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ABSTRACT

In this work we compare two parameter optimization
techniques for discriminative training using the MMI cri-
terion: the extended Baum-Welch (EBW) algorithm and
the generalized probabilistic descent (GPD) method. Us-
ing Gaussian emission densities we found special expres-
sions for the step sizes in GPD, leading to reestimation
formula very similar to those derived for the EBW algo-
rithm. Results were produced for both the TI digitstring
and the SieTill corpus for continuously spoken American
English and German digitstrings. The results for both
techniques do not show significant differences. This ex-
perimental results support the strong link between EBW
and GPD as expected from the analytic comparison.

1. INTRODUCTION

In an increasing number of applications discriminative
training criteria such as Maximum Mutual Information
(MMI) [8, 12, 15] and Minimum Classification Error
(MCE) [2, 5, 15] have been used. In MCE training, an
approximation for the error rate on the training data is
optimized, whereas MMI optimizes the a posteriori prob-
ability of the training utterances and hence the class sep-
arability.

It has been shown that discriminative training crite-
ria are able to produce significant improvements in word
error rate in comparison to the conventional Maximum
Likelihood (ML) training criterion. Since there does not
exist any discriminative training method which is guar-
anteed to converge under all practical conditions, much
effort has been made to develop parameter optimization
techniques with fast and reliable convergence.

Here two parameter optimization techniques for dis-
criminative training, the Extended Baum Welch (EBW)
algorithm [12] and the Generalized Probabilistic Descent
(GPD) [2, 5, 15], will be discussed. EBW is an extension
to the standard Baum Welch algorithm designed for opti-
mization of the MMI criterion. GPD, which is commonly
used for MCE, essentially performs a gradient descent on
the discriminative training criterion and hence is easily
transferred to other criteria like MMI.

In this work the MMI criterion is applied to train con-
nected digit recognizers. The parameter optimization
methods EBW and a special form of GPD will be com-
pared analytically. Experimental results are presented on
the TI digitstring and the SieTill corpus applying correc-
tive training [12].

2. DISCRIMINATIVE TRAINING

The training data shall be given by r = 1, ..., R training
utterances, each consisting of a sequence Xr of acous-
tic observation vectors xr,1, xr,2, ..., xr,Tr and the corre-
sponding sequence Wr of spoken words wr,1, wr,2, ...wr,Nr .
The a posteriori probability for the word sequence Wr

given the acoustic observation vectors Xr shall be de-
noted by pλ(Wr|Xr). Similarly, pλ(Xr|Wr) and p(Wr)
represent the emission and language model probabilities
for the acoustic observation sequence Xr and the word
sequence Wr. In the following, the language model prob-
abilities are supposed to be given. Hence the parameter λ
represents the set of all parameters of the emission prob-
abilities pλ(Xr|Wr).

Then the MMI criterion, which is defined by the sum
over the logarithms of the a posteriori probabilities of
each training utterance, is given by:

F (λ) =

R∑
r=1

log pλ(Wr|Xr)

=

R∑
r=1

log
p(Wr)pλ(Xr|Wr)∑
W

p(W )pλ(Xr|W )
.

Clearly an optimization of the MMI criterion tries to si-
multaneously maximize the emission probabilities of the
spoken training sentences and to minimize a weighted
sum over the emission probabilities of each competing
sentence given the acoustic observation sequence for each
training utterance. The weights in the sum over the com-
peting sentences are given by the language model prob-
abilities relative to the spoken sentence. Thus the MMI
criterion optimizes the class separability according to the
words under consideration of the language model.

2.1. Parameter Optimization

Here only the case of single Gaussian densities with den-
sity specific variances will be discussed. Similar calcula-
tions hold for the more general cases of mixture densities
with pooled, mixture or density specific variances.

2.1.1. Gradient Descent

One possibility to maximize the MMI criterion consists
of a gradient descent with the following iterative reesti-
mation formula for the parameters:

λ = λ + ε · ∂F (λ)

∂λ
. (1)

Now let p(x|λs) be the emission probability of the acous-
tic observation vector x given an HMM state s, with λs



the parameters of the acoustic model in state s. Then the
derivative of the MMI criterion with respect to parame-
ters λs is given by:

∂F (λ)

∂λs
= Γs

(
∂ log p(x|λs)

∂λs

)
, (2)

where the discriminative averages Γs are defined by:

Γs (g(x)) =

R∑
r=1

Tr∑
t=1

(
γr,t(s; Wr)− γgen

r,t (s)
)

g(xr,t). (3)

These make use of the Forward-Backward (FB) probabil-
ities of the spoken word sequence Wr:

γr,t(s; Wr) = pλ(st = s|Xr, Wr), (4)

and the generalized FB probabilities for the sums over all
competing word sequences W :

γgen
r,t (s) =

∑
W

pλ(W |Xr) γr,t(s; W )

= pλ(st = s|Xr).

