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Abstract
Discriminative training techniques have proved to be a power-
ful method for improving large vocabulary speech recognition
systems based on Gaussian mixture hidden Markov models.
Typically, the optimization of discriminative objective functions
is done using the extended Baum algorithm. Since for contin-
uous distributions no proof of fast and stable convergence is
known up to now, parameter re-estimation depends on setting
the iteration constants in the update rules heuristically, ensuring
that the new variances are positive definite. In case of density
specific variances this leads to a system of quadratic inequal-
ities. However, if tied variances are used, the inequalities
become more complicated and often the resulting constants are
too large to be appropriate for discriminative training. In this
paper we present an alternative approach to setting the iteration
constants to alleviate this problem. First experimental results
show that the new method leads to improved convergence speed
and test set performance.

1. Introduction
Discriminative training techniques are a powerful method for
improving large vocabulary speech recognition systems based
on Gaussian mixture hidden Markov models (HMM) [1, 2].
Typically, the optimization of discriminative objective functions
and hence the parameter re-estimation is done using the ex-
tended Baum algorithm [3]. As for continuous distributions no
proof of fast and stable convergence is known up to now, the it-
eration constants occurring in the re-estimation formulae are set
based on a heuristic which is usually twice the value necessary
to ensure positive variances. Although successfully applied in
practice this heuristic works best in combination with density
specific variances only. The reason is that only for this setting
the lower bounds on the iteration constants are given as the
roots of a system of quadratic inequalities which can be com-
puted easily. However, if tied variances are used instead, the
inequalities become more complicated and the numeric values
of the iteration constants ensuring positive variances increase
with the number of densities sharing a common covariance. In
this paper we present a novel approach to setting the iteration
constants to compensate for this effect by incorporating further
maximum likelihood statistics into the auxiliary function used
for discriminative training. First experiments performed on
a small vocabulary speech corpus show that the new method
outperforms the former heuristic in terms of both convergence
speed and test set performance.

The remainder of this paper is organized as follows: in Sec-
tion 2 we introduce a modified version of an auxiliary function
that is suitable for discriminative training with tied covariances
and briefly review the theory of parameter re-estimation. Ad-
ditionally we will discuss two variants on setting the iteration

constants that were proposed in [1] and [4], respectively, and
argue their pros and cons if tied variances are used. In Section 3
the new method for adjusting the iteration constants is derived.
Experiments conducted on a small vocabulary speech recog-
nition task are presented in Section 4, showing that the new
method is more effective in optimizing discriminative objective
functions with different variance tying schemes. The paper
concludes with a summary and outlook in Section 5.

2. Discriminative Training
In this Section we review discriminative training under the
Maximum Mutual Information (MMI) criterion with respect to
the tying scheme for the covariance matrices. This tying scheme
shall be specified via a set of equivalence classes K with each
k ∈ K comprising the set of indices of all Gaussians that share
a common covariance matrix. The following considerations
apply to the most general case of using full covariance matrices.

Let Xr =xr1, xr2, ..., xrTr
and Wr = wr1, wr2, ..., wrNr

denote the sequence of acoustic observation vectors and cor-
responding spoken words of utterances r = 1, ..., R of the
training data. The acoustic emission probability for a word
sequence W shall be denoted by pϑ(Xr|W ) with ϑ as the set
of all parameters of the acoustic model. The language model
probabilities p(W ) are supposed to be given and therefore do
not depend on ϑ. Finally letMr denote a set of competing word
sequences which are considered for discrimination in utterance
r. Then the objective function for the MMI criterion which is
defined as the sum over the logarithms of the sentence posterior
probabilities for all training utterances, can be decomposed as
follows:

FMMI(ϑ) =
RX

r=1

log
pϑ(Xr|Wr)p(Wr)X

W∈Mr

pϑ(Xr|W )p(W )
(1)

