization, no single scalar metric is entirely satisfactory, and
different research communities have tended to develop their own preferred
measures, eg accuracy in machine learning; precision, recall, and F-measure
in information retrieval, etc. The tradition in confidence estimation is to use
correct acceptance and correct rejection rates, defined with respect to the
intersection labels in table 2.1 as CA = A/(A+ B) and CR = D/(C +D),
respectively.

The plot of CR against CA for all values of the classification threshold τ is
known as a Receiver Operating Characteristic (ROC) curve.2 ROC curves
lie on the unit square and connect the points (0, 1) and (1, 0): random
separation of the classes gives a curve that runs along the diagonal, and
perfect separation gives one that coincides with the top and right edges of
the square (or the bottom and left edges in the case of perfect inverted
separation). ROC curves thus provide a normalized picture of classifier
performance that makes it easy to compare classifiers across the range of
(relative) threshold values. Classifier A dominates classifier B if A’s curve
is always above B’s whenever the two curves differ. It is possible for neither
classifier to dominate the other (see section 4.4 for example of such a curve).
Other properties of ROC curves can be found in [8].

To plot an ROC curve, one typically sorts the examples in the test corpus
in ascending order by assigned score f(x; θ). Then each rank 1, . . . , n in the
resulting corpus D’ corresponds to a distinct pair of (CA,CR) values that

2Minor variants are sometimes used instead, such as 1−CA versus 1−CR or CA versus
1− CR.
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1 0
1 A B
0 C D

Table 2.1: Binary contingency table. Vertical (bold) labels indicate true
class, and horizontal labels indicate assigned class. Letters indicate the
proportion of examples in the intersections of these categories, eg A is the
proportion of correct examples labelled as correct. Since A+B+C+D = 1,
any three parameters uniquely determine the fourth.

sorted true CA CR
rank class

1 0 6/6 0/4
2 0 6/6 1/4
3 1 6/6 2/4
4 0 5/6 2/4
5 1 5/6 3/4
6 1 4/6 3/4
7 0 3/6 3/4
8 1 3/6 4/4
9 1 2/6 4/4
10 1 1/6 4/4
– – 0/6 4/4 0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Example ROC Curve

ROC

Figure 2.5: Example of a sorted data set and ROC curve (with CA on the
horizontal axis, and CR on the vertical axis.)

can be plotted on a graph. Figure 2.5 gives an example of a sorted data set
and the resulting graph.

IROC

ROC curves provide for a qualitative analysis of classifier performance; a re-
lated quantitative metric is IROC, defined as the area under an ROC curve.
From figure 2.5 it is obvious that ROC curves are staircase-shaped: either
CA or CR will change with each new point, but never both simultaneously.
This makes it easy to calculate the area by simply summing fixed-width
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columns in the graph. If D’ is a data set sorted by assigned score3 this
calculation is:

IROC(D′) =

n∑

i=1

δ(c(i), 1)

i−1∑

j=1

δ(c(i), 0)/n0n1

where n0 and n1 are the numbers of incorrect and correct examples as be-
fore.4 In other words, each correct example contributes a term that is pro-
portional to the number of incorrect examples with lower ranks.

The geometric interpretation makes it obvious that IROC takes on val-
ues in [0, 1], with 0.5 corresponding to a random separation of correct and
incorrect examples, 1.0 corresponding to a perfect separation (all incorrect
examples before correct ones), and 0.0 the opposite. It is less obvious that
the baseline value of 0.5 is not affected by the prior probability of correctness
in the data set, as is CER, for example. Clearly, a classifier cannot exploit
knowledge of prior probabilities to improve IROC directly, since assigning
all examples to the most frequent class will not affect their ranking. How-
ever, it might still be the case that the expected value of IROC across all
possible rankings depends on the prior.

To show that this is not the case, it is helpful to rewrite IROC in terms
of the sequence R of the ranks of the correct examples in D′: R(D′) =
{r|c(r) = 1} Then:5

IROC(R) =

n1∑

j=1

(rj − j)/(n0n1). (2.8)

Letting Qn,n1 be the set of all rankings R for data sets with n1 correct
examples out of n total examples, and assuming that all rankings are equally
likely, the expected value of IROC across all rankings is:

E[IROC(R)] =
∑

R∈Qn,n1

IROC(R)/|Qn,n1 |. (2.9)

3Here we view the original data set D as a set of triples (x, c, i), where i ∈ {1, . . . , n}
is the unique index assigned to each example. D’ is simply a re-indexing of D in which
higher indexes correspond to higher assigned scores.

4Note that IROC is undefined if either n0 or n1 is 0; we assume throughout this section
that this is not the case.

5It is interesting to note that this statistic is similar to the Wilcoxon rank sum [38].
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Defining the complement of R to be R = {r|n+ 1− r ∈ R}, we have:

IROC(R) + IROC(R) =

n1∑

j=1

(rj + n+ 1− rj − 2j)/(n0n1)

= (n1n+ n1 − n1(n1 + 1))/(n0n1)

= (n− n1)/n0 = 1.

Clearly then,
∑

R∈Qn,n1
IROC(R) + IROC(R) = |Qn,n1 |. Because the com-

plement of each R in Qn,n1 is also in Qn,n1 , and because there is a one-to-one
mapping between rank sets and their complements, {R|R ∈ Qn,n1} = Qn,n1 .
Therefore:

∑

R∈Qn,n1

IROC(R) + IROC(R) = |Qn,n1 |

∑

R∈Qn,n1

IROC(R) = |Qn,n1 |/2

Substituting this result into (2.9) gives E[IROC(R)] = .5. This is a nice
property because it means that IROC values from different data sets can be
compared directly.

IROC versus CER

An interesting question is the extent to which the two scalar measures of
performance we use—IROC and CER—are correlated. It turns out that
whenever one classifier dominates another (having a systematically higher
ROC curve and therefore a higher IROC), it also has a lower CER (assuming
the threshold for CER is optimized on D). This is significant because differ-
ent classifiers usually have clearly separated ROC curves, rather than ones
that intertwine. Whenever this common pattern occurs, we can conclude
that the dominant classifier is better according to both metrics.

Formally, classifier A dominates classifier B if the two give different rank-
ings for D and, for identical values of CA, A’s maximum CR value is always
at least as high as B’s maximum CR value. To show that this leads to lower
CER values, we express classifier accuracy as a function of CA and CR:

ACC = (n1CA+ n0CR)/n.

Now let CAB and CRB be the CA and CR values that correspond to B’s
maximum accuracy threshold, and let CRA be the maximum CR value that
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results when A operates at a threshold that makes its CA equal to CAB. If
ACCA is the accuracy of A at this threshold, and ACCB is B’s maximum
accuracy, then from the definition of dominance:

ACCA −ACCB = n0(CRA − CRB)/n ≥ 0.

This establishes the property, since ACC = 1− CER.

2.5.3 Bootstrapping Error Bars

We end this section with a short presentation of the bootstrapping technique
that we used to derive error-bars on some of the experimental results.

Let us consider that we are interested in estimating the “performance”
of a model. Here “performance” may be classification error, IROC, average
precision, F-score, etc. If we wish, for example, to compare two models,
or have guarantees on the average performance of a model, it is necessary
to better characterise the variability of the performance, in order to be
confident that an observed difference is not due to chance variations on a few
examples. This may be done by obtaining a distribution of the performance,
or some summary statistic on this distribution, such as confidence intervals.
For some of these performance measures, it is easy to derive confidence
intervals on the performance. However, in most cases where the performance
measure is a bit complicated, there is no analytical expression, and we must
estimate error bars in some other way.

In the following, we use the term “error bar” to mean symmetric confi-
dence interval. For example, the 95% error bars on an IROC value of 0.80
may be 0.05, indicating that [0.75, 0.85] is a 95% confidence interval for the
IROC of this model.

The idea with estimating error bars on the performance of a model is
the following. If we could sample exhaustively from the distribution of the
data, (x, c) ∼ P (x, c), we may be able to calculate the “true” performance
S of our model (eg the “true” IROC). Unfortunately, we can not do that for
a variety of reasons including the fact that the true distribution P (x, c) is
usually unknown and that we do not have infinite computing power.

However, we have a sample D = {x(i), c(i)} containing examples with
associated labels. From this sample, we can obtain an estimate of the per-
formance Ŝ = f(D). How far from S is our estimate Ŝ ?

Obviously, if we could repeatedly sample from P (x, c) different samples
D, we could replicate this process, obtain numerous estimates Ŝ and there-
fore better characterise the distribution of (Ŝ−S). However, we usually can’t
do that, for the same reason that prevents us from calculating S directly.
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The bootstrap principle [9] consists in replacing the unknown (Ŝ − S)
by the empirically obtained (S∗ − Ŝ). Having a possibly large collection
of estimates S∗ from many bootstrap samples, we can derive statistics on
(S∗− Ŝ) and apply them to (Ŝ −S). For error bars, we will simply find the
value ∆ such that P (|S∗− Ŝ| < ∆) = 1−α based on the bootstrap samples.
We then use ∆ as an error bar for Ŝ. Our final estimate of the performance
Ŝ, with error bars, is therefore Ŝ ±∆.

More general details about the bootstrap may be found in several text-
books about the bootstrap, eg [9, 14].

For all experiments reported in subsequent chapters for which confidence
intervals are given, the boostrap technique was used with 20 resampling runs
and a confidence interval of 95%.
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Chapter 3

Sentence-Level Experiments

In this chapter we describe the experiments carried out at the sentence
level. Given a source sentence and a machine-generated translation, we
are interested in making a judgement about the correctness of the entire
translation. As discussed in the introduction, since the vast majority of
machine-generated translations are simply wrong, our strategy here is to re-
define “correctness” as having an MT evaluation score higher than a certain
threshold.

The chapter is divided into three main parts. Section 3.1 describes the
features we used. Section 3.2 gives the results of experiments to test various
confidence estimation techniques based on these features, using the evalua-
tion metrics described in section 2.5. Finally, section 3.3 reports on experi-
ments to determine if CE techniques can be used to improve the output of
the base MT system.
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3.1 Sentence-Level Confidence Features

In this section we describe the 91 features we used for sentence-level CE.
Each description is accompanied by tags that classify the feature in two
separate ways:

• By dependence on the base model (B) or not (N). Features are con-
sidered dependent on the base model if they express some information
that could not be inferred just by examining the source/target pair to
which they apply. For example, the length of a target hypothesis is
not considered a model-dependent feature, even though the hypothesis
has of course been generated using the model. On the other hand, the
average length of all hypotheses in an nbest list is considered model
dependent because it is not an intrinsic property of the particular hy-
pothesis under consideration.

• By dependence on the source text (S), the target text (T), or both
(ST). Features are tagged as S or T if they are intrinsic to either the
source or target texts—ie, can be calculated from them in isolation—
otherwise ST. For instance, the average length of the target sentences
in an nbest list would be tagged S, because it can be calculated from
the source sentence alone (using the base SMT system to generate the
nbest list), and does not depend on the current target hypothesis.

This classification is used in the feature-attribution experiments described
in section 3.2. To facilitate cross-referencing, each (scalar) feature is also as-
signed a unique index. When a group of closely-related features is described
together, a range of indexes like (5–9) will be indicated. Table 3.3 at the
end of the section contains a list of all features, along with their indexes,
names, and classifications.

In general, features that pertain to the source sentence are listed first in
this section, followed by those that pertain to the target sentence, and finally
by those that apply to both. However, this is only a loose ordering which is
violated when necessary in order to group features that were implemented
together or that are related in some other way. Also, note that feature
indexes are not assigned in order of the listing here, but rather in the order
the features were implemented.

3.1.1 Base Model Feature Functions

As described in [31], the ISI SMT system is based on a maximum entropy
model defined over a variety of feature functions, listed below. We re-used
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these feature functions as confidence features in our CE models.

• BaseScore: a log-linear combination of all of the features listed below.
This is the base model’s main probability estimate, and is used to rank
alternatives in the nbest list. (B, ST, 35)

• CostsAlTemp: log probability for the translation model. (B, ST, 36)

• CostsAlTempPenalty: Because longer alignment templates (ATs) can
be more descriptive and dependable in translation, this penalty en-
courages fewer (and longer) ATs over more (and shorter) ATs. (B,
ST, 37)

• CostsRuleBased1: dependent on the number of a times a translation
rule was used outside of the AT model. For example, rules were used
in all cases of date, time, or digit translations. (B, ST, 38–39)

• CostsLanguageModel, CostsLanguageModel2, CostsLanguageModel3,
CostsLanguageModel4: the log-probability of a target hypothesis based
on one of four trigram language models, constructed identically but
with different training corpora. (B, T, 40–43)

• CostsJump: captures non-monotonicity in source-to-target alignment
by counting the number of jumps in word-to-word alignment within
alignment templates. (B, ST, 44–45)

• CostsSWLex: log-probability of the target hypothesis based on a single-
word lexicon rather than alignment templates. (B, ST, 46)

• CostsWordPenalty: To help keep the translation system from auto-
matically favoring shorter (and therefore more “probable”) hypothe-
ses, this integer word penalty score is monotonically decreasing as
hypothesis lengths grow. (B, T, 47)

3.1.2 Simple Nbest Features

The following features were all extracted from translation system log files in
an attempt to classify a more confident and accurate translation procedure.

1. N -best translation results

• Rank in N -best list. (B, ST, 1, 48)
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• Average hypothesis length: the average length of hypotheses
within the N -best list. (B, S, 2)

• N -best list density: the number of target words of all sentences
in the N -best list divided by the number of source words. (B, S,
3)

• The length N of the N best list. (B, S, 4)

2. Ratio of hypothesis base score and best score. For each hypothesis, its
base-model score (= negative logarithm of the probability) is divided
by the base-model score of the best (first in N -best list) hypothesis,
to give a normalized score that can be compard across different source
sentences. (B, ST, 5)

3.1.3 Search Based Features

The beam search algorithm of the Alignment Template system performs
pruning steps for each cardinality of the coverage vector. All partial hy-
potheses with the same number of covered source positions are compared
and the one with the highest probability among them is determined. Then,
all hypotheses which have a probability close to this best value (i.e. which lie
within the ‘beam’) are kept for further expansions, whereas the others which
have a lower probability are discarded. Furthermore, all those hypotheses
that are equal with respect to the translation and language model states are
recombined in order to reduce the size of the search space.

We computed several features related to this pruning: for each pruning
step, i.e. for each cardinality of the coverage vector, we are given information
such as the number of pruned hypotheses. Those values are averaged over
all pruning steps and taken as features. We extracted the following features:

1. Number of active hypotheses after pruning and recombination: This is
the number of partial hypothesis that were kept for further expansion,
after all indistinguishable hypotheses have been recombined. (B, S, 6)

2. Number of pruned hypotheses: This is the number of hypotheses that
have a low probability (compared to the best one) and are discarded
at this step in the search. (B, S, 7)

3. Base score of best hypothesis in beam: This is the negative logarithm
of the highest probability among all considered partial hypotheses. (B,
S, 8)
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4. Base score of worst hypothesis in beam before pruning: This is the neg-
ative logarithm of the lowest probability among all partial hypotheses
with the same number of translated source words before the pruning
is performed. (B, S, 9)

5. Base score of worst hypothesis in beam after pruning: This is the
negative logarithm of the lowest probability in the beam after pruning
has been performed. These scores are lower or equal to the one in 4.
(B, S, 10)

Note that most of the features in this and the previous section are the
same for all translations of one source sentence. Thus, they give an estimate
of how hard this source sentence is to translate for the SMT system.