The generalized FB probability is simply a sum over the
conventional FB probabilities of each competing sentence
weighted by its posterior probability.

2.1.2. Extended Baum-Welch Algorithm

Discriminative training with the MMI criterion usually
applies an extended version of Baum Welch training, the
EBW algorithm [11, 12, 13]. There the MMI criterion is
maximized via the following auxiliary function:

S(λ, λ)

=
∑

s

R∑
r=1

Tr∑
t=1

[
γr,t(s; Wr)− γgen

r,t (s)
]
log p(xr,t|λs)

+
∑

s

Ds

∫
dx p(x|λs) log p(x|λs),

which is to be optimized iteratively. Differentiation with
respect to the iterated parameters λs leads to the follow-
ing expression, from which reestimation formulae can be
derived:

∂S(λ, λ)

∂λs

= Γs

(
∂ log p(x|λs)

∂λs

)

+Ds

∫
dx p(x|λs)

∂ log p(x|λs)

∂λs

.

2.1.3. Reestimation Formulae

Let the emission probabilities be given by single Gaus-
sians with diagonal covariances. Then the reestimation
formulae for initial mean and variance vectors for state s,
µs and σ2

s are given as follows:

• GPD:

µ̂s,(GPD) = µs +
εµs

σ2
s

[Γs(x)− Γs(1)µs]

σ̂2
s,(GPD) = σ2

s +
εσs

2σ4
s

[Γs(x
2)− 2Γs(x)µs

+ Γs(1) · (µ2
s − σ2

s)].

• EBW:

µ̂s,(EBW) =
Γs(x) + Dsµs

Γs(1) + Ds

σ̂2
s,(EBW) =

Γs(x
2) + Ds(σ

2
s + µ2

s)

Γs(1) + Ds
− µ̂2

s

Although there do exist proofs of convergence for both
GPD [4] and EBW [3, 7], the step sizes needed to guar-
antee convergence are impractical by leading to very
slow convergence [12]. In practice, faster convergence is
achieved in the EBW case, if the iteration constants Ds

are chosen such that the denominators in the reestimation
equations and the according variances are kept positive:

Ds = h ·max

{
Ds,min,

1

β
− Γs(1)

}
. (5)

Here Ds,min denotes an estimation for the minimal it-
eration constant which guarantees the positivity of the
variance in state s, and the iteration factor h > 1 con-
trols the convergence of the iteration process, high values
leading to low step sizes. The constant β > 0 is chosen
to prevent overflow caused by low-valued denominators.

2.1.4. Comparison GPD vs. EBW

A direct comparison of the reestimation formulae for
GPD and EBW leads to the following special expressions
for the iteration step sizes for GPD:

εσs = 2σ2
sεµs = 2σ4

s min

{
1

Γs(1) + hDmin
,
β

h

}
. (6)

Using Eq. 6 we find the reestimation formulae for GPD
and EBW to be very similar:

µ̂s,(GPD) = µ̂s,(BW)

σ̂2
s,(GPD) = σ̂2

s,(BW) + (µs − µ̂s,(BW))
2.

In addition this comparison shows that the choice of the
iteration constant in the EBW case implies an upper
bound of the resulting step size, which is given by the
constant β/h.

2.2. Approximations

In the following experiments we use an approximation for
the calculation of the generalized FB probabilities. The
sum over all competing sentence hypotheses is typically
evaluated using N -best lists or, especially for large vocab-
ulary, word graphs produced by a preceding recognition
pass over the training data. Here the competing model is
reduced to the best recognized sentence only, such that
the generalized FB probability could be replaced by the
conventional FB probability for the best recognized sen-
tence. As a consequence only misrecognized training sen-
tences make a contribution to the optimization process.
This method is called corrective training [12].

In addition, time alignment for calculation of the FB
probabilities is performed using the Viterbi approxima-
tion [10].

3. RESULTS

Experiments were done for the recognition of continuous
digitstrings using both the TI digitstring [9] corpus for
American English digits and the SieTill [6] corpus for



telephone line recorded German digits. In Table 1 some
information on corpus statistics is summarized.

