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Abstract

mon extension to the nearest neighbour method which allows to
determine probability estimates.

We present a system that uses nearest neighbour classification Related Work. To our knowledge, nearest neighbour classifica-

on the state level of the hidden Markov model. Common speech
recognition systems nowadays use Gaussian mixtures with a
very high number of densities. We propose to carry this idea
to the extreme, such that each observation is a prototype of its
own. This approach is well-known and widely used in other ar-

eas of pattern recognition and has some immediate advantages

over other classification approaches, but has never been applied
to speech recognition. We evaluate the proposed method on the
SieTill corpus of continuous digit strings and on the large vo-
cabulary EPPS English task. It is shown that nearest neighbour
outperforms conventional systems when training data is sparse.
Index Terms: automatic speech recognition, nearest neighbour
classification, kernel densities

1. Introduction

In common speech recognition systems, Gaussian mixture mod-
els (GMMs) are applied at the state level of the hidden Markov
Model. Recently, the number of densities used is increased to
optimise recognition performance. Carrying this trend to the
extremes would result in a Gaussian mixture model with very
few observations per density. Carrying this even further results
in nearest neighbour classification where each training observa-
tion is employed as a prototype.

Nearest neighbour classification is a widely adopted tech-
nique in many pattern recognition applications e.g. in image
recognition [1] and protein identification [2]. The nearest neigh-
bour method is well understood and offers some immediate ad-
vantages: on the theoretical side, it can be proven that the near-
est neighbour classifier performs asymptotically optimal if very
little or very much training data is available [3]. On the practical
side, the nearest neighbour is easily implemented and training is
very easy. The training phase of the algorithm only consists of
storing the feature vectors and class labels of the training sam-
ples. Furthermore, when setting up a nearest neighbour clas-
sifier very few parameters have to be tuned compared to other

classification methods where several parameters have to be set.

The use of the nearest neighbour technique in speech recog-
nition is problematic for the following reasons: (i) The amount
of training data commonly used in speech recognition poses a
problem because for an efficient nearest neighbour classifica-
tion it is essential to keep all data in RAM. (ii) The compari-
son of an observation to all training samples obviously requires
more computation time than the comparison with a set of Gaus-
sian densities which typically consists of several orders of mag-
nitude less densities than there are training observations. (iii) In
speech recognition commonly hidden Markov models (HMMs)
are used which require probability estimates at the state level.
The nearest neighbour classifier does not directly allow for the
estimation of probabilities which makes the integration into the
HMM problematic. The kernel densities [4] approach, is a com-

tion has never been used at the state level in a speech recognition
system. In [5] the author proposes a nearest neighbour classifier
at word level in a system for small vocabulary gesture recogni-
tion with whole-word models: a sequence to be recognised is
aligned to every training sequence using the conventional dy-
namic programming time alignment algorithm, then a distance
is calculated between the two sequences and the class of the
training observation with the lowest distance is chosen. In [6]
approximation techniques from nearest neighbour classification
are used to improve the efficiency of score calculation in GMM-
based HMM. In [7] nearest neighbour classification is used for
speech channel segmentation in a co-channel environment.

In the image recognition domain, a combination of many
nearest neighbour decisions has been used for the classification
of faces [8] and in most content-based image retrieval systems
nearest neighbour techniques are applied to find similar images
for a given query[9].

In this work, we propose to use a nearest neighbour clas-
sifier at the state level in a speech recognition system. This is
made possible by the use of efficient approximate nearest neigh-
bour search usingd-trees [10].

2. Nearest Neighbour Classification

A common speech recognition system uses Bayes’ decision
rule. Given a sequence of feature vectofs the sequence of
words®w!¥ is obtained as

w7 = arg max {p(wmxlT)} 1)
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Then,p(z¥, sT|wl) is further reformulated using Markov as-
sumption as
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p(z¢|s¢) is commonly modelled as a mixture of Gaussian den-

sities using up to 500 densities per state summing up to a total
of about 1,000,000 densities [11]. It can be observed that using
even more densities leads to better results. Here we replace it



by a nearest neighbour classifier where effectively each training
observation is a density of its own.