3.1.4 Sentence Length Features

We used three sentence-length-based confidence features:

1. source sentence length (N, S, 81)

2. target translation length (N, T, 82)

3. source / target length ratio (N, ST, 83)

These features are trivial but could be indicators of the intrinsic difficulty
of the source sentence and of the potential mismatch between source and
target sentences.

3.1.5 Source N-gram Frequency Statistics

The n-gram frequency features are meant to reflect how common the words
and word sequences in a given source sentence are on average. The intuition
behind them is that if a large percentage of the n-grams in the source sen-
tence have often been seen in a large corpus, then the translations produced
for the sentence may be more accurate.

For these experiments we used the Chinese side of bi-text corpus, initially
used for training the base ISI SMT models. The set of unigrams, bigrams,
and trigrams seen in the Chinese side of the corpus was extracted and sorted
in order of increasing frequency. Start- and end-of-sentence tokens were also
included in this sorting. To save memory, all singleton n-grams were not in-
cluded in final counts and divisions. Source sentences were then broken into
sets of n-grams, and each n-gram found in the sentence was mapped to the
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Statistics Unigrams Bigrams Trigrams
# n-grams seen in corpus 102,625,259 102,025,258 67,319,946
# distinct n-grams seen in corpus 126,725 4,553,400 13,847,674
# distinct non-singleton n-grams 58,616 2,254,454 4,842,677
Max abs. frequency 5,905,550 735,878 253,921
Ave abs. freq x 1749.67 44.23 12.04
# distinct n-grams with freq > x 3773 199,219 582,357
Lower quartile bound 3 2 2
Median frequency 8 4 3
Upper quartile bound 62 11 6
# n-grams in each quartile ∼14,680 ∼560,000 ∼1,200,000

Table 3.1: Corpus Frequency Statistics

absolute corpus frequency previously recorded. General corpus frequency
statistics can be found in table 3.1.

Many typical measures of frequency do not effectively express the sen-
tence n-gram distribution. n-gram frequency arithmetic or geometric means
are heavily affected by the appearance of a few commonly seen n-grams,
regardless of the remainder of the distribution. As can be seen in table 3.1,
only 5.7%, 8.8%, and 12% of non-singleton unigrams, bigrams, and trigrams
respectively were seen more frequently than the mean count. A second pos-
sible approach of simply noting the median n-gram frequency of a sentence
would not give enough detail about the sentence as a whole. Taking this into
consideration, we decided to use a quartile range measure. We divided the
corpus n-grams into four quartiles containing approximately an equivalent
number of distinct n-grams. The number of source sentence n-grams within
each frequency quartile was then counted and normalized over the number
of n-grams in the sentence.

The final result of this approach was 12 parameters per source sentence
showing the percentage of 1-, 2-, and 3-grams in each of the four frequency
quartile ranges. (N, S, 49–60)

3.1.6 Source Language Model Features

Using the same Chinese corpus as in section 3.1.5, a trigram language model
with Kneser-Ney discounting as backoff was built using the SRI Toolkit.
These features were also used in our sub-sentential CE experiments. For
each source sentence, three features were calculated:

• Log-probability of the source sentence (N, S, 61)
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• Perplexity 1 – includes end-of-sentence marker (N, S, 62)

• Perplexity 2 – does not include end-of-sentence marker (N, S, 63)

3.1.7 Averaged Target Word Statistics

This section describes a set of features based on statistics that pertain to in-
dividual target words. Each feature is the average value of the corresponding
statistic over all words in the current target hypothesis. Statistics are:

1. Number of occurrences of the target word within this sentence. (N, T,
74)

2. Relative frequency of the word in the N -best list. (B, ST, 75)

3. Rank-weighted frequency of this word in the N -best list. (B, ST, 76)

4. Frequency of this word in the N -best list, weighted by the base-model
score; this is analogous to the calculation of word posterior probabili-
ties over N -best lists. (B, ST, 77)

In addition to these, we also calculated the values in 2 – 4 over the set
of words in the nbest list occuring in exactly the same target position as the
current one. (B, ST, 78–80)

3.1.8 Target Language Model Features

We tried two methods of training target language models (in addition to
those described in section 3.1.1): using an external corpus, and using the
current nbest list.

External Training Corpus

Using the English half of the training corpus described in section 3.1.5,
an English trigram language model with Kneser-Ney discounting as backoff
was built using the SRI Toolkit. As in 3.1.6, for each target sentence, three
confidence features were calculated:

• Log-probability of the target sentence (N, T, 64)

• Perplexity 1 – calculated using all input tokens (N, T, 65)

• Perplexity 2 – calculated using all token but the end-of-sentence marker
(N, T, 66)

These features were also used for sub-sentential CE experiments.
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Using the Nbest List as Training Corpus

The idea here is to capture the homogeneity of translations within nbest lists.
For each source sentence, we used the words in the corresponding nbest list
to build a target “vocabulary” Vnbest, and then trained 1-, 2-, and 3-gram
language models. As probabilities were calculated for sentences based on
LMs trained on the same sentences, smoothing techniques were unnecessary
and therefore not used. Using the resulting vocabulary and models, we
computed the following nine confidence features for each hypothesis in the
nbest list:

• Sentence 1-gram log-probability (B, ST, 11)

• Sentence 2-gram log-probability (B, ST, 12)

• Sentence 3-gram log-probability (B, ST, 13)

• Sentence 1-gram log-prob divided by sentence length (B, ST, 14)

• Sentence 2-gram log-prob divided by sentence length (B, ST, 15)

• Sentence 3-gram log-prob divided by sentence length (B, ST, 16)

• 1-gram perplexity (B, ST, 17)

• 2-gram perplexity (B, ST, 18)

• 3-gram perplexity (B, ST, 19)

In addition to the language-model based features above, we also calculated
three related features that pertain to the nbest list as a whole:

• average length of the target sentences (B, S, 20)

• vocabulary size divided by average sentence length (B, S, 21)

• vocabulary size divided by the length of the source sentence (B, S, 22)

Note that the final feature is a kind of average “fertility” of the words in the
current source sentence.
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3.1.9 Center Hypothesis Features

These features are similar in spirit to the ones described in the previous
section in that they capture the degree of similarity between the current
hypothesis and others in the nbest list. The Levenshtein (edit) distance
between each of the top 1000 hypotheses was calculated and, without tak-
ing nbest rank into account, the hypothesis with the smallest average edit
distance from all others was selected as the center hypothesis.

Confidence features included:

1. Edit distance, hn, from the center hypothesis. (B, ST, 67)

2. The percentage of the other 1000-best hypotheses with an edit distance
less than |hn| ∗ 0.5. (B, ST, 68)

3. The percentage of the other 1000-best hypotheses with an edit distance
less than |hn| ∗ 0.35. (B, ST, 69)

The second and third features were meant to highlight hypotheses which
may have differed greatly from a few outliers but deviated little from much
of the hypothesis population. In preliminary testing, text generated from
hypotheses having the greatest value here seemed to improve the BLEU
score as much as or more than text generated from the center hypotheses
themselves accomplished.

3.1.10 Basic Syntax Check

This basic syntax check looked to highlight hypotheses with mismatched
parentheses and/or quotation marks. If such a syntax error was identified,
these features would trigger and become non-zero. (N, T, 72–73)

3.1.11 IBM Model 1

In [5], five standard SMT methods were presented. While our base SMT sys-
tem is derived from IBM Model 4, we can examine the resulting translations
with the much simpler Model 1. Model 1 uses what is known as a “bag of
words” translation model, meaning that its calculations are not tied to any
specific alignment structure (apart from the basic one-to-many source-target
correspondence assumed by all IBM models). Rather, for each source/target
hypothesis pair, we find the sum of probabilities of all possible alignments.
This captures a sort of topic or semantic coherence in translations.
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As defined in [5], Model 1 gives a probability of any given translation
pair with the formula

p(f |e) =
ε

(l + 1)m

m∏

j=1

l∑

i=0

t(fj |ei),

where e0 is the ”empty” word, introduced to capture source token alignments
that correspond to no actual target token.

TheWS03 SMT group trained models of this form using the tool Giza++,
producing two distinct distributions: p(f |e) and p(e|f). Using our set of
source and target sentences, we used these trained distributions to find the
Model 1 log probability of the source sentence given each target sentence,
as well as of each target sentence given the corresponding source sentence.
Each of these results was considered as a confidence feature. (N, ST, 90–91)

3.1.12 Alignment Discontinuities

In this section we describe both sentence-level and word-level confidence
features that identify non-contiguities within the word alignments produced
by the baseline SMT system. These are many-to-many alignments: any
source word can be aligned to an arbitrary number of target words and vice-
versa. For language pairs such as English-French or English-Chinese, where
alignments between the source an the target sentence tend to be monotone,
correct translations should in general result in contiguous word sequences
aligned with each other. The presence of non-contiguities within the word
alignments could therefore be an indicator of alignment and/or translation
problems. Jumps can occur both within the source-to-target and within
the target-to-source alignments. The baseline SMT system already captures
this property as a feature function, described in section 3.1.1 as CostsJump
(and described in [31] as the Phrase Alignment Feature Function). This
feature simply sums over jump distances in the source language of alignment
templates which are consecutive in the target language. The features we
implemented explore this idea further in the following ways:

1. bidirectionality: we compute the features both over target and source
language

2. maximum jump: we consider the maximum jump as a sentence-level
or word-level confidence feature

3. average-jump: at the sentence-level we normalize the sum of jumps by
the number of words in the sentence
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Moreover, we compute these features on a word-level basis, which allows
them to be used for word-level confidence estimation. The sentence-level fea-
tures are simply the average and maximum of the alignment-jump features
over all words in the sentence.

Maximum and average jumps have the advantage of being robust to sen-
tence length: the original sum of jumps feature function is perfectly valid
within the SMT translation framework, where the focus is on comparing
translation alternatives for a given source sentence and are typically com-
parable in length. However, for confidence estimation it is important that
confidence features generalize well from one sentence to another, regardless
of its length.

We give the formal definition of these features with respect to source-to-
target alignments. The definitions for the target-to-source alignments are
analogous. Consider an arbitrary source sentence f = f J

i = (f1, . . . , fJ)
consisting of a sequence of tokens fj and a corresponding target translation
e = eIi = (e1, . . . , eI). For each source token fj there is a (possibly empty)
sequence of k aligned target tokens, noted by

A(fj) = (ei1 , . . . , eik),

where the indexes i1, . . . , ik range over {1, . . . , I} and are given in ascending
order. A jump in the alignment of the source token fj occurs if any two
consecutive target tokens (eix , eix+1) within A(fj) are such that ix+1 > ix+1.
The alignment jump for fj is defined as:

J(fj) =
∑

x∈{1,...,k−1}

ix+1 − ix − 1.

We define the maximum alignment jump for fj by:

JM(fj) = maxx∈{1,...,k−1}ix+1 − ix − 1.

These word-level features can then be extended to the sentence level as
follows: the maximum source alignment jump is the maximum alignment
jump over all source tokens:

JM(f) = maxj∈{1,...,J}JM(fj) (B, ST, 84)

and the average source alignment jump is:

J(f) =
∑

j∈{1,...,J}

J(fj)/J. (B, ST, 85)
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3.1.13 Translation Consistency Features

These features use the alignments available from the base model to cap-
ture the degree to which target words or phrases (alignment templates) are
translated the same way throughout the nbest list. For each target word or
phrase in the current hypothesis, we determine the source word to which it
is aligned most often in the nbest list, and divide the number of times it is
aligned to that word by the total number of potential alignments (ie, the size
of the nbest list). These normalized counts are used as-is for sub-sentential
features, but averaged over all words or phrases in the target sentence to
yield two sentential features:

• average target word consistency (B, ST, 71)

• average target phrase (= alignment template) consistency (B, ST, 70)

3.1.14 Phrase-Based Language Models

This set of twelve features was calculated for purposes and in a manner very
similar to that depicted for the nbest language models in section 3.1.8. How-
ever, whereas that procedure generated a vocabulary of target words and
word-based language models, our components here focussed on a vocabu-
lary of alignment templates Vnbest AT used throughout a source sentence’s
N -best list.

To achieve this, we represented each Alignment Template and the source
positions which are aligned as a unit in each hypothesis sentence. For ex-
ample, if according to the translation model the target words “the first
two months of this year” of a certain hypothesis were aligned to the first
three Chinese terms of the source sentence, we would add to the vocabulary
Vnbest AT the single concatenated term

“the+first+two+months+of+this+yearA0+1+2”

Repeating this concatenation process for all alignments in the full nbest
list, we were then able to train AT-based (unsmoothed) 1-gram, 2-gram,
and 3-gram language models. Using these models, the same twelve features
as described for nbest word LMs in 3.1.8 were computed. (B, ST, 23–34)

3.1.15 Semantic similarity features

A pervasive problem in Machine Translation is the existence of multiple
possibilities for correct output. Whereas in ASR there is a unique string of
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text corresponding to the sound-stream, acceptable translations for a source
sentence can vary wildly in length, word order, and lexical choice. This
problem has dire consequences for the language and translation models; the
true probability associated with a particular word will be divided among
its synonyms, thereby assigning inappropriately large weights to words with
fewer synonyms. We would like our confidence estimation to not be fooled
by this divergence of possible meaning representations; we would like the
system to be able to identify that even though a pair of sentences may share
few words, if the semantic content is similar, they ought to be assigned
similar confidence scores.

The approach employed here is to construct a function that will quantify
the degree of semantic similarity between a pair of sentences. This metric
can then be used for the same purposes as the other sentence-level metrics
discussed in this paper (e.g. Levenshtein distance) In this section, then, we
discuss briefly some current ideas in creating word-level semantic metrics,
then discuss how they can be used to build a sentence-level metric, and what
its relevance is for machine translation.

Semantic features have thus far been left out of the system, both because
of their inherent difficulty, and because the reliance on human-constructed
sources of semantic data is somewhat antithetical to the data-driven ap-
proach of statistical machine translation. Nevertheless, the potential gains
from this kind of an analysis are exciting enough to merit its investigation.

Word-level semantic similarity metrics

The use of automatic metrics for semantic similarity at the word level is a
well-studied problem, and in certain domains and for certain applications,
the results are very encouraging. Numerous techniques have been proposed
for solving this problem: for word sense disambiguation and malapropism
detection, approaches based on information content using corpus statistics
[37] and approaches involving some kind of weighted path length in a lexical
taxonomy such as WordNet [16]. Vector-space techniques are also often
employed in information retrieval [10].