Given an HMM state s, a mixture distribution for an acoustic
vector x is denoted by p(x|ϑs). The according parameters ϑs of
the mixture distribution are the weights csl and the parameters
ϑsl of densities l of the mixture. Since each density is modeled
as a Gaussian distribution, ϑsl is given by a density specific
mean µsl and a tied covariance matrix Σk . Thus the derivative
of FMMI(ϑ) with respect to the parameters {csl, ϑsl} is given
by:

∂FMMI(ϑ)

∂{csl, ϑsl}
= Γsl

„
∂ log cslp(x|ϑsl)

∂{csl, ϑsl}

«
(2)

where the discriminative averages Γsl

`
g{x}

´
are defined as:

Γsl

`
g{x}

´
= Γnum

sl

`
g{x}

´
− Γden

sl

`
g{x}

´
(3)



The numerator and denominator statistics are given by:

Γnum
sl

`
g{x}

´
=

RX

r=1

TrX

t=1

γrt(s, l|Wr) · g(xrt) (4)

Γden
sl

`
g{x}

´
=

RX

r=1

TrX

t=1

γrt(s, l) · g(xrt) (5)

The discriminative averages make use of the conditional
forward-backward (FB) probabilities of the spoken word se-
quences Wr (Eq. 6) and the generalized FB probabilities
(Eq. 7). The latter is defined as the sum over the conditional FB
probabilities of all competing word sequences weighted with
their respective sentence posterior probability p(W |Xr):

γrt(s, l|Wr) = pϑ(st=s|Xr, Wr) ·
cslp(xrt|ϑsl)P

el
c
sel

p(xrt|ϑsel
)

(6)

γrt(s, l) =
X

W∈Mr

pϑ(W |Xr) · γrt(s, l|W ) (7)

2.1. Auxiliary Function and Parameter Re-Estimation

Discriminative training with the MMI criterion usually applies
an extended version of Baum-Welch training, the EB algorithm
[3]. The following auxiliary function can be used to maximize
the MMI criterion using tied covariance matrices:

S(ϑ, ϑ) =
X

k∈K

X

(s,l)∈k

8
>>>>:

RX

r=1

TrX

t=1

h
γrt(s, l|Wr) − γrt(s, l)

i

· log
ˆ
csl · p(xrt|ϑsl)

˜

+ Dk ·

Z n
p(x|ϑsl) · log

ˆ
csl · p(x|ϑsl)

˜o
dx

9
>>>>; (8)

The quantities Dk denote the iteration constants which are
specific to each equivalence class. Maximizing S(ϑ, ϑ) with
respect to ϑsl gives the re-estimation formulae for the means
µsl and the tied variances Σk:

µsl =
Γsl(x) + Dkµsl

Γsl(1) + Dk

(9)

Σk =

8
>>>>:

X

(s,l)∈k

h
Γsl(x · x>) + Dk ·

ˆ
Σk + µsl · µ

>
sl

˜

−
ˆ
Γsl(1) + Dk

˜
· µsl · µ

>

sl

i9
>>>>;

‹ X

(s,l)∈k

ˆ
Γsl(1) + Dk

˜
(10)

Since the original EB update rules for mixture weights turned
out to be extremely sensitive to small values of Γsl(1), the
update scheme proposed in [5] was used instead. This ap-
proach is reported to result in a faster increase in the objective
function. As it is free from smoothing constants the mixture
weight updates are not affected by the choice of the iteration
constants Dk.

2.2. Convergence Control

A key issue in discriminative training is the choice for the
iteration constants Dk . If the constants are set too large a value,
convergence will be slow. On the other hand, if they are set too
low a value, they might not increase the objective function. As
no proof of fast and stable convergence has been found up to
now, Dk is set heuristically. A useful lower bound on Dk was

found to be the value which ensures that all variances in the
update rules remain positive definite [6]. In case of using full
covariances this leads to the following system of inequalities:

∀(s, l) ∈ k : Dk > −Γsl(1) (11)