The decision rule of the nearest neighbour classifier for a
single observation vectaris

k
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where Ny, is the number of training observations from class
andz,,; is then-th observation from this class.
To integrate the nearest neighbour classifier into the HMM,
it is necessary to obtain probabilitipéz:|s;) for each state;.
We model these probabilities as

p(zlk) o exp(— min ||x—xnk||2) @
n=1,...,Ng

where the differenk represent the different possible states

An important feature of a speech recognition system is ef-
ficiency because huge amounts of data need to be handled. Ex-
haustive search of the complete set of training data for a nearest
neighbour of an observation is prohibitively expensive. There-
fore, we use &d-tree for efficient approximate search of nearest
neighbours[10]. We only give a short outline of the method:

In a kd-tree, the search for the nearest neighbour of each
observation is done recursively and starts from the root of the

whereo is a scaling factor. The emission probabilitigs:| k)

are calculated class wise and thus, this approach fits perfectly
into our system. The efficiency of this classifier can be im-
proved by approximating the sum by using the subset ofithe
best matches (cfk nearest neighbours). This approximation is
commonly applied and it is known hat it hardly has an impact
on the classification results, because of the exponential decrease
of influence in the distance between two vectors. Note that the
nearest neighbour approach presented above is effectively doing
exactly this with a subset of size 1.

2.3. Reducing the Amount of Silence Observations

In most corpora for automatic speech recognitisifgenceand
different types ofnoisehave a large share of the data and are
modelled jointly. Therefore the states modelling silence and
noise have an enormous amount of training data at their dis-
posal. Although normally having a large amount of training
data is a good thing to learn better models, in some cases, like
here, it is not an advantage. Contrary to a conventional GMM-
based system where it is guaranteed that the sum of the clus-
ter weights for each mixture is normalised to one, in the near-
est neighbour approach the number of observations per state
strongly influences the implicit prior probability of that partic-
ular state. On the one hand, having very many observations in

tree. The root represents the whole feature space. At each node gne state makes the nearest neighbour search inefficient. On the
the feature space is subdivided and the search continues in the gther hand the high amount of noise among the silence data is
part of the tree containing the test observation. Once a leaf-node |ikely to be confused with proper utterances of words [12]. The

is reached, all prototypes contained in that leaf are compared to reduction of the silence observations corresponds to implicitly
the test observation. This is not a complete process, i.e. it might

happen that the nearest neighbour candidate is not the actual

reducing the prior probability of silence.
To avoid these problems, we apply two different methods

nearest neighbour, because it may happen that at some stage, theyo reduce the amount of silence used in the models:

subtree chosen is not the one containing the real nearest neigh-
bour of the observation. However, it is possible to determine all
subtrees that may still contain prototypes closer to the observa-
tion than the current nearest prototype. Using backtracking, the

search can be expanded such that exactness can be guaranteed.

In our setup, an exact solution might not be necessary and

in this case, the backtracking process can be aborted as soon as a

certain exactness criterion is reached. Here, the criterion is that
it can be guaranteed that no nearest neighbour with a distance
smaller than the distance of the currently determined prototype
minus some preset valuecan exist. This concept allows for
efficient search of nearest neighbours among very large sets of
prototype vectors.

2.1. k Nearest Neighbours

A common extension to the nearest neighbour approach to re-
duce the influence of noise in the training data is to use not
just one nearest neighbour but a setkofiearest neighbours.
Then a voting scheme (e.g. majority voting) is used to make a
decision. It is not straightforward to incorporate this concept

Energy-dependent Silence Reduction: To  reduce  the
amount of noise among the silence observations,
all silence observations with energy above a certain
threshold are discarded.

Randomised Silence Reduction: A randomly selected por-
tion of all silence observations is discarded.

2.4. Scaling of Feature Vectors

For efficiency reasons we use the Euclidean distance in the
nearest neighbour classification. Therefore the different com-
ponents of the feature vectors might have a different impact on
the obtained distances due to their non-uniform variances.