Using these metrics in a machine translation context places certain re-
strictions on the type of metric that is employable. Because they rely on
WordNet’s IS-A hierarchy which is only defined for nouns, the information
content approaches cannot be used; we will need to be able to compare in-
stances of other word-classes in translation hypotheses, and it is often the
case that a translation application will hypothesize translations of the same
word using more than one part of speech. Speed is also a concern because
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of the number of word-pairs that the application will need to compare.
The word-similarity function that was used here uses a dictionary-based

approach developed by Banerjee & Pedersen [2]. WordNet, in addition to
representing the interconnections between words, provides a gloss (defini-
tion) for each of them. In this algorithm, similarity between a pair of words
is represented by the degree of overlap between the words used in their
glosses; two words that mean about the same thing, according to this in-
tuition, would be defined using the same words. N -gram overlaps between
glosses are weighted heaver proportional to their length.

Relying solely on the glosses of the words we are interested in comparing
in this manner is unlikely to yield good results: glosses are typically only a
couple words long, and the choice of words used in them is highly arbitrary.
To make the data a little less sparse, the algorithm also defines a set of
relation pairs that indicate other related words that are to be combined–
WordNet has a huge graph structure that can be exploited by comparing
words close to the target words in the graph. For example, the algorithm
would compare the hypernyms (things that the word in question is a specific
kind of) of the words in question. The total similarity score of a word-pair
is a weighted combination of the scores for all the relation pairs.

Computation of this word-similarity metric was done in perl using a
module written by Siddharth Patwardhan and Ted Pedersen [34].

It is important to note that the nodes in WordNet’s graph correspond
not to words but to meanings, or word-senses. Most words that people use
have many senses, and coming across them in MT output, we do not have
the luxury of knowing which sense was the intent of the translator. To deal
with this problem we define the word similarity to be simply the maximum
similarity over all senses, a reasonable assumption given that the words we
are comparing are intended to mean the same thing. In practice this may
not always turn out to be the pair of word senses that were intended by the
translator, but we take it as a reasonable approximation.

Table 3.2 gives a few examples of the kinds of outputs that this function
produces, taken mostly from the test set. While we did no formal testing
aside from a cursory examination of the figures, it seems from this table and
from other similar experiments that this metric is a good one. It is difficult to
evaluate the magnitudes from this kind of experiment—should construction
really be three times as far from development as accomplishments is from
achievements?—but it seems at least that the ordering of the word-pairs is
appropriate. One problem that seems apparent is the bias towards identity:
in the examples above, the similarity between the two instances of economic
is nearly twice as high as any of the other pairs, even those belonging to the
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Word pair Similarity

economic - economic 4.048
accomplishments - achievements 2.142
cities - municipalities 1.963
China - Chinese 1.314
construction - development 0.746
remarkable - remarkably 0.492
apples - oranges 0.338
accomplishments - successful 0.085

Table 3.2: Sample word similarity scores

same WordNet synset (accomplishments and achievements). While such a
metric might conceivably be desirable in the context of information retrieval,
where an exact match to the query is potentially more valuable than a match
on a similar word, in machine translation it would be ideal if synonyms were
given nearly the same score as pairs of the same word, since using a true
synonym yields an equivalent translation. This is especially true because the
metric does not apply translingually and hence only derived outputs can be
compared; we don’t want to bias in favor of particular a particular word
choice if that word choice is merely the output of the system.

Sentence-level semantic similarity

The algorithm described above outputs a number representing the semantic
similarity of two words. In order to generate confidence features for the
entire sentence, we need a way of combining these word-level scores into a
function that measures semantic similarity between entire sentences.

The main problem in doing this is deciding which words to compare.
We can take advantage of the word alignments generated by the translation
system–every word in the target translation is associated with one or more
words of the source sentence. We cannot compare source words to target
words directly, but we can compare two translation hypotheses for the same
source by comparing the words aligned to the same source word. Since
the alignment is many-to-many, we compute a score corresponding to each
source word that is the maximum word-similarity over all pairs of words
aligned to that source word.

In symbols, suppose we have two translation hypotheses E and E ′ whose
words are represented in the form ei or e′i. We define the alignment B by
Bi,j = 1 if fj aligns to ei and Bi,j = 0 otherwise. B′ is defined likewise.
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We can then compute a similarity vector S with one entry per source word
fj ∈ F according to:

Sj = max
i,k

[ sim (ei, e
′
k) ·Bi,j ·B

′
i,k] (3.1)

In the case that there are no content words aligned to a given source
word, that source word is ignored altogether as not contributing to the
semantic content of the sentence.

Note that this use of the alignments to the source makes the sentence-
level metric weakly model-dependant. Intuitively, such a function shouldn’t
depend on the model—it is intended to represent the similarity in meaning
of the two sentences, not anything about the way that the model processed
it. It would in theory be possible to get away without using alignments or
the source sentence at all, computing instead the similarity of each word in
one sentence with each word in the other and assuming that the word-pairs
with maximum similarity are most likely aligned to each other. This has
the significant disadvantage of dramatically increasing the processing time,
a serious problem given the fact that the word-similarity function is already
very slow, so we avoid it.

The most natural way to convert the vector of similarities S into a
sentence-level score would be to simply average the values. This doesn’t
do a good job of capturing the relevant idea, however. Ideally the highest
scores will be given to sentence pairs for which all the words are very similar,
and sentence pairs with most of the words very close and a couple words
completely off should be judged worse than sentence pairs with all the words
only fairly close. The averaging function ought also to compensate for the
dilation of the range of the word-level function near the upper end noted
above.

Three techniques were employed to deal with these issues. The first uses
a log-linear average rather than a straight average:

simlog(E,E′) = exp(
1

# content words

∑

j

(logSj)) (3.2)

This dampens the upper end of the range, mediating the influence of iden-
tical words in the sum, and penalizing more heavily sentences containing
words having little similarity.

Another approach is to simply use the harmonic mean instead of the
arithmetic mean, effectively defining semantic distance as the reciprocal of
similarity and averaging distance instead. Since it is possible to have zero
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similarity, we have to add a parameter α which specifies the extent to which
we want to bias our scale in favor of low numbers. For the experiments we
ran we set α = .2.

simharm(E,E′) =


 1

# content words

∑

j

(
1

Sj + α

)


−1

(3.3)

Also, we can eliminate the impact of large word-similarity values by
quantization; we can pick a threshold value θ and define the sentence simi-
larity as the percentage of content words in the source that are associated
with output words having similarity greater than that threshold:

Qi(θ) =

{
1 if Sj ≥ θ
0 if Sj < θ

(3.4)

and

simthresh(E,E′) =
1

# content words

∑

i

(Qi) (3.5)

Our experiments used θ = 1.
The following table gives some sample outputs of the log-linear sentence-

level similarity metric. Results from the other two functions tend to be
mostly monotonic with this one.

Sentence Sim
comparing to: china ’s 14 open border cities marked economic achievements

china ’s 14 open border cities marked economic achievements 1.444
china ’s 14 open border cities economic achievements marked 1.444
china ’s 14 open border cities significant economic achievements 1.302
china ’s 14 open border cities economic achievements significant 1.302
china ’s 14 open border cities economic achievements remarkable 1.301
china ’s 14 open border cities achievements marked 1.290
china 14 open border cities marked economic achievements 1.281
china ’s 14 open border cities achievements significant 1.148
china ’s 14 open border cities achievements remarkable 1.147
china ’s 14 open border cities achievements significantly 1.135
china ’s 14 open border cities economic remarkable achievements 1.083
china ’s 14 open border cities economic construction remarkable achievements 1.072
china ’s 14 open border cities significant achievement in economic construction 1.026
china 14 open border cities achievements remarkable 0.983
china ’s 14 open border cities building remarkable achievements 0.940
china ’s 14 open border cities construction remarkable achievements 0.939
china ’s 14 open border cities , remarkable achievements 0.918
china 14 open border cities building remarkable achievements 0.777
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Semantic similarity for confidence estimation

The functions described above quantify the degree of similarity between
a pair of sentences. This adds another to our growing list of sentence-
similarity metrics: word-error rate, NIST, etc, and could in principle be
employed in the same manner as any of them. One could, for example,
use the semantic metric to find the center hypothesis in an N -best list and
then let the similarity of this hypothesis to each sentence in the list be a
confidence feature. One could even try using it to compare outputs to the
reference translations and evaluate the system, though given the high degree
of arbitrariness inherent in the measure, it seems very unlikely that this will
produce useful results.

Due to the fact that this metric is extremely computationally expensive,
the only feature that we computed was, for each sentence, the average of
the similarity of that sentence to each of the top three sentences in the N -
best list. The idea is that the top sentences are probably reasonably good
translations, and so we’d like to identify sentences near in meaning to them,
and we use three of them in hope of capturing some of the variance in the
space of acceptable translations. This yields three features for each sentence,
corresponding to the three averaging functions above.

Because computing the similarity between words is such a slow process,
we employ a cache. Every pair of words that is compared is written into
the cache along with its similarity value to minimize the time required to
process them the next time they are encountered; since the words we are
going to be processing are multiple translations of the same sentence, we
can expect to encounter the same pairs of words many times, and thus save
a lot of time by cacheing. For each N -best list, we clear the cache and start
a new one; that way, the size of the cache indicates the semantic variance of
the set of translation alternatives, roughly proportional to the total number
of different content words in the entire N -best. As such, this cache size is
sent to the ML layer as another confidence feature, taking the same value
for every sentence of the list.

The features described in this section can be summarized as follows:

• log-linear average semantic score (B, ST, 86)

• harmonic mean semantic score (B, ST, 87)

• proportion of strongly-related words (B, ST, 88)

• word-pair cache size (B, ST, 89)
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Not surprisingly, the semantic features do little to improve confidence
estimates. Capturing quivalences between words, which this technique sets
out to capture, is at the core of what the statistical MT system does. At-
tempting to do this a priori at least with this approach requires a great deal
of guesswork and intuition, so we expect it to be very noisy. The cache size
feature tends to be slightly more useful than the semantic similarity ones,
probably largely because cache size is also roughly proportional to sentence
length, a feature whose relevance is well-established.

3.1.16 Feature Summary

Table 3.3 contains a list of all features described in this section. The sect
column gives the subsection in which each feature is described, and the
B/N and S/T columns give its base-model and source/target dependence
classifications.
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feature sect B/N S/T name sect B/N S/T
1 nbestfeat.0 2 B ST 48 NBestRank.0 2 B ST
2 nbestfeat.1 2 B S 49 all-quartile.0 5 N S
3 nbestfeat.2 2 B S 50 all-quartile.1 5 N S
4 nbestfeat.3 2 B S 51 all-quartile.2 5 N S
5 nbestratiofeat.0 2 B ST 52 all-quartile.3 5 N S
6 searchfeat.0 3 B S 53 all-quartile.4 5 N S
7 searchfeat.1 3 B S 54 all-quartile.5 5 N S
8 searchfeat.2 3 B S 55 all-quartile.6 5 N S
9 searchfeat.3 3 B S 56 all-quartile.7 5 N S
10 searchfeat.4 3 B S 57 all-quartile.8 5 N S
11 word-ngram-0-6.0 8 B ST 58 all-quartile.9 5 N S
12 word-ngram-0-6.1 8 B ST 59 all-quartile.10 5 N S
13 word-ngram-0-6.2 8 B ST 60 all-quartile.11 5 N S
14 word-ngram-0-6.3 8 B ST 61 all-lmscore.0 6 N S
15 word-ngram-0-6.4 8 B ST 62 all-lmscore.1 6 N S
16 word-ngram-0-6.5 8 B ST 63 all-lmscore.2 6 N S
17 word-ngram-6-6.0 8 B ST 64 all-en lmscore.0 8 N T
18 word-ngram-6-6.1 8 B ST 65 all-en lmscore.1 8 N T
19 word-ngram-6-6.2 8 B ST 66 all-en lmscore.2 8 N T
20 word-ngram-6-6.3 8 B S 67 wordcenthyp.0 9 B ST
21 word-ngram-6-6.4 8 B S 68 wordcenthyp.1 9 B ST
22 word-ngram-6-6.5 8 B S 69 wordcenthyp.2 9 B ST
23 atal-ngram-0-6.0 14 B ST 70 align-atal.0 13 B ST
24 atal-ngram-0-6.1 14 B ST 71 align-word.0 13 B ST
25 atal-ngram-0-6.2 14 B ST 72 PsAndQs.0 10 N T
26 atal-ngram-0-6.3 14 B ST 73 PsAndQs.1 10 N T
27 atal-ngram-0-6.4 14 B ST 74 avg-nbestwordfeat.0 7 N T
28 atal-ngram-0-6.5 14 B ST 75 avg-nbestwordfeat.1 7 B ST
29 atal-ngram-6-6.0 14 B ST 76 avg-nbestwordfeat.2 7 B ST
30 atal-ngram-6-6.1 14 B ST 77 avg-nbestwordfeat.3 7 B ST
31 atal-ngram-6-6.2 14 B ST 78 avg-nbestwordfeat.4 7 B ST
32 atal-ngram-6-6.3 14 B ST 79 avg-nbestwordfeat.5 7 B ST
33 atal-ngram-6-6.4 14 B ST 80 avg-nbestwordfeat.6 7 B ST
34 atal-ngram-6-6.5 14 B ST 81 sent-length.0 4 N S
35 BaseScore.0 1 B ST 82 sent-length.1 4 N T
36 BaseFeatures.0 1 B ST 83 sent-length.2 4 N ST
37 BaseFeatures.1 1 B ST 84 word-align.0 12 B ST
38 BaseFeatures.2 1 B ST 85 word-align.1 12 B ST
39 BaseFeatures.3 1 B ST 86 semsim.0 15 B ST
40 BaseFeatures.4 1 B T 87 semsim.1 15 B ST
41 BaseFeatures.5 1 B T 88 semsim.2 15 B ST
42 BaseFeatures.6 1 B T 89 semsim.3 15 B ST
43 BaseFeatures.7 1 B T 90 model1.0 11 N ST
44 BaseFeatures.8 1 B ST 91 model1.1 11 N ST
45 BaseFeatures.9 1 B ST
46 BaseFeatures.10 1 B ST
47 BaseFeatures.11 1 B T

Table 3.3: List of all features used for sentence-level CE.



3.2 Evaluation

In this section we present the results of experiments carried out to test the
performance of various confidence estimation techniques, independent of any
particular application. The experiments are divided into four categories:

1. Comparison of MLPs (the most poweful classification technique we
used), trained on all features, under different problem settings and
model configurations.

2. Learning curves for a subset of the MLPs.

3. Feature-attribution experiments designed to assess the contribution of
individual features and various classes of features.

4. Comparison of MLP and naive Bayes classification techniques.

These experiments are described in detail in the following four sections.

3.2.1 MLP Experiments

All experiments described in this section were carried out on the standard
training and test sets described in section 2.1, with nbest list sizes limited
to at most 1000. Tests were run under all four problem settings described in
section 2.2: using the NIST and WERg error metrics to measure translation
quality, with thresholds set so as to give 5% and 30% correct examples
in the training corpus. Table 3.4 shows the actual thresholds, and gives
the corresponding proportions in the test corpus, which constitute baseline
values for the classification error rate scores we quote below.

metric thresh % corr in training % corr in test

NIST 10.023 5 3.21
8.149 30 32.50

WER 0.4193 5 5.65
0.5720 30 32.50

Table 3.4: Problem settings used for MLP experiments: thresholds and resulting
proportions of translations deemed correct.