∧
X

(s,l)∈k

D2
k · Ak + Dk · Bsl + Csl

Γsl(1) + Dk

> 0 (12)

with

Ak = Σk, Csl =
1

|k|
Γsl(1)Γk(x · x>) − Γsl(x)Γsl(x

>),

Bsl =
1

|k|
Γk(x · x>) + Γsl(1)

ˆ
Σk + µslµ

>
sl

˜
− 2Γsl(x)µ>

sl

2.2.1. Density Specific Variances

If density specific full covariance matrices are used there is a
one-to-one correspondence between the equivalence classes k
and the pairs (s, l), and Eq. (12) has the form of a quadratic
eigenvalue problem. This eigenvalue problem can be turned into
a linear problem by introducing an additional unknown eigen-
vector y and solving the resulting non symmetric eigensystem
[7, p. 467]:
„

0 1

−A
−1
sl · Csl −A

−1
sl · Bsl

«
·

„
x
y

«
= Dmin

sl ·

„
x
y

«

If the variances are estimated under a diagonal modeling con-
straint, the quadratic eigenvalue problem decomposes into a
system of quadratic inequalities (one inequality for each dimen-
sion d), and its largest positive real root is the lower bound on
the sought iteration constant:

Dmin
sl = max

d

n`
− bd +

q
b2
d − 4adcd

´
/2ad

o
(13)

with

ad = diag(Asl)d, bd = diag(Bsl)d, cd = diag(Csl)d

2.2.2. Former Methods on Setting the Iteration Constants

In [1] density specific diagonal variances were used with the
iteration constants Dsl set on a per-Gaussian level to the maxi-
mum of (1) twice the value necessary to ensure positive vari-
ance updates for all dimensions of the Gaussian k ≡ (s, l)
and (2) a further constant E multiplied with the denominator
occupancy Γden

sl (1). This constant E was either set to E =
1, or E = 2, or a value called Ehalfmax with Ehalfmax =
maxsl

˘
Dmin

sl

¯
/ minsl

˘
Γden

sl (1)
¯

. Thus the final iteration con-
stants were given by

Dsl = max
˘
h · Dmin

sl , E · Γden
sl (1)

¯
+ ε, h = 2.0 (14)

Setting the iteration constants according to Eq. (14) works best
in combination with density specific variances only. However, if
tied variances are used, the root finding problem becomes much
more difficult which is due to the denominators in Eq. (12) that
prevent a decomposition into an analytically easier expression.
Thus, by multiplying the fractions with all denominators the
resulting polynomial would have degree |k| + 1 and even for
moderate tying schemes (e.g. 10 < |k|) finding the roots would
analytically be impractical. A putative remedy is to abandon the
goal of finding the smallest value ensuring positive variances.
Thus the fractions in Eq. (12) can be considered as independent



quadratic inequalities and the maximum over all roots would
form a valid choice for Dk . However, this method holds the
problem that the magnitude of Dk would be dominated by den-
sities with nearly equal numerator and denominator statistics,
i.e. for which Γnum

sl

`
g{x}

´
≈ Γden

sl

`
g{x}

´
holds (in that case

the respective densities were hardly ever misrecognized). Such
values cause very small gradients in the update rules and thus
result in very large iteration constants with low convergence
speed.

In [4] discriminative training using a globally pooled vari-
ance or state specific variances, respectively, was investigated.
The according state specific iteration constants were determined
under the additional constraint that not only the variances
have to remain positive, but also the denominators in all re-
estimation equations, including the update rules for the means.
This leads to the following inequalities:

σ2
s ≥ α > 0, Γsl(1) + Ds ≥

1

βs

> 0 (15)

with a positive constant α that provides a lower limit for the
variances. In [4] α was set to 1. The value of the lower
limit to the denominators, βs, was determined according to the
following heuristic formula:

1

βs

= 1 +
`
|Γsηs

(1)| − 1
´
·

˛̨
Γsηs

(1)
˛̨

Γmax
sηs

(16)

with

ηs = argmax
l

˘
|Γsl(1)|

¯
(17)

