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Abstract

We present a method for automatically learning discrim-
inative image patches for the recognition of given object
classes. The approach applies discriminative training of
log-linear models to image patch histograms. We show that
it works well on three tasks and performs significantly better
than other methods using the same features. For example,
the method decides that patches containing an eye are most
important for distinguishing face from background images.
The recognition performance is very competitive with error
rates presented in other publications. In particular, a new
best error rate for the Caltech motorbikes data of 1.5% is
achieved.

1. Introduction
An important open problem in computer vision is the learn-
ing and recognition of objects in cluttered scenes. Different
approaches to address this problem have been described in
the literature. One very promising approach assumes that
the objects to be learned and recognized consist of a collec-
tion of parts. This assumption has some immediate advan-
tages: Changes in the geometrical relation between image
parts can be modeled to be flexible or even to be ignored and
the algorithm can focus on those image parts that are most
important to recognize the object. It is also evident that this
approach can handle occlusions well. If parts of an object
are occluded in an image, the remaining visible parts may
still be used to recognize the object correctly and to learn
about the appearance of this object from this instance.

When applying this paradigm of classification by image
parts, we must take two decisions: At which points in the
image do we extract image patches that should capture the
object parts? Given the image patches, how do we decide
which class of object is present in the image? Here, we use
image patches that are extracted at points of interest and
also at regularly spaced intervals. We use an available in-
terest point detector [11], while we could also use the local
variance or entropy [4, 13].

For the decision rule, we propose to use a discrimina-
tive model that takes as input the frequency of occurrence

of the clusters that the patches are assigned to. In this work,
we compare this discriminative log-linear model to other
models that operate on the same features, including naive
Bayes, maximum likelihood of the class conditional proba-
bility, and a nearest neighbor model. Furthermore, we com-
pare the complete setup to a direct voting approach.

Related work includes Mohan and colleagues [12] who
use predetermined parts of human bodies to detect hu-
mans in cluttered scenes. Dorko and Schmid [3] use image
patches to classify cars, but the extracted patches from the
training set are hand-labeled whether they are part of a car
or not. Leibe and Schiele [10] use scale-invariant interest
points and manually segmented training data for classifica-
tion. In contrast to these approaches, we only need weak
supervision in training, i.e. only information about the pres-
ence of an object in the image. Fergus and colleagues [4]
and Weber and colleagues [15] statistically model position,
occurrence, and appearance of object parts.

2. Feature Extraction
Given an image, we use up to 1000 square image patches as
features extracted around interest points obtained using the
method proposed by Loupias and colleagues [11]. Addi-
tionally, we use 300 patches from a uniform grid of 15×20
cells that is projected onto the image. In contrast to the
interest points from the detector, these points can also fall
onto very homogeneous areas of the image. This property
is important for capturing homogeneity in objects in addi-
tion to points that are detected by interest point detectors,
which are usually of high variance. In informal experi-
ments, this combination of points of interest and regular
grid performed better than both methods alone. Figure 1
shows the points of interest detected in a typical image. The
patches are allowed to extend beyond the image border, in
which case the part of the patch falling outside the image
is padded with zeroes. After the patches are extracted, a
PCA dimensionality reduction is applied to reduce the large
dimensionality of the data, keeping 40 coefficients. These
data are then clustered with a Linde-Buzo-Gray algorithm
using the Euclidean distance. Then we discard all informa-
tion for each patch except its corresponding closest cluster
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Figure 1: Patch extraction: salient points and uniform grid.

center identifier. For the test data, this identifier is deter-
mined by evaluating the Euclidean distance to all cluster
centers for each patch. Thus, the clustering assigns a clus-
ter c(x) ∈ {1, . . . C} to each image patchx and allows us
to create histograms of cluster frequencies by counting how
many of the extracted patches beloong to each of the clus-
ters. The histogram representationh(X) with C bins is then
determined by counting and normalization such that

hc(X) =
1

LX

LX∑
l=1

δ(c, c(xl)),

whereδ denotes the Kronecker delta function.
Obviously, there exist alternatives to algorithmic choices

made in the proposed method. For example, different inter-
est point detectors can be used. However, experiments in
other domains suggest that the choice of the interest point
detector is not critical and often the local grey value vari-
ance or entropy is already a sufficient criterion, provided
that enough image patches are extracted [13, 14]. Fur-
thermore, the geometrical relation between the extracted
patches is completely neglected in the approach presented
here. While this relation could be used to improve classifi-
cation accuracy, it remains difficult to achieve an effective
reduction of the error rate in various situations by doing so.