All models were trained with the full set of features described in the
previous section, except the two IBM1-based ones (which were implemented
too late for inclusion in these tests). Model configurations were varied in
the following ways:
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• source-specific feature normalization (as described in section 2.2.3) or
lack thereof

• classification versus regression

• number of hidden units: 0, 1, 5, 10, or 20

The classification models were evaluated using the IROC, CER, and
NCE metrics described in section 2.5; regression models were evaluated us-
ing only IROC and CER. For completeness, results for all tests are presented
in tables 3.7 (for classification) and 3.8 (for regression) at the end of this
section; each table is organized into four blocks, corresponding to the four
problem settings. We discuss various aspects of the results under the head-
ings that follow.

Source-Specific Feature Normalization

The most striking result is that normalizing features separately for each
source sentence (lines with Y in the norm columns in tables 3.7 and 3.8)
does not appear to be a good idea. Models trained with this technique are
systematically and significantly worse across all configurations and metrics.
This suggests that features having wide variance over source sentences are
useful when attempting to judge quality according to an absolute standard.
A somewhat stronger version of this conclusion is that it may occasionally be
useful for the model to discard all generated translations for a given source
sentence if some highly-indicative criterion such as base model probability
is low enough. We have not investigated this hypothesis in detail.

Classification versus Regression

Table 3.5 shows the performance of the best configurations for classification
and regression on all four problem settings. Classification gives better IROC
scores on all problems, with significant differences in three out of four cases.
This is not surprising, given that the classification MLPs were specifically
trained for the given thresholds, whereas the regression MLPs are specific
only to the error metric. For CER, the results are much less clear: the clas-
sification MLPs are better with 30% thresholds, and worse with 5% thresh-
olds, but only one of these differences is significant (30% NIST). Although
neither class of MLPs was trained to optimize CER, the squared-error loss
for the regression MLPs appears to be able to partially compensate for lack
of prior knowledge of the threshold for determining correctness.
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metric thresh IROC CER ∆CER NCE

NIST 5% corr .800 ± 0.002 3.21 ± 0.03 0.0% 9.18 ± 0.61
30% corr .763 ± 0.001 27.10 ± 0.10 16.6% 15.62 ± 0.09

WER 5% corr .818 ± 0.002 5.57 ± 0.05 1.4% 16.94 ± 0.21
30% corr .734 ± 0.001 28.95 ± 0.06 10.9% 12.09 ± 0.10

NIST 5% corr .757 ± 0.002 3.10 ± 0.03 3.4%
30% corr .762 ± 0.001 27.20 ± 0.10 16.3%

WER 5% corr .741 ± 0.002 5.54 ± 0.05 1.9%
30% corr .723 ± 0.001 29.04 ± 0.04 10.6%

Table 3.5: Best results for classification (above double line) and regression. The
∆CER column gives relative improvement in CER over the baseline. Note that the
results on each line in this table are not necessarily generated by a single model.

Hidden units

It is difficult to discern a clear pattern of performance with number of hid-
den units. Looking only at the results without feature normalization, there
appears to be a very slight trend across all models towards better CER and
NCE results with higher numbers of hidden units, with the peak somewhere
between 1 and 5. For IROC, this trend is reversed, with performance gener-
ally tailing off when more hidden units are used, and the overall peak at 0.
Many of the differences involved in these comparisons are not statistically
significant. Since MLPs with 0 hidden units form a distinct class of mod-
els (having linear decision surfaces), it would be interesting to show that
they give clearly better or worse performance than MLPs with one or more
hidden units on this problem. Unfortunately, it does not seem possible to
substantiate any general concusions about this from our data.

Problem Settings

Direct comparison of results for the NIST and WERg settings is difficult
with the 5% threshold experiments, because the test-set priors are quite dif-
ferent (3.21% and 5.65% respectively). On the 30% threshold experiments,
NIST seems slightly easier to learn than WERg, with better results given
by the optimal configurations for all error metrics. Comparing the 5% and
30% experiments, we note that, as expected, the different priors have no
systematic effect on IROC and NCE measurements. CER is of course much
higher for the more difficult 30% experiments; however, as can be seen from
table 3.5, the relative improvement over the baseline is uniformly better in
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this setting than for the 5% experiments.

metric thresh model IROC CER NCE

NIST 5% corr C 20 0.800 ± 0.002 3.21 ± 0.03 9.18 ± 0.37
30% corr C 01 0.763 ± 0.001 27.10 ± 0.10 15.62 ± 0.09

WER 5% corr C 01 0.818 ± 0.002 5.60 ± 0.05 16.94 ± 0.21
30% corr C 00 0.734 ± 0.001 28.95 ± 0.06 12.00 ± 0.09

Table 3.6: Best-performing MLP model for each problem setting. The C in the
model column stands for classification, and the number beside it gives how many
hidden units were used.
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Figure 3.1: ROC curves for the models shown in table 3.6.

Best Results

Table 3.6 shows the performances of the best models for each problem set-
ting, and figure 3.1 contains the corresponding ROC curves. Although the
three evaluation metrics we used are fairly well correlated, choosing a single
best model for each problem setting required resolving some conflicts among
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them. To do this, we averaged all three metrics (normalized appropriately)
to give a combined measure. For regression models, we assumed an NCE
value for the purposes of this comparison that was the average over all values
generated by the classification models. Despite this, all of the winning mod-
els turned out to be classification models; this result does not change when
NCE is dropped entirely from the comparison. In all cases, except CER for
the NIST 5% setting, results are significantly better than the baseline.
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metric thresh norm nhu IROC CER NCE
NIST 5% corr N 00 0.795 ± 0.003 3.21 ± 0.03 4.49 ± 0.61

N 01 0.789 ± 0.003 3.21 ± 0.03 8.30 ± 0.37
N 05 0.796 ± 0.003 3.21 ± 0.03 8.44 ± 0.37
N 10 0.794 ± 0.003 3.21 ± 0.03 7.67 ± 0.39
N 15 0.785 ± 0.002 3.21 ± 0.03 7.44 ± 0.43
N 20 •0.800 ± 0.002 3.21 ± 0.03 •9.18 ± 0.37
Y 00 0.698 ± 0.004 3.21 ± 0.03 -2.44 ± 0.50
Y 01 0.696 ± 0.004 3.21 ± 0.03 0.52 ± 0.31
Y 05 0.706 ± 0.004 3.21 ± 0.03 0.49 ± 0.35
Y 10 0.705 ± 0.004 3.21 ± 0.03 0.72 ± 0.33
Y 15 0.709 ± 0.004 3.21 ± 0.04 1.17 ± 0.34
Y 20 •0.716 ± 0.005 3.21 ± 0.03 •1.51 ± 0.40

30% corr N 00 0.762 ± 0.001 27.1 ± 0.1 15.01 ± 0.09
N 01 •0.763 ± 0.001 •27.1 ± 0.1 •15.62 ± 0.09
N 05 0.739 ± 0.001 28.6 ± 0.1 12.41 ± 0.12
N 10 0.742 ± 0.001 28.3 ± 0.1 11.94 ± 0.14
N 15 0.728 ± 0.001 29.1 ± 0.1 10.15 ± 0.09
N 20 0.726 ± 0.001 28.5 ± 0.1 9.67 ± 0.19
Y 00 0.732 ± 0.001 28.5 ± 0.1 10.96 ± 0.10
Y 01 •0.733 ± 0.001 •28.3 ± 0.1 •11.83 ± 0.09
Y 05 0.728 ± 0.001 28.8 ± 0.1 11.60 ± 0.11
Y 10 0.720 ± 0.002 29.3 ± 0.1 10.87 ± 0.12
Y 15 0.733 ± 0.001 29.5 ± 0.1 11.77 ± 0.11
Y 20 0.711 ± 0.001 30.0 ± 0.1 9.60 ± 0.10

WER 5% corr N 00 •0.818 ± 0.002 5.59 ± 0.05 15.99 ± 0.23
N 01 0.818 ± 0.002 5.60 ± 0.05 •16.94 ± 0.21
N 05 0.808 ± 0.002 5.65 ± 0.05 15.26 ± 0.19
N 10 0.803 ± 0.002 •5.57 ± 0.05 13.80 ± 0.22
N 15 0.813 ± 0.002 5.65 ± 0.05 14.23 ± 0.24
N 20 0.815 ± 0.002 5.65 ± 0.05 15.30 ± 0.26
Y 00 •0.799 ± 0.002 5.65 ± 0.05 •13.89 ± 0.20
Y 01 0.789 ± 0.002 5.65 ± 0.05 13.70 ± 0.14
Y 05 0.758 ± 0.001 5.65 ± 0.05 9.09 ± 0.12
Y 10 0.774 ± 0.001 5.65 ± 0.05 11.31 ± 0.15
Y 15 0.781 ± 0.002 ◦5.64 ± 0.05 11.78 ± 0.17
Y 20 0.776 ± 0.001 5.64 ± 0.05 11.06 ± 0.16

30% corr N 00 •0.734 ± 0.001 •28.95 ± 0.06 12.00 ± 0.09
N 01 0.730 ± 0.001 29.31 ± 0.06 •12.09 ± 0.10
N 05 0.723 ± 0.001 29.25 ± 0.12 11.10 ± 0.16
N 10 0.719 ± 0.001 30.09 ± 0.06 10.49 ± 0.14
N 15 0.718 ± 0.001 29.50 ± 0.07 10.29 ± 0.15
N 20 0.702 ± 0.001 29.76 ± 0.08 7.00 ± 0.20
Y 00 •0.715 ± 0.001 29.87 ± 0.07 •10.17 ± 0.10
Y 01 0.708 ± 0.001 29.94 ± 0.08 9.72 ± 0.09
Y 05 0.702 ± 0.002 30.79 ± 0.06 9.01 ± 0.10
Y 10 0.694 ± 0.002 30.51 ± 0.08 8.09 ± 0.14
Y 15 0.712 ± 0.001 •29.31 ± 0.09 9.82 ± 0.14
Y 20 0.705 ± 0.002 29.79 ± 0.06 9.62 ± 0.13

Table 3.7: MLP classification results. Circles mark best results; these are shaded
when significantly better than the baseline.



metric thresh norm nhu IROC CER
NIST 5% corr N 00 0.740 ± 0.002 3.21 ± 0.03

N 01 0.753 ± 0.001 3.21 ± 0.03
N 05 •0.757 ± 0.002 •3.10 ± 0.03
N 10 0.754 ± 0.001 3.21 ± 0.03
N 15 0.743 ± 0.002 3.21 ± 0.03
N 20 0.720 ± 0.002 3.20 ± 0.03
Y 00 •0.675 ± 0.001 3.21 ± 0.03
Y 01 0.670 ± 0.002 3.21 ± 0.03
Y 05 0.658 ± 0.002 ◦3.21 ± 0.03
Y 10 0.653 ± 0.001 3.21 ± 0.03
Y 15 0.649 ± 0.002 3.21 ± 0.03
Y 20 0.641 ± 0.003 3.21 ± 0.03

30% corr N 00 •0.762 ± 0.001 •27.2 ± 0.1
N 01 0.758 ± 0.001 27.9 ± 0.1
N 05 0.755 ± 0.001 27.8 ± 0.1
N 10 0.741 ± 0.001 27.6 ± 0.1
N 15 0.733 ± 0.001 28.7 ± 0.1
N 20 0.713 ± 0.001 29.6 ± 0.1
Y 00 •0.738 ± 0.001 •28.1 ± 0.1
Y 01 0.736 ± 0.001 28.3 ± 0.1
Y 05 0.733 ± 0.001 28.4 ± 0.1
Y 10 0.714 ± 0.001 30.1 ± 0.1
Y 15 0.714 ± 0.001 29.6 ± 0.1
Y 20 0.705 ± 0.001 30.0 ± 0.1

WER 5% corr N 00 •0.741 ± 0.002 5.65 ± 0.05
N 01 0.725 ± 0.002 5.65 ± 0.05
N 05 0.722 ± 0.004 •5.54 ± 0.05
N 10 0.714 ± 0.003 5.65 ± 0.05
N 15 0.690 ± 0.003 5.64 ± 0.05
N 20 0.689 ± 0.003 5.65 ± 0.05
Y 00 •0.729 ± 0.003 ◦5.64 ± 0.05
Y 01 0.725 ± 0.003 5.65 ± 0.05
Y 05 0.701 ± 0.003 5.65 ± 0.05
Y 10 0.692 ± 0.003 5.65 ± 0.05
Y 15 0.681 ± 0.003 5.65 ± 0.05
Y 20 0.673 ± 0.003 5.65 ± 0.05

30% corr N 00 •0.723 ± 0.001 29.10 ± 0.11
N 01 0.710 ± 0.001 29.89 ± 0.06
N 05 0.708 ± 0.001 •29.04 ± 0.04
N 10 0.686 ± 0.001 30.25 ± 0.05
N 15 0.674 ± 0.001 30.82 ± 0.11
N 20 0.674 ± 0.001 30.81 ± 0.12
Y 00 •0.700 ± 0.002 29.95 ± 0.07
Y 01 0.695 ± 0.002 30.03 ± 0.08
Y 05 0.682 ± 0.002 •29.75 ± 0.06
Y 10 0.679 ± 0.001 30.54 ± 0.07
Y 15 0.662 ± 0.002 31.02 ± 0.08
Y 20 0.660 ± 0.002 31.39 ± 0.08

Table 3.8: MLP regression results. Circles mark best results; these are shaded
when significantly better than the basline.



training size nhu IROC CER NCE

1200 00 0.707 30.26 -6.53
01 0.721 29.10 1.92
05 0.604 31.57 -39.81
10 0.641 31.74 -28.18

2500 00 0.741 28.24 12.00
01 0.734 28.48 12.25
05 0.732 28.77 11.31
10 0.747 28.04 13.64

5100 00 0.762 27.12 15.01
01 0.763 27.09 15.62
05 0.739 28.61 12.41
10 0.742 28.29 11.94

5100(2k) 00 0.761 27.23 13.87
01 0.757 27.30 14.53
05 0.733 28.99 8.03
10 0.741 28.59 9.32

Table 3.9: Learning curve data for the NIST 30% setting. The first column gives
the number of source sentences used to generate nbest lists, and the second the
number of hidden units in the models. The block labelled 5100(2k) shows results
for nbest lists of maximum size 2,000 instead of the standard 1,000.

3.2.2 Learning Curves

Although our training data consisted of on the order of a million individual
examples, these were generated from a much more modest collection of only
5100 source sentences. An interesting question is therefore the extent to
which we might expect performance to increase with more training material.
To assess this, we trained MLPS with 0, 1, 5, and 10 hidden units on two
smaller subsets of our corpus, consisting of 1200 and 2500 source sentences.
We also trained on the full 5100-sentence set, but using 2000-best lists rather
than the usual 1000-best lists. All these experiments were performed with
the same feature set as in the last section, with the exception of the 2000-best
tests, which are minus three features that were too expensive to generate
for the longer nbest size. To facilitate analysis of the results, we ran these
tests only for the NIST 30% problem setting.