To address this issue we calculate the pooled leaving-one-
out covariance matrid? (i.e. the second centered moment of
each training observation to its nearest neighbor training obser-
vation) and transform the vectarsby

=A"tx.
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into our system because here the neighbours are sought class The matrixA2 is obtained as

(i.e. state) wise and interaction between the states would incur
a significantly higher computational cost. It is possible tokise
training observations per state and average the distances which
directly leads to theékernel densitiesnethod described in the
next paragraph.

2.2. Kernel Densities

The kernel densities approach is an extension to the nearest
neighbour approach that allows for the estimate of emission
probabilitiesp(z|k) [4]. These probabilities are obtained as
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wherez is the nearest neighbour offrom the same class.

3. Experiments and Results

In the following sections, we describe experiments that were
performed on th&ieTill corpus [13] of telephone line recorded
German continuous digit strings. On this corpus we tune the
performance of the nearest neighbour based method and com-
pare it with a GMM-based system. Then we describe exper-
iments with varying amounts of training data on the English



EPPS large vocabulary task and compare the performance with
a GMM-based system.

The SieTill corpus consists of approximately 43,000 spo-
ken digits in 13,000 sentences for training and test set. The
recognition system is setup gender-dependent using whole-
word HMMs. For each gender 214 distinct states and one si-
lence state are used. Feature vectors used are MFCC features
with a temporal window of length 5 which are LDA transformed
keeping 25 components.

The EPPS English task contains recordings from the Eu-
ropean Parliament Plenary Sessions (EPPS). 87.5h of speech
recordings/704,883 running words were manually transcribed,
which are used for training of the acoustic models [11]. The
non-speech proportion is roughly 30%. MFCC and a voicing

feature are used as acoustic features, 9 consecutive frames are

concatenated and LDA-reduced to 45 dimensions. The MFCC
features are warped using a fast variant of vocal tract length
normalisation. The triphones are clustered using CART, result-
ing in 4,501 generalised triphone states. The acoustic models
are trained on the complete manually transcribed data. The de-
velopment data from the evaluation campaign 2006 comprise
3.2h/27,029 running words. For recognition the vocabulary size
is 52,429 and a 4-gram language model is used.

3.1. Baseline experiments

Using the default speech recognition system with nearest neigh-
bour classifiers instead of normal Gaussian mixtures at the
states results after tuning of the standard parameters in a word
error rate of 2.7% with about 7 times as many deletions as inser-
tions (cf. Table 1, line ‘nearest neighbour baseline’). Decreas-
ing the word-penalty could not reduce the number of deletions
but rather increased the number of substitution errors, only. The
high number of deletions is probably due to the large variabil-
ity in the silence observations which are easily confused with
utterances of digits in the test phase.

3.2. Reduction of Silence Observations

To reduce the variability of the training data of the silence state,
the amount of training data for this particular state is reduced as
explained in Section 2.3. First we discard all silence observa-
tions with energy above a certain threshold which should corre-
spond to those silence observations that contain a high amount
of noise and are therefore likely to be confused with words. We
experimented with various thresholds and the results are shown
in Figure 1. On thec-axis, the total number of silence observa-
tions is given and on thg-axis the number of deletions, inser-
tions, and the WER are given in %. The results show that with
decreasing number of observations the WER and the number of
insertions increases much quicker than the number of deletions

decreases and that therefore no improvement has been achieved.

This effect can be explained by the noise in the test data which is
now confused with proper utterances of words because it cannot
be explained by the silence model anymore.

In Figure 1 also the results of experiments where the num-
ber of silence observations was randomly reduced are given.
Here, an improvement is obtained when only 10% to 20% of the
observation vectors are used. The reduction of the deletion er-
rors is stronger than the enlargement of the insertion errors and
at the same time the number of substitutions is slightly reduced.
An improved word error rate of 2.19% with 0.45% and 0.27%
deletions and insertions respectively is achieved. Therefore we
stick with using approximately every sixth silence observation
for the forthcoming experiments.
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Figure 1: Errors depending on the reduction of silence olasiens.
left: energy dependent, right: random.
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3.3. k-Nearest Neighbours and Kernel Densities

Figure 2 shows the results of experiments usingihearest
neighbour technique as described in Section 2.1. Using more
than one neighbour from each class does not lead to an improve-
ment of the results but rather increases the WER. Note, that the
number of deletion, insertion and substitution errors increases
at approximately the same rate.