Γmax
sηs

= max
˘
Γnum

sηs
(1), Γden

sηs
(1)

¯
(18)

The idea behind this formula is to choose 1/βs according to
the magnitude of Γsηs

(1), as far as the ratio |Γsηs
(1)|/Γmax

sηs
is

not too low. Otherwise, if the ratio is low, the contributions of
Γnum

sηs
(1) and Γden

sηs
(1) nearly cancel and βs approaches a fixed

limit. Based on these quantities the minimal iteration constants
fulfilling the constraint of positive variances were given by:

Dmin
s = max

d

8
>>>>:

LsX

l=1

−Γsl(x
2
d) + 2Γsl(xd)µ

2
sld − Γsl(1)µ

2
sld

+ βs

ˆ
Γsl(xd) − Γsl(1)µsld

˜2
+ αΓsl(1)

9
>>>>;

‹ LsX

l=1

ˆ
σ2

sd − α
˜

Thus the final iteration constants were given by:

Ds = h · max


Dmin

s , max
l

1

csl

»
1

βs

− Γsl(1)

–ff
(19)

Even though this method proved to be very effective in combi-
nation with tied variances, the iteration constants turn out to be
too large if density specific variances are used (cf. Section 4).

3. Iteration Constants for Tied Covariances
A useful method for setting the iteration constants with arbitrary
tying schemes should meet the following properties: (1) the
method should not depend on additional parameters; (2) it
should not need further constraints that go beyond the approved
requirement of positive definiteness of the variances; (3) in
case of using density specific variances the magnitude of the
iteration constants should be in the same range as the roots of
the respective system of quadratic inequalities; (4) increasing

the number of Gaussians within an equivalence class should
only cause a small increase in the iteration constants. Both
methods described above meet these requirements only in parts.
The reason for this becomes apparent when inspecting the re-
estimation equations and the effect of the iteration constants.
According to Eq. (9), Dk provides some kind of smoothing
between the former means µsl and the discriminative statistics
Γsl(x). However, while µsl is a normalized quantity, the
discriminative statistics Γsl(x) are not. As Γsl(x) is com-
posed of the difference between two unnormalized quantities,
Γnum

sl (x) and Γden
sl (x), Dk has to scale µsl in such a way that

the magnitudes of Dk · µsl and
˘
Γnum

sl (x), Γden
sl (x)

¯
are within

the same range. Nevertheless, this scaling should be separated
from the actual iteration constants as it rather depends on the
number of observations assigned with the Gaussian (s, l) than
on discrimination. Therefore, Dk should be split into two
terms: one term ∆k that depends on the equivalence class k,
and a further density specific term Λsl(1) that accounts for the
different magnitudes of µsl and

˘
Γnum

sl (x),Γden
sl (x)

¯
. With the

assumption that both quantities, Γnum
sl (x) and Γnum

sl (x), should
be proportional to µsl, Λsl(1) is set to the maximum likelihood
estimates of the state occupancy probabilities of the last preced-
ing training iteration. Thus by replacing the iteration constants
in Eq. (8) with

Dk → ∆k · Λsl(1) (20)

we obtain a modified expression of the auxiliary function:

S (ϑ, bϑ) =
X

k∈K

X

(s,l)∈k

8
>>>>:

RX

r=1

TrX

t=1

h
γrt(s, l|Wr) − γrt(s, l)

i

· log
ˆ
bcsl · p(xrt|bϑsl)

˜

+ ∆k · Λsl(1)

Z n
p(x|ϑsl) · log

ˆ
bcsl · p(x|bϑsl)

˜o
dx

9
>>>>; (21)

Optimizing Eq. (21) with respect to bϑ yields the following re-
estimation equations for the means and tied variances:

bµsl =
Γsl(x) + ∆kΛsl(1)µsl

Γsl(1) + ∆kΛsl(1)
(22)

bΣk =

8
>>>>:

X

(s,l)∈k

h
Γsl(x · x>) + ∆kΛsl(1)