Results are shown in table 3.9, and learning curves are plotted in fig-
ure 3.2 for IROC and NCE (the curves for CER display similar behaviour).
For 1000-best lists, all metrics exhibit a common pattern in which the curves
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for the models with 0 and 1 hidden units are similar, as are those for the
models with 5 and 10 hidden units. The 5/10 curves appear to flatten at 5100
source sentences, whereas the 0/1 curves continue to grow slowly. Although
more data points would be required for certainty, this behaviour is opposite
to what one would expect if the higher-capacity models were overfitting the
training sets to a greater degree than the lower capacity ones. Since we
attempted to control overfitting by early stopping, this may indicate that
the measures we took were applied too aggressively to the higher-capacity
models on larger data sets. In any case, it is encouraging that at least the
lower-capacity models show the potential to benefit from more data.

Using 2000-best lists leads to a slight drop in performance compared to
1000-best lists for the same number of source sentences (5100). The almost
twofold increase in the quantity of data appears to be outweighed by the
dissimilarity between the last 1000 candidates in these longer lists and the
1000-best lists which comprise our test corpus.

3.2.3 Feature Attribution

One of the central goals of our workshop was to try to determine which
features or classes of features are most valuable in discriminating between
correct and incorrect MT output. In this section we describe three experi-
ments to gauge contributions:

• Using single features as discriminant scores.

• Training MLP models with single features removed.

• Training MLP models using the groups of features identified in sec-
tion 3.1.

Each of these is described under one of the headings below. In all cases,
tests were run only for the NIST 30% problem setting.

Single Feature Discrimination

Since all our features are numeric, they can be used directly as confidence
scores. This approach constitutes an important baseline, because unlike
the methods discussed previously, it is an unsupervised technique and hence
applicable even in the absence of examples labelled with correctness informa-
tion. As with regression, only the IROC and CER metrics can be calculated
for these tests, since raw feature values do not provide probability estimates.
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Table 3.10 shows the 20 best and 20 worst features according to IROC.
(Features that are negatively correlated with MT quality—having an original
IROC value less than .5—are shown with negative scores = 1−original IROC.)
Several observations are noteworthy. First, the best single-feature IROC
score is 0.648, a 15% relative degradation compared to the best MLP model
for this setting. CER scores appear to roughly correlated with IROC scores,
and are uniformly low; the majority are not below the baseline, and the
lowest value is 30.22%, significantly higher than the 27.1% achieved by the
best MLP model.

In terms of the feature classes identified in section 3.1, the clearest pat-
tern is that three of the best features are target-dependent (class T), whereas
none of the worst features are in this class. In fact, the majority of the best
features (including all the top 5) apply directly to the target hypothesis,
although most are not formally classified as T because they exploit supple-
mentary information such as the nbest list. Another observation is that all
of the top 10 models depend on the base model, although only one feature
in the top 20 is a direct base-model score. Finally, 16 of the best 20 models
use the nbest list in some way, but only 8 of the worst 20 do. To summarize
these observations: successful features tend to be ones that rely on informa-
tion derived from the base model, particularly those that look at the whole
nbest list; and they also tend to focus on properties of the target sentence.

Complemented-Feature Models

The results in the previous section measured the worth of each feature on
its own. Another way to assess the value of a feature is to measure its
contribution when used with other features. To do this, we trained models in
which single features were excluded. The difference in performance between
the full model and one in which a particular feature is excluded gives an
indication of how much this feature contributes in the presence of all others.

Table 3.11 displays the 20 best and 20 worst features on this test, as
measured by IROC. In this case, since we are concerned with the decrease
in IROC when each feature is omitted, lower IROC scores indicate better
features. Interestingly, the intersection between the 20 best features here
and the 20 best on the single-feature tests is fairly small: only six features
appear in both lists. The complemented-feature test tends to favour both the
base model’s feature functions and features that are completely independent
of the base model; this is understandable, as features in both these classes
are a priori more likely to be orthogonal to each other and to other features
in the model.
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feature class IROC CER

26 atal-ngram-0-6.3 B ST 0.648 ± 0.001 32.14 ± 0.08
78 avg-nbestwordfeat.4 B ST -0.647 ± 0.001 32.51 ± 0.10
75 avg-nbestwordfeat.1 B ST -0.647 ± 0.001 32.51 ± 0.10
79 avg-nbestwordfeat.5 B ST -0.647 ± 0.001 32.51 ± 0.10
76 avg-nbestwordfeat.2 B ST -0.647 ± 0.001 32.51 ± 0.10
04 nbestfeat.3 B S 0.645 ± 0.014 30.22 ± 0.10
69 wordcenthyp.2 B ST -0.644 ± 0.001 32.51 ± 0.10
18 word-ngram-6-6.1 B ST 0.639 ± 0.001 32.44 ± 0.10
21 word-ngram-6-6.4 B S 0.637 ± 0.001 31.51 ± 0.11
68 wordcenthyp.1 B ST -0.637 ± 0.003 32.51 ± 0.10
19 word-ngram-6-6.2 B ST 0.631 ± 0.001 31.72 ± 0.10
82 sent-length.1 N T -0.626 ± 0.002 32.51 ± 0.10
20 word-ngram-6-6.3 B S -0.625 ± 0.001 32.51 ± 0.10
02 nbestfeat.1 B S -0.625 ± 0.001 32.51 ± 0.10
47 BaseFeatures.11 B T 0.624 ± 0.002 32.43 ± 0.10
91 model1.1 N ST -0.624 ± 0.001 32.51 ± 0.10
06 searchfeat.0 B S 0.623 ± 0.001 32.51 ± 0.10
64 all-en lmscore.0 N T 0.622 ± 0.001 32.41 ± 0.10
22 word-ngram-6-6.5 B S 0.621 ± 0.001 32.19 ± 0.09
11 word-ngram-0-6.0 B ST -0.621 ± 0.001 32.51 ± 0.10

86 semsim.0 B ST -0.528 ± 0.001 32.51 ± 0.10
33 atal-ngram-6-6.4 B ST 0.527 ± 0.001 32.31 ± 0.07
90 model1.0 N ST -0.526 ± 0.001 32.51 ± 0.10
05 nbestratiofeat.0 B ST 0.526 ± 0.001 32.51 ± 0.10
29 atal-ngram-6-6.0 B ST -0.523 ± 0.001 32.51 ± 0.10
54 all-quartile.5 N S 0.523 ± 0.014 32.32 ± 0.29
25 atal-ngram-0-6.2 B ST -0.521 ± 0.001 32.51 ± 0.10
39 BaseFeatures.3 B ST 0.518 ± 0.017 32.51 ± 0.10
35 BaseScore.0 B ST 0.517 ± 0.001 32.51 ± 0.10
51 all-quartile.2 N S 0.512 ± 0.018 32.35 ± 0.26
67 wordcenthyp.0 B ST -0.512 ± 0.007 32.51 ± 0.10
48 NBestRank.0 B ST 0.511 ± 0.001 32.51 ± 0.10
01 nbestfeat.0 B ST 0.511 ± 0.001 32.51 ± 0.10
10 searchfeat.4 B S 0.506 ± 0.001 32.46 ± 0.10
08 searchfeat.2 B S 0.505 ± 0.001 32.51 ± 0.10
24 atal-ngram-0-6.1 B ST -0.505 ± 0.001 32.51 ± 0.10
36 BaseFeatures.0 B ST 0.503 ± 0.001 32.51 ± 0.10
09 searchfeat.3 B S 0.502 ± 0.001 32.46 ± 0.09
55 all-quartile.6 N S 0.501 ± 0.005 32.51 ± 0.10
52 all-quartile.3 N S 0.500 ± 0.005 32.51 ± 0.10

Table 3.10: Single-feature discrimination results. Features are ordered by de-
scending IROC, with the best 20 in the top box, and the worst 20 in the bottom
box.



feature class IROC

72 PsAndQs.0 N T 0.746 += 0.001
58 all-quartile.9 N S 0.748 += 0.001
59 all-quartile.10 N S 0.748 += 0.001
60 all-quartile.11 N S 0.748 += 0.001
30 atal-ngram-6-6.1 B ST 0.748 += 0.001
06 searchfeat.0 B S 0.749 += 0.001
31 atal-ngram-6-6.2 B ST 0.749 += 0.001
48 NBestRank.0 B ST 0.749 += 0.001
46 BaseFeatures.10 B ST 0.749 += 0.001
71 align-word.0 B ST 0.750 += 0.001
19 word-ngram-6-6.2 B ST 0.750 += 0.001
05 nbestratiofeat.0 B ST 0.750 += 0.001
40 BaseFeatures.4 B T 0.751 += 0.001
47 BaseFeatures.11 B T 0.751 += 0.001
20 word-ngram-6-6.3 B S 0.751 += 0.001
21 word-ngram-6-6.4 B S 0.751 += 0.001
35 BaseScore.0 B ST 0.751 += 0.001
39 BaseFeatures.3 B ST 0.751 += 0.001
22 word-ngram-6-6.5 B S 0.751 += 0.001
23 atal-ngram-0-6.0 B ST 0.751 += 0.001

83 sent-length.2 N ST 0.757 += 0.001
80 avg-nbestwordfeat.6 B ST 0.757 += 0.001
91 model1.1 N ST 0.757 += 0.001
61 all-lmscore.0 N S 0.758 += 0.001
90 model1.0 N ST 0.758 += 0.001
77 avg-nbestwordfeat.3 B ST 0.758 += 0.001
56 all-quartile.7 N S 0.758 += 0.001
09 searchfeat.3 B S 0.758 += 0.001
29 atal-ngram-6-6.0 B ST 0.758 += 0.001
12 word-ngram-0-6.1 B ST 0.758 += 0.001
81 sent-length.0 N S 0.758 += 0.001
32 atal-ngram-6-6.3 B ST 0.758 += 0.001
89 semsim.3 B ST 0.758 += 0.001
08 searchfeat.2 B S 0.758 += 0.001
84 word-align.0 B ST 0.759 += 0.001
88 semsim.2 B ST 0.759 += 0.001
63 all-lmscore.2 N S 0.759 += 0.001
57 all-quartile.8 N S 0.760 += 0.000
86 semsim.0 B ST 0.760 += 0.000
87 semsim.1 B ST 0.760 += 0.001

Table 3.11: Complemented-feature discrimination results. Features are ordered by
ascending IROC, with the best 20 in the top box, and the worst 20 in the bottom
box.



model features

all 1-91
base model 36-47
base-dependent 1-10,23-48,70-71,84-89
base-independent 11-22,49-69,72-83,90-91
source 2-4,6-10,49-63
target 1,5,11-22,35,40-43,47-48,64-69,73-83
source and target 23-34,36-39,44-46,70-72,84-91

Table 3.12: Feature sets used for grouping experiments.

model IROC CER NCE

all 0.763 ± 0.001 27.10 ± 0.10 15.62 ± 0.09
base model 0.746 ± 0.001 27.82 ± 0.09 13.97 ± 0.08
base-dependent 0.754 ± 0.001 28.02 ± 0.10 14.83 ± 0.10
base-independent 0.712 ± 0.001 29.88 ± 0.09 9.76 ± 0.09
source 0.687 ± 0.002 30.41 ± 0.07 7.23 ± 0.08
target 0.751 ± 0.001 27.91 ± 0.08 14.48 ± 0.09
source and target 0.746 ± 0.001 28.47 ± 0.10 13.62 ± 0.07
26 atal-ngram-0-6.3 0.648 ± 0.001 32.14 ± 0.08

Table 3.13: Results for models trained on different feature groups.

Feature Groups

The final experiment described in this section involves training MLPs on
various groups of features to determine which group achieves the best per-
formance on its own. The original intent was to use the classes identified
by the labels given in section 3.1 and table 3.3. Unfortunately, due to a
misunderstanding, somewhat different groupings were used when the mod-
els were trained. The difference arises mainly from ignoring reliance on the
nbest list when assigning a feature to a class. For instance, features 11-22
are considered to depend on the base model in the section 3.1 classification
because they are ngram language models derived from the nbest list; but in
the grouping used for the experiments described below, they are considered
independent. Similar considerations affected the source/target distinctions.
For reference purposes, table 3.12 lists the exact feature set used for each
model in this experiment.

Table 3.13 presents the results for the feature-group models, together
with the best result from the single-feature tests for comparison; figure 3.3
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Figure 3.3: ROC curves for models trained on different feature groups. Note that
the “wiggly” appearance of the curve for the source group is due to the fact that
these features are invariant over all entries in a given nbest list, which leads the
model to assign large blocks of examples exactly the same probability of correctness.

shows the corresponding ROC curves. The most striking aspect of these
results is that the model trained on only the output from the twelve feature
functions in the base model is almost as good as those trained on many more
features; compared to the model trained on all features, it is only about 2%
worse in relative IROC and CER, and 10% worse in relative NCE. The
ROC curves reflect this small difference, especially for higher CA values.

Despite substantial differences in the class definitions, the results also
strongly corroborate the main conclusions from the single-feature tests: fea-
tures that depend on the base model are more useful that those that do not,
and features that apply to the target hypothesis are more useful than ones
that apply only to the source sentence (as well as, to a much lesser extent,
those that apply to a source/target pair). Another clear conclusion is that
a model that has been trained on labelled data—regardless of the feature
set used—is better at discriminating than any single feature on its own.
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model IROC CER

Naive Bayes 0.61043 23.42
MLP 00 0.73816 21.97
MLP 05 0.70336 22.48
MLP 10 0.67681 22.74
MLP 15 0.68898 22.83
MLP 20 0.69211 21.79

Table 3.14: MLP versus Naive Bayes

3.2.4 MLP versus Naive Bayes Models

In attempting to compare MLP and naive Bayes models on the full fea-
ture set, we ran into a practical problem with our implementation of naive
Bayes: multiplying such a large number of class-conditional probabilities
created precision problems that caused the model to essentially act as a
switch and assign probabilities of either 1 or 0 to most examples. Because
of this, we show in table 3.14 results generated from an earlier stage of the
workshop, involving only about 40 features. These are not directly com-
parable to any other results in this section, but they do serve to indicate
the clear superiority of the MLP models on this problem, a trend which is
corroborated in the next chapter. This is not a completely surprising result,
given that many sets of features described in the previous section clearly
violate the independence assumption underlying the naive Bayes model.
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3.3 Applications

The most important goal of confidence estimation is to enable filtering of
correct or incorrect translation outputs of a SMT system. Therefore, con-
fidence estimation can be considered succesful if the produced confidence
scores are more discriminative then the scores produced by the base MT
system. Discriminability results have already been presented in the pre-
vious section. In this section we investigate possible ways to use CE for a
diferent goal, which is to improve the quality of the translation output. This
is a much harder task and results are less promising.

We tried two different applications for sentence-level CE: rescoring and
model combination. We performed our experiments using N -best translation
lists provided by two different SMT systems (ISI and CMU, see section 2.1
for details) on parallel corpora.