3. Decision Rules
Having obtained the representation by (histograms of) im-
age patches, we need to define a decision rule for the clas-
sification of images. In the following sections we briefly
present different methods that use these representations.
Note that most of the decision rules as they are presented
here are simplified by the fact that in the experiments we
assume a uniform prior distributionp(k) = 1/K.

3.1. Global Patch Search and Direct Voting
Global patch search and direct voting was proposed in [13]
and uses the PCA-transformed image patches directly with-
out computing a histogram representation. A KD-tree is
created from the training image patches to admit efficient
nearest neighbor searches. Using this KD-tree, each test
image patch is assigned the class of its nearest neighbor us-
ing approximate search. The search is ‘global’, because all

patches originating from one class are treated equally, in-
dependent of the image they were extracted from. The in-
dividual classifications of all patches are then combined by
direct voting. The classification output is the class that most
of the image patches have been assigned to. This method is
known to obtain very competitive results in various tasks
like face recognition, radiograph recognition, and charac-
ter recognition [14] and therefore serves as a good baseline.
Kölsch and colleagues [8] give a formalized description of
the classification process and describe improvements that
can be obtained by e.g. multi-scale patch extraction, a mod-
ified voting scheme, or invariant distance measures in the
nearest neighbor search. In this work, we use the basic clas-
sification method as described above for comparison.

3.2. Nearest Neighbor

Using the histograms of image patches as a representation
for the images, we can employ a simple nearest neighbor
classifier. Usually, the nearest neighbor is a useful bench-
mark because it is a simple classifier with good performance
in many applications. Here, we choose the Jensen-Shannon
divergence to compare two histograms. This choice is based
on findings in previous experiments [2], where this measure
provided good performance across different tasks. The re-
sulting decision rule for the nearest neighbor is then

X 7→ r(X) = arg min
k

{
min

n=1...Nk

d(h(X), h(Xn))
}

,

whered(h, h′) =
∑C

c=1 hc log 2hc

hc+h′
c

+ h′
c log 2h′

c

h′
c+hc

.

3.3. Naive Bayes

In the following approaches we use Bayes’ decision rule

r(X) = arg max
k
{p(k|X)}

= arg max
k
{p(k) p(X|k)}

= arg max
k
{p(X|k)},

where the last equality holds due top(k) = 1/K. Because
we use the histogram representation of the images we let
p(k|X) := p(k|h(X)) andp(X|k) := p(h(X)|k).

In the naive Bayes approach, the assumption is made that
the distributions of the feature vector components are condi-
tionally independent. Thus, for the patch representation we
assume thatp(X|k) =

∏LX

l=1 p(xl|k). As we assume uni-
form priors, the decision is not changed when we use the
product of posterior probabilities. Furthermore, we apply
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the logarithm to convert the product into a sum:

r(X) = arg max
k

{
LX∏
l=1

p(xl|k)

}
=arg max

k

{
LX∏
l=1

p(k|xl)

}

=arg max
k

{
LX∑
l=1

log p(k|xl)

}

=arg max
k

{
C∑

c=1

hc(X) log p(k|c)

}
,

Where we assume that these patch posterior probabilities
are equal for patches within the same cluster:p(k|x) =
p(k|c(x)). Finally, the cluster posterior probabilities are
estimated from the relative frequencies on the training data:

p(k|c) =
∑Nk

n=1 hc(Xkn)∑N
n=1 hc(Xn)

3.4. Generative Single Gaussian
Another baseline classification method is to use a sin-
gle Gaussian density for the class-conditional probability
p(h|k) = N (h|µk,Σ) for each object class with pooled di-
agonal covariance matricesΣ. The parameters of the model
are then estimated by the maximum likelihood method dur-
ing training, maximizing

∏K
k=1

∏Nk

n=1 p(Xkn|k). In classi-
fication, Bayes’ decision rule is used.