ˆ
Σk + µslµ

>
sl

˜
(23)

−
ˆ
Γsl(1) + ∆kΛsl(1)

˜
bµsl bµ>

sl

i9>>>>;
‹ X

(s,l)∈k

ˆ
Γsl(1) + ∆kΛsl(1)

˜

As before the new mixture weights are re-estimated according
to the update rule proposed in [5]. Finally the statistics from
Eq. (12) have to be replaced by

bAsl = Λ2
sl(1) · Ak, bBsl = Λsl(1) · Bsl (24)

Thus the iteration constants are given by:

∆k = max
n

h · ∆min
k , max

(s,l)∈k

˘
− Γsl(1)/Λsl(1)

¯o
+ ε (25)

where ∆min
k corresponds with the roots or eigenvalues of the

according system of quadratic inequalities.
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Figure 1: MMI criterion as a function of the iteration index on
the male portion of the SieTill training corpus (left) and word
error rates on the SieTill test corpus (right) using either one
globally pooled variance (1 var) or density specific variances
(6.8k var). The iteration constants Dsl, Ds and ∆k are set
according to Eq. (14), (19), and (25).

4. Experimental Results
First experimental results were produced on the SieTill corpus
for telephone line recorded German continuous digit strings.
The corpus consists of approximately 43k spoken digits in 13k
sentences for both training and test set. A detailed corpus
description can be found in [4]. The recognition system is
based on gender-dependent whole-word HMMs using contin-
uous emission densities. For each gender 214 distinct states
plus one for silence is used. The observation vectors consist
of 12 cepstral features with first derivatives and the second
derivative of the first component. Each three contiguous feature
vectors are concatenated and projected via an LDA transforma-
tion matrix onto a 25 dimensional feature vector. For density
specific variances the LDA matrix is combined with a MLLT
matrix. The baseline recognizer applies ML training using the
Viterbi approximation and achieves a word error rate (WER)
of 2.04% using one globally pooled covariance matrix, and
1.56% WER using density specific variances (cf. Table 1). Both
ML trained systems serve as starting points for discriminative
training using the MMI criterion. Numerator and denominator
lattices were re-generated in each training iteration based on
an unconstrained recognition. Setting the iteration constants
according to Eq. (19) results in a faster increase of the objective
function and a lower WER on test data compared with setting
the iteration constants according to Eq. (14) if one globally
pooled covariance matrix is used. The reason is that the value
of Dmin

sl is dominated by nearly equally occupied numerator and
denominator statistics which leads to numerically very large
iteration constants. However, if density specific variances are
used the effect is reversed. Thus setting Dsl according to
Eq. (14) results in a WER of 1.36% which has to be compared

Table 1: Word error rates (WER) on the SieTill test corpus for
different tying schemes.

male + female WER[%]
#var #dns ML Dsl Ds ∆k

1+1 6.8k+6.8k 2.04 1.95 1.78 1.74
6.2k+6.2k 6.8k+6.8k 1.56 1.36 1.46 1.36

with 1.46% when setting the iteration constants according to
Eq. (19). In contrast to this the new approach achieves faster
convergence speed without deteriorating test set performance
for both tying schemes. Thus the achieved test set performance
is always equal to those systems where the iteration constants
were optimally set with respect to the tying scheme.

5. Conclusion
In this paper a new method on setting the iteration constants for
discriminative training with tied covariances was investigated.
Usually different tying schemes require special methods for
setting the iteration constants that account for the number of
Gaussians that share a common covariance matrix. The new
approach circumvents this problem by splitting the iteration
constants into two parts: a density specific part that accounts
for the number of observations and a variance specific part
that controls the positive definiteness of the variances. This
factorization turned out to be robust towards varying the tying
scheme. Since the new method achieved in all cases the same
error rate as the best of the former methods (which were
specialized for the respective tying scheme) the new approach
is appropriate to replace the former methods. Preliminary
experiments currently conducted on larger speech corpora seem
to confirm these results also for more challenging tasks.
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