Recall that N -best lists consist of up to N most probable translation al-
ternatives for a given source sentence according to the SMT system. Trans-
lation alternatives are ranked according to a probabilistic score produced by
the underlying SMT models. In our experiments N = 1000, although due
to pruning of the search space certain N -best lists contained less then 1000
alternatives. We used these N -best lists either separately, for the rescoring
experiments, or in parallel, for the model combination applications.

For each of the underlying SMT systems we trained separate sentence-
level CE models to produce a confidence score for each individual translation
alternative. The confidence scores are estimates of the posterior probability
of correctness of a given translation alternative, obtained using the methods
described in section 2.2. The data we used for the training and validation
of our CE models were N -best translation lists as described in section 2.1.

We should note first that there was a fundamental problem in our use of
the CMU data: we compared N -best translations tokenized according to the
CMU tokenization scheme with reference translations tokenized according
to the ISI tokenization algorithms. We realised only too late that there were
considerable differences between the two tokenization methods. Thus, the
evaluation of the CMU translation was artificially penalized. This problem
affected both training and testing stages for both the reranking and model-
combination experiments, and calls into question the validity of the results
presented below for the CMU system. Results on the standard ISI base
model are unaffected however.
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ISI BLEU NIST aps-NIST WERg

Baseline 31.58 (± .84) 9.29 (± .11) 7.47 0.612
CE-NIST 31.08 (± .90) 9.20 (± .12) 7.67 0.619
CE-WERg 30.78 (± .85) 9.14 (± .12) 7.48 0.620
Oracle aps-NIST 41.77 (± .92) 9.21 (± .11) 9.51 0.538
Oracle WERg 39.62 (± .88) 9.21 (± .12) 8.56 0.465

Table 3.15: Rescoring on ISI N -best lists

3.3.1 Rescoring

The rescoring experiments were conducted separately for each SMT system.
We reranked the N -best translation hypotheses according to their sentence-
level confidence score. We then measured the impact on translation quality
according to overall BLEU and NIST scores as well as on the average per-
sentence NIST, named aps-NIST,1 and WER-g scores.

Tables 3.15 and 3.16 present the results obtained. The baselines are
performances of the ISI and CMU base SMT systems. The CE-NIST (rep-
sectively CE-WERg) results were obtained by rescoring according to the
confidence score obtained by MLPs trained on a 5%-correct threshold over
per-sentence NIST (respectively WERg) scores. Oracle results were obtained
by systematically picking the optimal translation alternative according to a
given evaluation metric and represent upper bounds on the possible perfor-
mance improvement.

The results are rather disappointing: basically, no significant improve-
ment was obtained by rescoring. This is not completely surprising given that
the objective functions used for CE training are not the same functions used
to measure performance on the reranking tests. It is noteworthy, however,
that there is a small increase over the baseline ISI system on the metric
(aps-NIST) that was most similar to the criterion used for CE training (in
the case of NIST thresholding). If we had a true gold standard for MT cor-
rectness, and used it to train a CE system as well as to evaluate MT quality,
we would expect far better results from CE-based reranking.

3.3.2 Model Combinations

For the model-combination experiments we compared two very basic schemes
based on maximum base-model score or maximum confidence score voting:
for each source sentence we compare the N -best alternatives procuced by

1Per-sentence NIST is the version used throughout the rest of this report.
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CMU BLEU NIST aps-NIST WERg

Baseline 17.39 (± .81) 7.50 (± .11) 6.89 0.700
CE-NIST 17.86 (± .76) 7.18 (± .11) 6.73 0.721
CE-WERg 17.39 (± .78) 7.31 (± .12) 6.64 0.715
Oracle aps-NIST 22.96 (± .83) 8.59 (± .11) 8.55 0.675
Oracle WERg 21.17 (± .79) 7.86 (± .11) 7.52 0.608

Table 3.16: Rescoring on CMU N -best lists

the two SMT systems independently and picked the one with (1) the high-
est base-model score or (2) the one with the highest confidence score. As
in the rescoring experiments, we determined any potential translation accu-
racy gain by measuring overall BLEU and NIST scores as well as the average
per-sentence NIST and WER scores on the resulting translations.

These combination schemes are evidently sub-optimal. A lot of work
has been done in statistical model combination and a more sophisticated
approach, such as stacking [44] could yield much better results than simple
maximum score voting.

We expected maximum base-model score voting scheme to degrade the
translation accuracy compared to the output of the single best base SMT
system. This is the case because sentence scores produced by the base SMT
systems are not really comparable, despite that fact that they are supposed
to be estimates of the same probability. What we hoped to achieve with the
maximum confidence scoring scheme was to improve upon the accuracy of
the best of the two individual systems. This hope was based on the fact that
we expected the confidence scores to be better estimates of the probability
of correctness than the sentence scores of the underlying models and there-
fore to be more reliable for comparing the quality of translations. Similar
work presented in [11] yielded positive results. However, the tokenization
mismatch problem in our setup appears to have had a severe effect on the
combination results presented in 3.17 irrelevant. This problem is also re-
flected in the fact that the oracle scores for the combined nbest lists are
only slightly higher than those for the ISI system on its own (no different at
all for the WERg metric).
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ISI + CMU BLEU NIST aps-NIST WER-g

Baseline 31.58 (± .84) 9.29 (± .11) 7.47 0.612
Norm. base score 17.63 (± .83) 7.53 (± .11) 6.90 0.619
CE-NIST 22.31 (± .99) 7.90 (± .14) 7.36 0.684
CE-WER 28.37 (± .91) 8.87 (± .13) 7.14 0.641
Oracle aps-NIST 41.77 (± .99) 9.52 (± .11) 9.80 0.538
Oracle WERg 39.62 (± .88) 9.21 (± .12) 8.61 0.465

Table 3.17: Maximum CE-score Model Combination
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Chapter 4

Subsentence-Level

Experiments

4.1 Motivation

Apart from sentence level confidence estimation, we also investigated con-
fidence estimation on the word level. The motivation behind this was that
often the sentence as a whole might be incorrect, but contain correct parts.
For example, only 30% of the translations were rated 4 or 5 (i.e. acceptable
or perfect) in our human evaluation exercise described in the next chapter.
Nevertheless, they contain correct parts which we do not want to discard as
incorrect. Moreover, the classification as correct or incorrect is easier on the
sub-sentence level, because the concept of a correct translation is more in-
tuitive on this level. There exist several possible applications for confidence
estimation on the word level: In a post-editing scenario, it would be helpful
to highlight incorrect words. The system output would be given to a human
translator, and the words that have a low confidence would be tagged as
possible errors such that the human translator could focus on them when
correcting the text.
Another possibility is to apply confidence measures in an interactive trans-
lation environment where a system proposes translations of the input text
and a human translator can either accept or correct them. The system then
adapts its proposals according to the modifications by the human transla-
tor. In such an environment, the system would only output those words
that have a high confidence and discard the others. Thus, it would spare
the human translator time and effort for reading and correcting bad output.
This approach to computer assisted translation is pursued for example in
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the European project TransType2.
The third and most challenging application of sub-sentence level confidence
estimation is that of search criteria based on confidence estimates. The
translation hypotheses proposed by the system (represented e.g. in a word
graph or an N best list) would be recombined in order to find a better
translation than the one preferred by the translation system.

This chapter is organized as follows: First, we are going to introduce
the features we implemented for the word level confidence estimation in
Section 4.2. Section 4.3 contains a description of the different word error
measures we investigated. Experimental results for the word level confidence
estimation are presented in 4.4. We then discuss ideas for the recombina-
tion of translation hypotheses using the word level confidence estimates in
Section 4.6.

4.2 Word Level Features

4.2.1 Target Language Based Features

Semantic Features

The use of the semantic data provided by WordNet was also investigated as
a confidence feature at the word level. Since the semantic similarity features
used at the sentence level were calculated by combining scores at the word
level and it is not clear what the optimum method for combination is, we are
optimistic that these semantic features will prove more useful at the word
level than at the sentence level.

The first similarity feature used is the average semantic similarity from
the word in question to the word aligned to the same position in each of the
top three hypotheses. We denote by Bi(n) the set of target positions aligned
to the source word in position i in the nth best hypothesis of the N best
list and by B−1

j (n) the set of source positions aligned to the target word
in position j in the nth best hypothesis. Then we define the set Si(n, 1) of
words of the first sentence of the N best list that are aligned to the same
position as word i of sentence n as:

Si(n, 1) = {ek|k ∈ Bj(1) and j ∈ B−1
i (n)} (4.1)

Then if sim(e, f) is our semantic similarity metric mapping pairs of
words to real numbers, then the confidence we assign to ek of the nth sen-
tence is

79



C(ek) = max
x∈Si(n,1)

sim(ek, x) (4.2)

More information about this feature, including the details of how sim(e, f)
is computed, can be found in section 3.1.15.

The two other features included for word-level confidence estimation
come from WordNet’s polysemy count. Simply put, for each word in the
target sentences, this feature assigns a value equal to the number of different
senses, counting all parts of speech, that the word has. The thought here
is that words that can mean a number of different things might be more
difficult to translate, and thus we might want to have lower confidence in
them. Unfortunately, word polysemy is also a (fairly reliable) indicator of
frequency–more common words tend to have more possible meanings, and
so this feature ends up not being very enlightening.

The polysemy count including only senses that occur in tagged texts in
WordNet’s corpus is also used as a feature.

Parentheses and Quotation Marks

(PsAndQs) This basic syntax check looked to highlight hypotheses with mis-
matched parentheses and/or quotation marks. If such a syntax error was
identified, these features would trigger and become non-zero.

Number of occurrences

For each word in the target sentence, we counted the number of times it
occurs in the sentence. The idea behind this was that words that tend to
appear more than once, such as determiners, are more likely to be correct
than rare words.

4.2.2 Word Posterior Probabilities and Related Measures

The notation employed in this section is the following: We refer to a single
word in the target sentence by e, and the whole target sentence is denoted as
eI1. The source sentence is fJ

1 , and the alignment mapping target positions
to source positions is called BI

1 where Bi is the set of source positions aligned
to target position i.

We investigated three different features that are calculated rather sim-
ilarly: relative frequencies, rank weighted frequencies and word posterior
probabilities. Consider a target word e and its set of aligned source posi-
tions B. We then determine those sentences in the N best list that ’match’
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the pair (e,B) under certain conditions that are to be explained later in this
section. Let the set of those sentences be S(e,B).
The relative frequency of the pair (e,B) in the N best list is then computed
as

1

N

∑

(eI
1, BI

1)∈S(e,B)

1 .

The rank weighted frequency is given as

2

N(N + 1)

∑

(eI
1, BI

1)∈S(e,B)

(N + 1− rank(eI1, BI
1)) .

Here, we sum up the inverted ranks N +1− rank(eI1, B
I
1), because we want

an occurrence of the word in a hypothesis near to the top of the list to score
better than on in the lower ranks. This value is normalized by the sum of
all ranks in the list.
Let p(eI1, B

I
1 , f

J
1 ) the joint probability of source sentence fJ

1 and the target
sentence eI1 with the according alignment BI

1 . The word posterior probabil-
ity is calculated as the normalized sum of probabilities of all sentences in
S(e,B):

1

p(fJ
1 )

∑

(eI
1, BI

1)∈S(e,B)

p(eI1, B
I
1 , f

J
1 ) . (4.3)

The probability p(fJ
1 ) is computed by summing the probabilities p(eI1, B

I
1 , f

J
1 )

over all sentence/alignment pairs (eI1, B
I
1) in the N best list.

For the set S(e,B) of ’matching’ sentences, we implemented three dif-
ferent variants:

1. S(e,B) = {(eI1, BI
1) | ei = e}

That is, we sum over all sentences containing the word e in exactly the
target position i. This is purely target language based and does not
take the alignment B into account. This variant is the strictest one,
because it requires the word to occur exactly in the given position i.
Often, the same target word occurs in several hypotheses in the N best
list, but in different positions due to reordering of words, insertions and
deletions. This observation lead us to the second variant:

2. S(e,B) = {(eI1, BI
1) | ∃ i : (ei, Bi) = (e,B)}

Here, all sentences are regarded where the word e is aligned to the
source position(s) in B, i.e. this set of features is dependent on the
translation model.
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3. S(e,B) = {(eI1, BI
1) | ∃ i : ei = e}

In this variant, all sentences are taken into account that contain the
target word e, disregarding its position as well as its alignment B.
This set of features depends only on the target language, but is by far
less strict than 1.

Note that for variant 3, the sum of the sentence probabilities as performed in
Eq. 4.3 does not result in a probability distribution. For variant 1 of S(e,B),
we obtain a probability distribution over the pairs (e, i) of target words e
and positions i in the target sentence. Variant 2 results in a probability
distribution over pairs of target words e and their aligned set of source
positions B.
For a detailed description of these confidence measures, see [41].

4.2.3 IBM Model 1

As described in section 3.1.11, IBM1 translation models were trained sep-
arately from the base translation model, and their probabilities were used
as features at the sentence level. We also used IBM1 to derive a single fea-
ture at the word level. For a given target word e, this feature is just e’s
contribution to the total target probability:

p(e|f) =
m∑

j=0

p(e|fj)/(m+ 1)

where f = f1, . . . , fm is the source sentence, and f0 is the empty word.

4.2.4 SMT Model Based Features

Two features that are based directly on the bast Statistical MT model,
namely the Alignment Template model ([32, 31]), were applied.

• Alignment Template containing this word: The Statistical Machine
Translation system segments source and target sentence into bilingual
phrases, the so-called Alignment Templates. This feature gives the
identity of the Alignment Template that was applied in the translation
of the current target word.

• For the translation of special phenomena such as dates and time ex-
pressions, a rule based system was integrated into the translation pro-
cess. We implemented one feature specifying whether the target word
was translated by this rule based system or not.
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4.3 Word Error Measures

In Machine Translation, it is not intuitively clear how to classify words as
correct of incorrect when comparing the translation to one or several refer-
ences. We implemented a number of different measures for classifying single
words in a translation hypothesis as correct or false. They were inspired by
different automatic evaluation metrics like WER and PER.

Pos: This error measure considers a word as correct if it occurs in exactly
this target position in one of the reference translations.

WER: A word is counted as correct if it is Levenshtein-aligned to itself in one
of the references.

PER: A word is tagged as correct if it occurs in one of the reference trans-
lations. Here, the reference is regarded as a bag of words, i.e. the
number of occurrences per word is taken into account.

Set is a less strict variant of PER: the number of occurrences per word
is not considered, i.e. a word occurring in the translation three times
is tagged as correct every time, even if the reference contains it only
once or twice.

n-gram: This metric considers the word as well as its n− 1 predecessors in the
hypothesis and labels only those words as correct that occur in the
references together with this history. n was chosen to be 2, 3, and 4.