Using the kernel density approach leads to an improved per-
formance as can be seen from Table 1 likerhel densities
Here, the combination of multiple prototypes per class leads to
an improved robustness of the method.

3.4. Scaling of Feature Vectors

The different components of the feature vectors after LDA are
of different importance and in different value ranges. To ac-

count for this observation, we transform all feature vectors ac-
cording to equation 9. The scaling hardly effects the results and
therefore has not been followed further.

3.5. Efficiency

As described above, the efficiency of the nearest neighbour
search depends on the required precision. In Figure 3, the de-
pendence of the time for recognition depending on the accuracy
requirement of thekd-tree search is given. The experiments
were performed on an 1.86GHz machine with 2GB RAM. The
recognition accuracy is hardly affected by this parameter and
the real-time factor of the system with:50 which corresponds

to using no backtracking at all is 0.58. Counterintuitively, the
best recognition accuracy is obtained using a highhich is

in accordance to results reported in [14]. This effect can be ex-
plained as the result of smoothing. Using a high tolerance in the
nearest neighbour search effectively corresponds to a smooth-
ing of the training data. For comparison, the real-time factor of
a system using Gaussian mixture with 64 densities per state has
a real-time factor of 0.15 which can be improved to 0.05 using
vectorisation and single-instruction multiple data instructions in
modern computers [15].

3.6. Amount of Training Data

As described above, it can be shown that nearest neighbour
classification performs asymptotically optimal if very small or
very large amounts of training data are available. In this section
we compare the nearest neighbour system with a GMM-based
section using varying amounts of training data on the develop-
ment corpus of the EPPS English task. Results for different
amounts of training data are given in Figure 4. It can be seen
that when using 9h of training data the GMM-system outper-
forms the nearest neighbour system. With smaller amounts of
available training data, as expected, the performance of both
systems deteriorates but the nearest neighbour system is more
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of neighbours used in the recognition.

Table 1: Summary of the results obtained in the experiments cadpa
to a speech recognition system using GMMs onSkeTill corpus.

method del[%] ins[%] WER [%)]

GMM [13] 0.46 0.38 1.84
nearest neighbour baseline 0.90 0.14 2.70
nearest neighbour (silencered.) 0.45 0.27 2.19
kernel densities 0.37 0.28 1.96

robust w.r.t. the lack of training data. When only 3 hours or
less of training data are available, the nearest neighbour based
system outperforms the GMM-based system. Note, that for the
experiments with GMMs we tested models with 2 to 64 densi-
ties and always chose the system that performed best to account
for the different amounts of training data available.

4. Discussion

Table 1 gives an overview on the results obtained orSikedill
corpus. Starting from a baseline of 2.7% WER, by gradually
addressing the problems in the recognition, finally a WER of
1.96% is obtained using a reduced number of silence observa-
tions and kernel densities. This result is comparable with re-
sults obtained from GMM-based conventional speech recogni-
tion system using approximately 14,000 densities.

The results on EPPS corpus show that the nearest neigh-
bour approach can benefit from its theoretical advantage when
only sparse training data is available which might help e.g. for
languages where only few hours of training data are available.
and where it is not possible to reliably estimate a GMM.

5. Conclusions & Outlook

We presented a method using nearest neighbour classification
techniques at the state level of a speech recognition system
which has, to our knowledge, not been presented before. The
results obtained on th8ieTill corpus and on the EPPS corpus
are promising and a clear advantage of the nearest neighbour
method in the case where only small amounts of training data
are available was shown which is consistent with theory.

This effect allows to hope that the nearest neighbour based
speech recognition might be applicable for speech recognition
of languages with very sparse training data. Furthermore, the
nearest neighbour based system might be an interesting ap-
proach to use in model combination under certain conditions.
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