3.5. Discriminative Training
The approach based on maximum likelihood of the class-
conditional distributions does not take into account the in-
formation of competing classes during training. We can use
this information by maximizing the class posterior probabil-
ity

∏K
k=1

∏Nk

n=1 p(k|Xkn) instead. Assuming a Gaussian
density with pooled covariances for the class-conditional
distribution, this maximization is equivalent to maximizing
the parameters of a log-linear or maximum entropy model

p(k|h) =
1

Z(h)
exp

(
αk +

C∑
c=1

λkchc

)
,

whereZ(h) =
∑K

k=1 exp(αk +
∑C

c=1 λkchc) is the renor-
malization factor. (Note that also the generative Gaussian
model can be rewritten in this form and we can further-
more always find a generative model that results in the same
posterior distribution [6].) The maximizing distribution is
unique and the resulting model is also the model of highest
entropy with fixed marginal distributions of the features [6].
Efficient algorithms to determine the parameters{αk, λkc}
exist. We use a modified version of generalized iterative
scaling [1]. Bayes’ decision rule is used for classification.

Figure 2: Examples from the Caltech data (airplanes, faces,
motorbikes, background) and the medical radiographs.

3.6. Relation Between the Models
There exists a strong relation between the structure of the
decision rule resulting from the naive Bayes, the Gaussian,
and the log-linear model. In all three cases the decision rule
can be rewritten as anarg max operation of a linear function
of the histogram representation:

r(X) = arg max
k

{
αk +

C∑
c=1

λkchc(X)
}

For the naive Bayes model we haveαk = 0 and
λkc = log p(k|c), for the Gaussian model the parameters
{αk, λkc} are a function of the parameters{µk,Σ}, and for
the log-linear model the parameters are trained directly.

In this formulation of the decision rule, evidently,
patches assigned to those clustersc that have the highest
absolute difference of coefficients|λkc − λk′c| contribute
the most to the discrimination between the classesk andk′

according to the model. This correspondence is used to vi-
sualize the most discriminative patches in Section 5, where
the sign of the differenceλkc−λk′c determines if the patch
cluster contains indicators for classk or k′.

4. Database
Fergus and colleagues [4] use different datasets for unsuper-
vised object training and recognition of objects. The task is
to determine whether an object is present in an image or
not. For this purpose, several sets of images containing cer-
tain objects (airplanes, faces, and motorbikes) and a set of
background images not containing any of these objects are
available at http://www.robots.ox.ac.uk/∼vgg/data, which
we use in the experiments. The images are of various sizes
and for the experiments they were converted to gray images.
The airplanes and the faces task consist of 800 training and
800 test images each, the faces task consists of 436 training
and 434 test images. For each of these tasks, half of the
images contain the object of interest and the other half does
not. An example image of each set is shown in Figure 2.

To observe the performance of our method on a task
with more than two classes, we also performed a key
experiment using an in-house set of medical radiographs
consisting of 2832 training images and 1016 test images.
An example image is shown in Figure 2. This task consists
of 24 classes which are very unevenly distributed. The data
are courtesy of the IRMA project [9].
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Figure 3: Discriminative model on the unscaled data: effect
of patch size on the error rate.

5. Experimental Results

We evaluate two series of experiments for each of the Cal-
tech tasks: In the first series, each image retains its original
size and in the second series each image is scaled to the
height of 225 pixels, the mean height of the input images.
For each of the tasks, first the image patches are extracted.
The PCA is estimated using the training data patches only
and all patches are processed using the PCA coefficients.
Then, the image patches from the training data are clustered
to create the patch histograms for training and test data.