All error metrics except for n-gram exist in two variants: First, each
translation hypothesis is compared to the pool of all references (i.e. four
different reference translations for our corpus). Second, we determine that
reference that has minimum distance to the hypothesis according to the
metric under consideration and classify the words as correct or incorrect
with respect to this reference. That is, under the metric PER for example,
the pooled variant labels all those words as correct that occur in any of the
references, whereas the second variant considers only those words correct
that are contained in the nearest reference.
Table 4.2 in Section 4.4.1 shows the percentage of words that are labeled as
correct according to the different error measures on the training, develop-
ment and test corpora.
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4.4 Experimental Results

4.4.1 Experimental Setup

For the sub-sentence level confidence estimation, we picked all those Chinese
source sentences that were provided with four reference translations, leaving
us with 1,871 sentences in total. The split into training, development and
test corpus is given in Table 4.1. The test corpus is the same as the one
used for the sentence level confidence estimation.
For each source sentence, we worked with the 1,000 best list provided by the
statistical machine translation system, yielding a total of about 1.8 million
target sentences in total over all three corpora.

Table 4.1: Corpus Statistics (using 1000 best lists).
Sentences Running Words

Source Target Target

Training 700 698 082 20 736 971

Develop 293 292 870 7 492 753

Test 878 876 831 26 360 766

Table 4.2 shows the number of correct words under the different error
metrics introduced in Section 4.3. We see that ’Pos’ is a very pessimistic
metric and considers only every fifth or sixth word correct, whereas the
other metrics count much more words as correct, because they do not require
them to occur in the exact position of the reference. The introduction of the
Levenshtein alignment into the error measure yields a large increase in the
number of words considered correct. This number grows further the more
the error criterion is relaxed (see PER, Set). Naturally, the n-gram metric
gets stricter the longer the history gets.
For the error measures existing in two variants, comparing to the pool of
all references and the nearest reference, respectively, we see a significant
reduction in the number of words labeled as correct if only the nearest
reference is taken into account.

Note that those figures are not the translation errors for the system
output. They are calculated for every hypothesis in the 1,000 best list (and
not only for the single best translation).
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Table 4.2: Correct words [%] in the corpora according to different error
measures (pooled/nearest reference).

Error Measure Training Develop Test

Pos 19.5 / 14.1 22.8 / 16.7 21.7 / 15.5

WER 63.1 / 42.2 61.2 / 43.4 62.3 / 42.5

PER 75.1 / 65.1 70.6 / 62.2 73.6 / 63.8

Set 81.5 / 71.0 77.4 / 67.6 80.7 / 70.0

2-/3-/4-gram 42.0/24.4/15.4 39.5/22.9/14.6 41.5/24.4/15.5

4.4.2 Performance Measures

We used the following three criteria for measuring the performance of the
different confidence estimation methods and features:

• Confidence Error Rate (CER): The CER is the number of incorrectly
assigned tags divided by the number of generated words in the trans-
lated sentence. The Baseline CER is determined by labeling all gen-
erated words as correct, i.e. it gives the ratio of substitutions and
insertions in the translated sentence. Unlike in the previous section,
we optimized the tagging threshold on a development corpus in order
to get an unbiased estimate (rather than simply a measure useful for
relative comparisons).

• Receiver Operating Characteristic (ROC) curve: The ROC plots the
correct rejection rate versus correct acceptance rate for different values
of the tagging threshold. The correct rejection rate is the number of
incorrectly translated words that have been tagged as wrong, divided
by the total number of incorrectly translated words. The correct ac-
ceptance rate is the ratio of correctly translated words that have been
tagged as correct. These two rates depend on each other: If one of
them is restricted by a lower bound, the other one cannot be restricted.
See section 2.5 for more details about ROC curves.

• Area under ROC (AROC): This value specifies twice the size of the
area between the ROC and the diagonal; it ranges from 0 to 1. The
higher this value, the better the classifier discriminates.
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4.4.3 Experimental Results for Single Features

Using the Naive Bayes classifier, we tested the performance of single features
for word confidence estimation. Out of those, we chose the three features
which yield best results and combined them with the same classifier. Finally,
we integrated all 17 features into the Naive Bayes approach.
Table 4.3 shows the confidence estimation performance of single features in
the Naive Bayes framework in terms of CER and AROC using the error mea-
sure PER. The features which yield the best results are the word posterior
probability, rank weighted frequency, and relative frequency with respect to
occurrence of the word in any position in the target sentence. Those three
features show a very similar behavior and give a significant improvement
over the baseline of more than 5% absolute in CER. The feature based on
Model1 also discriminates very well, followed closely by the word posterior
probabilities and frequencies with regard to the aligned source position(s).
The combination of three of the best performing features, word posterior
probabilities with respect to different criteria and the Model1 based feature,
yields a significant improvement over the performance of any of the single
features. This improvement is still increased if more information is added
by combining all 17 features.

Figure 4.1 plots the ROC for the word error measure PER. It compares
the MLP with 15 hidden units combining all features with the Naive Bayes
classifiers using the single best, the three best and all features. It supports
the analysis of the results contained in Table 4.3: The Naive Bayes approach
gains from the integration of more features, but it is still outperformed by
the MLP.

4.4.4 Comparison of Different Models

For word level confidence estimation, we investigated several different MLP
architectures, with the number of hidden units ranging from 0 to 20.

Table 4.4 compares the tagging performance in terms of CER and AROC
for MLP architectures and for the Naive Bayes classifier, including all fea-
tures. We investigated them for three of the error measures described in
Section 4.3: WER, PER and Set. All of those were computed with respect
to the nearest reference. We see that the Naive Bayes classifier and the MLP
with zero hidden units have a very similar performance for all three word
error measures. But as soon as the MLP gets more complex by the addi-
tion of more hidden units, the MLP outperforms the Naive Bayes approach
significantly. The MLPs with 10 or hidden 15 units perform best, but there
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Figure 4.1: ROC for PER, Naive Bayes and MLP with 15 hidden units. The
MLP combines all features, and Naive Bayes performance is shown for the
single best feature, the top 3 and combination of all features.
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Figure 4.2: ROC for WER, Naive Bayes and MLP with 15 hidden units
combining all features.
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Table 4.3: CER [%] and AROC [%] for single features and their combination
using Naive Bayes; Error Measure: PER. The second column denotes the
section in this report describing the feature.

Feature Section CER AROC

Baseline – 36.2 –

Word posterior prob. any target pos. 4.2.2 30.9 41.3

Rank weighted frequency any target pos. 4.2.2 30.8 41.2

Relative frequency any target pos. 4.2.2 30.9 41.4

Model1 4.2.3 31.2 39.7

Word post. prob. aligned source pos. 4.2.2 31.9 39.0

Rank weighted frequency aligned source pos. 4.2.2 31.9 38.9

Relative frequency aligned source pos. 4.2.2 31.9 38.8

Word post. prob. fixed target pos. 4.2.2 32.5 37.7

Rank weighted frequency fixed target pos. 4.2.2 32.6 37.4

Relative frequency fixed target pos. 4.2.2 32.7 37.2

AT identity 4.2.4 33.1 34.5

# occurrences 4.2.1 33.1 33.2

Rule based 4.2.4 33.1 34.1

Parentheses & Quot. marks 4.2.1 33.1 33.5

WordNet polysemy count 4.2.1 33.2 33.6

WordNet polysemy count (w.r.t. corpus) 4.2.1 33.2 33.5

Avg. semantic similarity 4.2.1 33.4 33.3

Word post.-any + Word post.-alig + Model1 – 29.2 46.6

All – 29.6 47.2

is no significant difference to the ones with 5 or 20 hidden units in terms of
AROC values .

Figures 4.2 and 4.3 plot the ROC for the best performing MLP and the
Naive Bayes classifier under the word error measures WER and Set. Again,
we see that the MLP discriminates better between the correct and incorrect
words.

In Figure 4.4, we see ROC curves for different MLP architectures using
PER as word error measure. These agree with the figures presented in
Table 4.4: The MLP with zero hidden units performs worse than the more
complex architectures, but there is no significant difference between the nets
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Figure 4.3: ROC for Set, Naive Bayes and MLP with 15 hidden units com-
bining all features.

consisting of 5 to 20 hidden units.

4.4.5 Comparison of Different Word Error Measures

Table 4.5 compares the AROC values for confidence estimation using an
MLP with 20 hidden units for all the error measures described in Section 4.3.
We see that classification according to some of the error measures is easier
to learn than according to others. For the n-grams for example, the classi-
fication gets easier the longer the history gets. This is due to the fact that
especially the 4-gram is very pessimistic and labels many of the words as
incorrect as Table 4.2 showed. Thus, its behavior is easier to learn.
The word error measure for which the highest AROC value is achieved is
’Set’. Analogously, the reason here is that this metric is easy to learn because
it labels a high percentage of the words as correct (cf. Table 4.2.)

4.5 Conclusion

We investigated a number of different classifiers for confidence estimation
on the word level: a Naive Bayes approach and MLPs with several different
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Table 4.4: Comparison of AROC values [%] for different error measures
(min variant) and different machine learning techniques. All features are
included. The best result is shown in bold.

Machine learning method WER PER Set

Naive Bayes 38.2 47.2 61.4

MLP 0 hidden units 37.7 47.6 62.3

5 hidden units 41.0 52.3 65.5

10 hidden units 41.1 53.2 65.7

15 hidden units 41.1 53.2 65.8

20 hidden units 40.6 53.1 65.7

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

co
rr

ec
t r

ej
ec

tio
n 

[%
]

correct acceptance [%]

MLP0
MLP5

MLP10
MLP15
MLP20

Figure 4.4: ROC for PER, MLPs with different numbers of hidden units
combining all features.
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Table 4.5: Comparison of AROC values [%] of an MLP with 20 hidden units
for different error measures (min variant, all features).

Error Measure Pos WER PER Set 2-/3-/4-gram

AROC [%] 46.8 40.6 53.1 65.7 37.6 / 40.4 / 48.0

numbers of hidden units. We saw that the MLPs with 5 or more hidden
units outperform Naive Bayes, whereas the MLP without any hidden units
shows the same classification performance as Naive Bayes.
Various word level features have been implemented. Experiments showed
that the combination of those features improves over the application of any
single feature.
We implemented different metrics for labeling words in the generated trans-
lations as correct or incorrect, and the results were consistent over those
different metrics. The performance of the confidence estimation techniques
was evaluated on 1000 best lists of the same Chinese–English task as was
considered for the sentence level.

4.6 Recombination

As a follow-up of this workshop. we plan to investigate a search criterion
based on confidence estimation on the sub-sentence level. The idea is to
recombine different translation hypotheses that are represented in the word
graph or N best list. This recombination would make it possible to create
new translations that are not contained in the graph or list as such.
Regarding this approach, there are still a few problems to be solved: A cri-
terion for the selection of the sentence length has to be developed. If the
algorithm would simply pick the sequence with the highest confidence, it
would favor short sequences over long ones. One possible solution to this
would be to normalize the confidence by the length of the generated sen-
tence.
Another issue is finding a selection criterion for the target words in the re-
combination. Selecting them on basis of their sentence position will cause
inconsistencies, because the same word can be chosen twice, even if it should
occur in the sentence only once. If one selects the target words with regard
to their aligned source words instead, it is not clear how to determine the
correct word order. One possible way to solve this problem would be to rep-
resent the search space by a word graph representing all valid hypotheses.
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Thus, the search would be restricted only to hypotheses without inconsis-
tencies and with possible word orders in the target sentence. Then, one
could determine the best path through this graph based on the confidence
estimation.
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Chapter 5

Evaluation of MT output

5.1 Sentence-Level Machine Translation Evalua-

tion

Though the analysis of automated MT evaluation techniques was not an
original goal of our project, in attempting to interpret the results of a system
trained specifically to replicate the output of MT error metrics, it becomes
clear that a better grasp of the meaningfulness of those metrics is illumi-
nating. In particular, while studies establishing the corpus-level correlation
between modern error metrics and human judgements have been conducted
with greater scope than we could hope to reproduce, our approach relies crit-
ically on the correlation of these metrics at the sentence level. To quantify
this correlation, we conducted a small experiment, enlisting the help of col-
leagues to obtain human judgements of machine translation task-adequacy
with respect to a human-produced reference. Our results confirm the intu-
ition that automatic metrics do not yet capture human judgements with any
significant predictive power at the sentence level, though we demonstrate, in
agreement with earlier studies, that over large corpora metric inconsistencies
tend to average out and produce increased correlation. Our study is by no
means definitive and we discuss the feasibility of similar, larger experiments
based on our experiences.

5.2 Evaluation Protocol

In our experiment, every evaluator is presented with successive pairs of sen-
tences, each consisting of one hypothesis (machine-produced) translation,
and one reference (human-produced) translation. The two translations cor-
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************************************************************************

Human MT Eval Client

************************************************************************

Hypothesis:

( washington ) , comprehensive report the latest issue of the new

yorker " weekly , iraq ’s intelligence agencies responsible for

many years and 911 incident osama bin laden under the leadership of

the al qaeda maintain close ties .

Reference:

comprehensive report , washington -- the latest issue of new yorker

magazine suggests that iraqi intelligence has been in close touch

with top officials in al @-@ qaida group for years . the al @-@

qaida group is believed to have masterminded the 911 incident .

Enter your rating (1-5), ’h’ for help, or ’q’ to quit:

Figure 5.1: A sample display as might be seen by evaluators during our
experiment.

respond to the same Chinese source. The hypothesis is presented on screen
above the reference, although we make no attempt to control the order in
which evaluators read the sentences. All translations are presented in their
lower-case, tokenized form. An example of this presentation, as seen by an
evaluator, is shown in figure 5.1.

Given constraints of time and a relatively small number of willing par-
ticipants, we developed a single five-point rating scale designed to be sim-
ple, intuitive, and to represent various levels of language tasks for which a
translation would be satisfactory. Our rating scale is presented in figure 5.2,
exactly as it was explained to the evaluators. The tasks for which each score
1-5 is intended to represent adequacy are described approximately as follows:

1 Universally inadequate
2 “Bag of words” quality; potentially useful for IR
3 Gisting; rough content description
4 Human post-processing; less-demanding applications
5 General/universal use

When the evaluator enters his or her rating, the next pair of sentences is
immediately displayed. Evaluators continue in this fashion until they choose
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************************************************************************

Human MT Eval Client

************************************************************************

Please rate the quality of a given hypothesis translation with

respect to the reference on a scale from 1 to 5 as follows:

Reference ex: bob walked the dog.

1: Useless; captures absolutely none of the reference’s meaning.

ex: franklin is a doctor.

2: Poor; contains a few key words, but little or no meaning.

ex: dog banana walk.

3: Mediocre; contains some meaning, but with serious errors.

ex: the dog walked bob.

4: Acceptable; captures most of the meaning with only small errors.

ex: bob walk the dog.

5: Human quality; captures all of the reference’s meaning.

ex: bob took the dog for a walk.

Press return to continue...

Figure 5.2: Our evaluation metric, as presented to evaluators during the
experiment. This is displayed at the beginning of each evaluation session,
and can be redisplayed by the evaluator at any time with a single keystroke.

to stop.