Table 1. Corpus statistics for the TI digitstring and the
SieTill corpus.

corpus female male
sent. digits sent. digits

TI test 4389 14424 4311 14159
train 4388 14414 4235 13915

SieTill test 6176 20205 6938 22881
train 6113 20115 6835 22463

The recognition systems for both corpora are based on
whole word HMMs using continuous emission densities.
They are characterized as follows:

TI digitstring recognition system:

• single Gaussian densities using state dependent vari-
ance vectors

• gender dependent whole word HMMs for 11 English
digits including ’oh’ and gender dependent silence
models

• per gender 357 states plus one state for silence

• 16 cepstral features with first and second derivatives.

SieTill recognition system:

• single Gaussian densities using a pooled variance vec-
tor

• gender dependent whole word HMMs for 11 German
digits including ’zwo’ and gender dependent silence
models

• per gender 223 states plus one state for silence.

• 12 cepstral features with first derivatives and the sec-
ond derivative of the energy.

Both baseline recognizers apply ML training using the
Viterbi approximation [10] and their results serve as start-
ing points for the additional discriminative training. A
detailed description of the baseline system could be found
in [16].

Since discriminative training methods could not guar-
antee convergence under realistic conditions, we first in-
vestigated the convergence behaviour of the MMI crite-
rion. Using iteration factors h = 5 for mixture specific
(TI digitstring, cf. Fig. 1) and h = 2 for pooled variances
(SieTill) we found relatively smooth convergence for both
GPD and EBW.

Similar results could be observed for the word error
rates on test and training data, as is shown in Fig. 2 for
the male portion of the TI digitstring corpus. Clearly,
convergence on test and training data is comparable and
thus the convergence of the error rate on the training data
could be used as criterion to stop an iteration.

F (λ)
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Figure 1. MMI criterion F for male speakers in the course
of the iteration process.
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Figure 2. Evolution of the word error rate for male speak-
ers in the course of the iteration process for the TI digit-
string test and training corpus.

In the case of the TI digitstring corpus, an interesting
fact is the reduction to no errors on the training data. On
the one hand this shows the strong homogeneity of the
TI digitstring corpus and that single densities should at
least have the ability to model such a corpus completely
without significant numbers of errors. On the other hand
it clearly brings up the limitation of corrective training,
since having no or very few errors on the training data
prevents any further change in the iteration process.

As expected analytically, the recognition results on
both TI digitstring and SieTill corpus do not show any
significant difference for GPD and EBW reestimation. As
could be seen in Tables 2 and 3, no consistent differences
between results using GPD and EBW reestimation could
be observed.

For the TI digitstring corpus the corrective MMI train-
ing removed all word errors on the training set. On the
test data a relative improvement of more than 30% in
word and sentence error rate was achieved.

On the SieTill corpus, the MMI training more than
halfed the error rates on the training set and led to a
relative improvement of 40% for the word and sentence
error rate on the test set.



Table 2. Recognition results for the TI digitstring corpus.

corp. method del/ins/sub WER[%] SER[%]
train ML 79/11/68 0.56 1.69

EBW 0/0/0 0.0 0.0
GPD 2/2/2 0.02 0.06

test ML 56/31/120 0.72 2.00
EBW 35/24/83 0.50 1.38
GPD 36/24/75 0.47 1.32

Table 3. Recognition results for the SieTill corpus.

corp. method del/ins/sub WER[%] SER[%]
train ML 449/189/1983 6.2 16.9

EBW 249/185/683 2.6 7.5
GPD 231/183/656 2.5 7.2

test ML 621/324/2297 7.5 19.7
EBW 445/318/1173 4.5 11.7
GPD 419/322/1132 4.4 11.3

It should be noted that, using ML training, our recogni-
tion systems perform better with single Laplacians than
with single Gaussians. The ML result for the sentence
error rate on the TI digitstring corpus was 1.69%. Simi-
larly, for the SieTill corpus the word error rate with ML
trained single Laplacians was 6.1%. In comparison to
these results, the error rates for MMI training with single
Gaussians still outperform the ML training with single
Laplacians at least by 20% relatively.

4. CONCLUSION

Two approaches for the optimization of discriminative
criteria, the generalized probabilistic descent (GPD) and
the extended Baum-Welch (EBW) algorithm were inves-
tigated. For the case of Gaussian densities, step sizes
for the GPD algorithm were presented, showing strong
similarities between GPD and EBW. Comparative ex-
periments on both the TI digitstring and the SieTill cor-
pus were done. In confirmation with the analytic results,
the experimental results do not inidicate significant dif-
ferences between GPD and EBW. Using single densities
relative improvements of more than 30% on the TI digit-
string and of 40% on the SieTill corpus in comparison to
the initial ML results could be achieved.
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