One parameter that must be determined for the experi-
ments is the image patch size. We first use the images of
original size, extract the features as described above, and
apply the classification methods to these data. Figure 3
shows the error rate for these experiments using the discrim-
inative model. The other classifiers behave similarly but
yield larger error rates. It can be observed that the largest
patch size (61×61) performs best. The resulting error rates
for this patch size are shown in Table 1. They show that the
discriminative model outperforms the other methods and
are also very competitive with error rates presented in the
literature for the same tasks as shown in Table 2. The sec-
ond best approach is the naive Bayes model.

Visualizing the patches that are most discriminative ac-
cording to the difference in coefficients from the discrimi-
native approach shows an interesting effect. This effect re-
sults from the property that the images of the background
class are generally smaller than the images from the other
classes. The four most discriminative patches for the back-
ground and the motorbikes class are shown in Figure 4. It

Table 1: Error rates, size 61×61, original data, 512 clusters.
method airplanes faces motorbikes
Global Patch Search 7.8 18.4 15.8
Nearest Neighbor 6.1 6.2 9.6
Naive Bayes 4.6 5.8 6.9
Generative Gaussian 15.4 30.0 19.0
Discriminative Model 1.4 1.8 2.4

background motorbikes

Figure 4: Most discriminative patches for size 61×61;
background (left) vs. motorbikes (right).

can be clearly observed that the patches for the background
class show image borders, while the patches for the mo-
torbike class show parts of the wheels. On the one hand
this shows that visually meaningful patches are learned to
be discriminative for motorbikes. On the other hand, the
significant difference in size is also learned by assigning
more importance to patches that contain image borders and
corners. This explains why enlarging the patches improves
performance: The larger the patches are, the more of the
image border is contained in the patches and thus for the
smaller background images the most discriminative patches
are those showing large amounts of image border.

Although we may state that the algorithm in fact learns
to effectively discriminate between background and fore-
ground images, this is not the result we are trying to obtain.
While we believe that the error rates are still valid results,
we are interested in the performance of the algorithm if it
cannot exploit the difference in size of the image classes.

To avoid the effect of learning the borders of background
images, we scale all images to the common height of 225
pixels, approximately the mean height across the data. Re-
peating our experiments to determine the best patch size we
now obtain the error rates shown in Figure 5 for the dis-
criminative model. Now larger patch sizes no longer per-
form better. The error rates for the smallest evaluated patch
size of 11×11 are presented in Table 2 and compared to
those from other publications and the best error rates from
the first experiment. Performing further experiments with
more cluster centers (thus using histograms with more bins)
we observe that the error rate improves for the discrimina-
tive approach. The other methods, especially the generative
Gaussian approach, improve only slightly if at all.

Again, the discriminative approach performs best among
the investigated methods and gives competitive results. Es-
pecially the error rate of 1.5% for the motorbike task is the
lowest published error rate we are aware of. The second best
method now differs from task to task. (Note that the other
publications give ROC equal error rates. The error rates
presented here do not involve any adjustment of a threshold
but still are very close to this concept: the misclassifica-
tions within the two classes are 14:16 for airplanes, 13:18
for faces, and 7:13 for motorbikes.)

In Figure 6 the top four discriminative patches are shown
for each of the three tasks. We can observe that the patches
for the foreground allow a meaningful visual interpretation
in most of the cases: The airplane images contain more
horizontal structures than the background images such that
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Figure 5: Discriminative model on the scaled data: effect of
patch size on the error rate.