5.3 Implementation and Setup

Because we do not have the resources to conduct a formal study with paid
subjects, presenting the experiment to users in as painless a way as possible
is, we believe, critical to their participation. To this end, we have im-
plemented the above protocol as a live server/multi-client system, allowing
evaluators to work from arbitrary locations at arbitrary times, and returning
results to us in real-time for immediate analysis. The system is completely
flexible, enabling users to come and go as they please, and the server guar-
antees that no evaluator will ever be asked to rate the same pair of sentences
twice. Furthermore, as a compromise between efficiency and noise reduction
(optimized when each item is rated many times), we have decided that each
hypothesis translation should be rated by exactly two evaluators, and the
server works actively to ensure that as many sentences as possible satisfy
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this requirement.
To generate a set of pairs for evaluation, we selected the top one hundred

translations from the N-best lists in our test set, and paired each with a ran-
domly chosen reference from the available four. We also included pairs for
calibration purposes. Positive calibration examples consisted of all 6 com-
binations of two reference translations for each source sentence. Negative
calibration examples consisted of 6 pairs of one randomly selected reference
translation for the source sentence, and one randomly selected reference
translation for another source sentence. Each type of calibration pair there-
fore accounts for around 6% of the evaluation set. During the experiment,
sentence pairs are selected from the evaluation set at random.

The system was live for several weeks, and we encouraged voluntary par-
ticipation throughout. In the end, 29 users logged a total of 20 evaluation-
hours and rated 705 hypotheses (two scores per hypothesis). Seventy-two of
the rated examples were calibration pairs, leaving us with two judgements
on each of 633 unique MT outputs.

5.4 Vote Standardisation

The evaluation tool provides votes on a scale from 1 to 5 for each sentence
pair (proposed, reference). Although we have provided indicative guidelines
for assigning votes to examples, different voters have much different voting
patterns. In figure 5.3, we present the profiles of two actual voters from the
evaluation. The histograms of the votes are based on 67 votes (for E) and
60 votes (for F), so they have similar reliability (of the order of max ±10%
for the largest bins). Clearly, voter F is much more conservative in his votes,
while voter E is more generous. As a consequence, a vote of 4 does not have
the same value for both voters: For F, only few translation receive a 4, so
one could assume that they are of high quality; For F, a vote of 4 is more
common, and may just indicate a slightly above average quality.

In order to standardise the votes on a similar scale with comparable
value accross voters, we transform each vote into a quantile1. For each voter
V and score s ∈ {1, 2, 3, 4, 5}, the standardised vote is:

x = f(s, V ) = P (S < s|V )

where P (S|V ) is the distribution of scores for voter V , so P (S < s|V ) is
the probability that voter V would assign a score lower than s. In order

1This idea was originally suggested by Jason Eisner during one of the workshop cookie
breaks.
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1 2 3 4 5

Voter E

1 2 3 4 5

Voter F

Figure 5.3: Difference in voting patterns between two voters.

to estimate this probability from our discrete 5-point scale, we accumulate
all votes that are strictly below s, and half of the votes that are equal to
s. The ratio of these accumulated votes to the total number of votes is the
standardised score. If n(s, V ) is the number of votes of voter V that are
equal to s, then:

x̂ =

∑
i<s n(i) + n(s)/2
∑5

i=1 n(i)

Strictly speaking, in order to estimate P (S < s|V ) we should only accu-
mulate votes up to s − 1. On the other hand, to estimate P (S ≤ s|V ),
we should accumulate all votes up to s. Our standardised estimate may be
viewed as an average of these two expressions. Alternatively, the standardi-
sation may be viewed as follows: if we spread all the votes for a given value
i = 1, . . . 5 in bins centered on this value and construct the corresponding
continuous cumulative distribution function (figure 5.4, left), then the value
of the cumulative distribution function in s is exactly our estimate.

As illustrated on figure 5.4 (right), the same actual vote of 3, for two
voters with different voting profiles, may be standardised to very different
value. For voter E, it would correspond to a noticeably below average stan-
dardised value, while for voter E, it is significantly above average. This
result conforms to the intuition we have about the voting patterns of E and
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Figure 5.4: Left: Mechanism for standardising votes from a 1–5 scale to a
[0,1] scale. Right: Effect on a similar vote (3) for the two voters presented
in figure 5.3

F.

Vote Averaging

In order to reduce the sensitivity of sentence scores to a particular voter,
and to have an idea of the inter-annotator agreement, the same sentence
pair was evaluated by two different annotators. To obtain a composite score
from both votes, we need to average them in a principled way.

As explained above, the standardised score is the empirical estimate of
a probability that the voter scores below an actual value. The reliability
of this estimate will depend on the total number of votes for this voter.
Intuitively, it seems that a voter who performed very little evaluation and
gave only 1, 2 and 3 to the evaluated sentences may be particularly harsh,
or, if he evaluated few sentences, he may just have been unlucky and got
only bad translations.

Let us consider 2 voters evaluating the same sentence. The vote for the
first one is s1, with the profile n1(1), n1(2), . . . n1(5). The vote for the second
one is s2, with the profile n2(1), n2(2), . . . n2(5). The standardised votes are:

x̂1 =

∑
i<s1

n1(i) + n1(s1)/2∑5
i=1 n1(i)

x̂2 =

∑
i<s2

n2(i) + n2(s2)/2∑5
i=1 n2(i)
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as explained above, and the average vote is:

x =

∑
i<s1

n1(i) + n1(s1)/2 +
∑

i<s2
n2(i) + n2(s2)/2∑5

i=1 n1(i) +
∑5

i=1 n2(i)
(5.1)

which is a weighted average of x̂1 and x̂2, where the weight depends on the
total amount of votes. Accordingly, the vote of voters which evaluated many
sentences will contribute more to the average, because the corresponding
standardised vote is inherently more reliable. Equation 5.1 also corresponds
to modelling the distributions of x1 and x2 as Beta distributions and aver-
aging the scores over these distributions.

5.5 Error Metrics

We compare the results of our human evaluation experiment to the sentence-
level behavior of six common automatic MT evaluation metrics:

• WER: Word error rate, computed as the minimum number of inser-
tions, deletions, and substitutions required to transform the hypothesis
into any reference (Levenshtein/edit distance), normalized by reference
length.

• WER-g: As above, but normalized by the total length of the alignment
(insertions, deletions, substitutions, and matches).

• PER: Position-independent error rate; treats both hypotheses and ref-
erences as unordered bags of words and counts the necessary operations
to make them equal. Normalized by reference length.

• BLEU ([33]): The geometric mean of hypothesis n-gram precision for
1 ≤ n ≤ 4, multiplied by an exponentially decaying length penalty, to
compensate for short, high-precision translations (“the”).

– Smoothed precisions

– Adjusted length penalty

• NIST ([28]): The arithmetic mean of hypothesis n-gram precisions,
weighted by n-gram frequencies in a fixed corpus (effectively, less com-
mon n-grams receive greater emphasis). Also uses a length penalty.

• F-Measure ([24]): The harmonic mean of precision and recall, where
the size of the match between hypothesis and reference is the maximum
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Figure 5.5: The F-measure error metric. Matching runs are grayed. When
k = 2, the F-Measure is equal to the fraction of the grid covered by these
aligned blocks.

of k
√∑

|ri|k over all sets M = {r1, ..., rn} of non-conflicting matched
runs of words. We use k = 1. See figure 5.5 for a visual interpretation
of the F-measure.

5.6 Correlation with Human Judgements

We investigated the correlation of the human judgement with the automatic
measure in several ways.

We want to perform several comparisons: human voter vs human voter
in order to check inter-annotator agreement, human voter vs automatic score
to check how well the automatic scores fit human judgements, or even one
automatic score vs another in order to check how well these correlate.

Let us denote by u a reference vote (typically vote from one annotator)
and by v a second vote or measure. We consider two correlation mea-
sures. First we calculate the standard correlation coefficient, which is the
normalised covariance:

r =

∑
i (ui − u) (vi − v)√∑

i (ui − u)2
√∑

i (vi − v)2
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The correlation coefficient r varies between −1 and 1, 1 indicating perfect
correlation (ui and vi are on a line with positive slope), −1 indicating perfect
anit-correlation (ui and vi on a line with negative slope), and 0 indicating no
correlation at all. The standard correlation coefficient also has a convenient
interpretation in terms of the amount of variance in one variable that is
explained by the second variable, using a linear regression. For example, a
value of r2 = 0.5 indicates that only half the variability in v may be linearly
modelled from u, corresponding to a “signal-to-noise ratio” of 1 (as much
unexplained noise as there is “signal”, or explained variance).

We also compute the Spearman rank correlation coefficient. This is done
by sorting ui and vi and replacing each value by its rank. Let Ui (resp. Vi)
indicate the rank of ui (resp. vi) in the sorted list of u’s (resp. v’s), with the
added twist that we average the ranks of ties. For example, if the second
and third elements in the sorted list are equal, they both receive a “rank”
of 2.5. The Spearman rank-order correlation coefficient is then:

s =

∑
i

(
Ui − U

) (
Vi − V

)
√∑

i

(
Ui − U

)2√∑
i

(
Vi − V

)2

Statistical significance test of non zero correlation coefficients are available
[35]. In addition, the variance is approximately Var(s) = 1/(N − 1) (this
expression is exact when there are no ties).

As a first comparison, we look at the correlation between each automatic
score and one of the human scores, compared to the inter-annotator agree-
ment. The results plotted on figure 5.6 show that the correlations are quite
poor (30–35 percent, or a SNR of about 10%). Note however that even the
inter-annotator agreement is poor, as it only reaches 45%. Overall, there
is little difference between the linear and Spearman correlations, suggesting
that whatever small dependency there may be between the automatic and
human scores is almost linear.

The best performing scores are theWER-g (best Spearman rank-correlation)
and the NIST score (best linear correlation). Surprisingly, the F-measure
score has the lowest sentence-level correlation.

In order to check how significant the differences in correlations are, we
computed bootstrapped error bars for all correlations, including the inter-
annotator agreement. Figure 5.7 shows that the inter-annotator agreement is
significantly above all other correlations. On the other hand, all automatic
measure correlations are within error bars of each other, indicating that
the observed differences between the correlations may not actually be large
enough to be significant.
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Figure 5.6: Inter-annotator agreement (correlation of Human2 vs. Human1,
left) and correlation of all automatic scores with a single human judge (Hu-
man1).

As the inter-annotator agreement is low, we calculate the correlation
of each automatic score with the average of the human votes. Averag-
ing reduces somewhat the noise in the reference human score, and the re-
sulting correlations become a bit higher, reaching around 40% (figure 5.8).
Note however that these values are not comparable anymore to the inter-
annotators agreement, which is calculated using the raw (ie non-averaged)
human scores.

Earlier reports indicate that various automatic scores are well correlated
with human judgement over entire texts. This is the case for BLEU as
well as NIST, FMS or WER. In order to check that, we investigated the
correlation of the automatic scores with the human scores averaged over
several sentences. In figure 5.9, we split the data in five bins, equally spaced
on the human average scale. Both the human average score and the NIST
score are then averaged for each bin. Figure 5.9 shows that the resulting five
points are in a very clear, consistant, almost linear relationship. However,
for a single sentence, the fit is very poor. For example, for a NIST score of
7, the average human score would be around 0.5, but the spread is so large,
that the actual human score could actually be anywhere between 0.1 and
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Figure 5.7: Bootstrapped error bars on the correlations from figure 5.6.

0.9 with reasonable probability.

5.7 Future Work

5.7.1 Similar Studies

While our results show a significant performance gap between current au-
tomatic metrics and human judges at the sentence level, we believe that a
more extensive study of a similar nature will be feasible and revealing. A
primary goal of such a study should be wider scope: evaluating a larger
set of more diverse hypotheses will reduce the width of confidence intervals
and potentially allow performance discrimination between individual met-
rics. Additionally, it will be valuable to increase the number of evaluators
that examine each hypothesis; by decreasing noise in this fashion, we ex-
pect to see improved correlation of the automatic metrics and obtain more
reliable results.

We observed experimentally that an average evaluator can score approx-
imately 75 sentences per hour; while our subjects had prior experience in
the field, it does not seem unreasonable to expect speeds of roughly one pair
rated per minute in general, particularly if done in a controlled environment.
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Figure 5.8: Correlation with the average of the two human judges is better
for all metrics. Inter-annotator agreement is presented for reference but is
not comparable to the other correlations as it does not involve any averaging.
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Figure 5.9: Average over five bins in the human average score. This confirms
previous results of high correlation at the corpus level.
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Increasing the scores per hypothesis to three then brings the cost to about
50 evaluator-hours per 1000 hypotheses, not unreasonable for a large-scale
study.

5.7.2 Automatic MT Evaluation Metrics

Of course, the primary conclusion we draw from this experiment is that er-
ror metrics more successful at the sentence-level will be necessary to enable
the practical success of projects like ours that rely on them. Given the large
amounts of MT data that have become available in recent years, such metrics
would potentially motivate a wide variety of solutions that can take advan-
tage of large quantities of accurately evaluated output, including confidence
estimation, internal hypothesis re-ranking, and improved error-analysis of
modern MT outputs.
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Chapter 6

Conclusion

The confidence estimation for MT workshop studied various techniques in
an attempt to classify MT output (baseline data obtained from the Syntax
for MT workshop) as correct or not. Classification was applied both to
entire target sentences and to individual words and ngrams within target
sentences. In an attempt to gain insight into what constitutes a correct
translation at the sentence level, as well as to gauge the performance of
automatic evaluation metrics on this scale, we also undertook a small MT
evaluation exercise involving human annotation.

6.1 Summary of Results

The general conclusion from the workshop is that confidence estimation is
a very difficult problem for MT. At the sentence level, high variance in
the metrics used to automatically assign correctness makes it hard to learn
meaningful distinctions between good and bad translations. At the subsen-
tence level, the ability to match parts of a machine-generated translation
with a reference translation significantly reduces noise, but the best way to
perform this matching remains unclear, as does a good strategy for exploit-
ing the resulting classifiers. Although there are many interesting potential
applications for confidence estimation for MT, we cannot make a strong
claim that any are currently feasible.

The following summary lists the most salient results obtained:

• Training a separate layer using machine-learning techniques is better
than relying solely on base model scores.
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• Features derived from the base model are more valuable than external
ones, and should be tried first before investing effort in the implemen-
tation of complex external functions.

• Features based on nbest lists are more valuable than ones based solely
on individual hypotheses.

• Features that capture properties of the target text are more valuable
than those that do not.

• Multi-layer perceptrons (neural nets) outperform naive Bayes models.
MLPs with more hidden units can give better performance than those
with fewer.

• At the sentence level, NIST and WERg error measures have the best
correlation with human assessments, although the differences among
all automatic evaluation metrics are generally not statistically signif-
icant. Inter-annotator agreement is poor, but clearly distinguishable
from automatic metrics.

6.2 Future Work

At the sentence level, it is clear that better automatic evaluation metrics
need to be developed before progress can be made on the confidence esti-
mation problem. We expect that advances in statistical MT will lead to
improved evaluation metrics, perhaps based on sophisticated models that
can be trained to distinguish between human and machine translations.

At the subsentence level, the most obvious possibility is to investigate
the application of the techniques studied in chapter 4 for improving search
procedures and/or to perform hypothesis recombination over nbest lists or
word graphs.
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