Table 2: Error rates on scaled Caltech data with 512/4096
clusters in comparison to results from other publications.

method airp. faces mot.
512 clusters:

Patch Search 4.8 8.5 21.5
Nearest Neighbor 9.4 18.7 5.5
Naive Bayes 8.5 17.1 9.9
Generative Gaussian 5.8 17.5 7.6
Discriminative Model 3.8 7.1 2.5

4096 clusters:
Nearest Neighbor 11.6 19.9 14.5
Naive Bayes 5.6 11.3 7.5
Generative Gaussian 37.4 48.2 49.9
Discriminative Model 2.6 5.8 1.5
Statistical Model [4] 9.8 3.6 7.5
Texture features [2] 0.8 1.6 7.4
Segmentation [5] 2.2 0.1 10.4
Discr. Model (Table 1) 1.4 1.8 2.4

patches containing strong horizontal gradients are chosen
to receive large weights. The first patch of the face class
shows a patch that resembles an eye. This observation be-
comes clearer if we look at some patches from the train-
ing data that are assigned to this cluster as shown in Fig-
ure 7. Clearly, the algorithm has automatically learned that
the eye is the visually most important feature to distinguish
faces from background images. The second face patch can
be interpreted as a part of the hair/forehead line while the
third and fourth are not easily interpreted. For the motor-
bike task, all four patches show diagonal wheel/rim struc-
tures, which typically do not occur in background images.
The most discriminative background patches change for the
three tasks, which is due to different training images and
to the discriminative training: For example, the first two
background patches in the faces task are strong indicators
for background versus faces, but this would not be true in
the airplanes task, because here vertical structures are indi-
cators for airplanes. (Note that the bright centered dot in

background airplanes

background faces

background motorbikes

Figure 6: Most discriminative patches for the Caltech data
(background and object class).

Figure 7: Cluster most discriminative for faces.

some of the patches is due to the PCA reconstruction and the
mean image computed from patches supplied by the interest
point detector, favoring images with strong gradients.)

Figure 8 shows typical examples for each of the three
tasks with those positions marked at which highly discrim-
inative features are extracted. We can observe that strong
foreground indicators are located at horizontal structures for
the airplanes task, at the eyes, hair/forehead, and clothes
for the faces task, and at the wheel/rim and other diagonal
structures for the motorbikes task. For the incorrectly clas-
sified images it can be observed that in the airplane image
many vertical structures are found, that the face is too dark
in comparison to the background, and that in the motorbike
image a large amount of background features are present.

Table 3 shows the results using the above settings on the
medical radiograph data. The error rate of 23% compares
well to an error rate of 18% when using the image distor-
tion model [7] which is a method that is known to produce
excellent results on this corpus. Not that the obtained error
rate of 23% was obtained without any adaptation of param-
eters and only serves to show that the approach can also be
used for tasks with more than one class.

The experiments show that the presented approach works
well for the data presented, where the foreground object
forms a significant portion of the input image. It may be
argued that it will be problematic for the approach to deal
with cases where this is not the case. This (so far hypo-
thetical) effect might be alleviated by using a significantly
larger amount of training data. Furthermore, to our knowl-

Table 3: Error rates for the medical radiographs.
method ER
Discriminative Model 23%
Image Distortion Model [7] 18%
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Figure 8: Typical examples of correct (left) and incorrect
(right) classfications with positions of most discriminative
patches for object (yellow) and background class (red).

edge this problem will occur for all generic learning and
recognition approaches with the possible exception of those
approaches that are tuned toward a specific application like
face detection.

6. Conclusion

We presented a method for object classification that uses
image patches and fully automatically learns which patches
are discriminative for the given object classes. We com-
pared the method to other methods using the same features.
The obtained recognition performance compares favorably
to those reported in other publications, in particular we ob-
serve a 1.5% error rate on the motorbikes task.

In the first series of experiments the discriminative train-
ing learns that the size of the image is a very discriminative
feature for the classification by assigning a large weight to
border and corner patches, which is not intended. To avoid
this effect we scale the images to a common height in the
second series of experiments. From the resulting clusters
it can be observed that visually meaningful parts of the ob-
jects are learned, e.g. for faces the eyes and for motorbikes
extracts from the wheels are most discriminative.

In future experiments, the next promising steps will be
to use patches of different sizes to account for object parts
at different scales and to allow the patches to distribute their
votes to more than one bin of the histogram.
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