
LANGUAGE-MODEL LOOK-AHEAD FOR LARGE VOCABULARY
SPEECH RECOGNITION

S. Ortmanns, H. Ney, A. Eiden

Lehrstuhl für Informatik VI, RWTH Aachen – University of Technology,
D-52056 Aachen, Germany

ABSTRACT

In this paper, we present an efficient look-ahead technique which
incorporates the language model knowledge at the earliest possi-
ble stage during the search process. This so-called language model
look-ahead is built into the time synchronous beam search algorithm
using a tree-organized pronunciation lexicon for a bigram language
model. The language model look-ahead technique exploits the full
knowledge of the bigram language model by distributing the lan-
guage model probabilities over the nodes of the lexical treefor each
predecessor word. We present a method for handling the resulting
memory requirements. The recognition experiments performed on
the20 000-word North American Business task (Nov.’96) demon-
strate that in comparison with the unigram look-ahead a reduction
by a factor of5 in the acoustic search effort can be achieved without
loss in recognition accuracy.

1. INTRODUCTION

This paper describes a language-model (LM) look-ahead technique
for large vocabulary continuous speech recognition. The basic idea
of this technique is to incorporate the language model probabilities
as early as possible in the pruning process of the beam searchstra-
tegy.

In the context of the word conditioned tree search algorithm, this
method seems to require huge memory costs. Therefore, in [9], an
approximation based on a unigram language model was used suc-
cessfully. However, if the bigram language model is fully integrated
into the beam search, the beam search method is expected to result
in a higher efficiency. So, in [2], a large static state network in-
cluding the bigram language model was proposed and successfully
tested. However, this method exploits the special structure of the
bigram language model and is less efficient if the bigram language
model is fully trained, i.e. if most of the relevant word bigrams were
seen in training.

Therefore, in this paper, we present a method for incorporating any
type of bigram language model in the tree-based beam search strat-
egy. To use the look-ahead for a bigram language model, we have to
factor the bigram probabilities over the nodes of the (prefix) lexical
tree for each copy of the lexical tree [1, 6, 8]. Therefore in princi-
ple, we have to keep a huge table in computer memory, containing

the factored language model probabilities for each tree node and for
each tree copy. In this paper, we present a couple of techniques in
order to reduce these memory costs and to obtain an efficient imple-
mentation of the LM look-ahead:� To reduce the memory requirements, we first generate a com-

pressed LM look-ahead tree by eliminating those arcs of the
lexical tree that only have one successor arc. The construction
of this compressed tree can be performed in a pre-processing
step.� The LM look-ahead tree probabilities are computed only for
those tree copies that are hypothesized during the search pro-
cess. To compute these look-ahead probabilities efficiently on
demand, we use a backward dynamic programming scheme.

The paper is organized as follows. In Section2 we will give a brief
review of the standard pruning methods which are integratedinto
the word conditioned tree search algorithm. In Section 3, the lan-
guage model look-ahead technique will be described along with a
method for handling the memory requirements. To measure theim-
provements by the bigram look-ahead, we will analyze the search
space in Section4. The recognition experiments have been carried
out on the North American Business task (20 000-word vocabulary,
NAB’94 H1 development corpus).

2. BEAM SEARCH AND PRUNING
METHODS

In this section, we briefly describe the pruning methods thatare used
in the so-called word conditioned tree search algorithm. This algo-
rithm is based on a strictly time-synchronous left–to–right search
method combined with a tree-organized pronunciation lexicon [4].

To incorporate a bigram language model, we use the word condi-
tioned tree search algorithm. For each predecessor wordv, we in-
troduce a separate copy of the lexical tree so that during thesearch
process we know the predecessor wordv when a leaf of the lexical
tree, e.g. the final state of a wordw, is reached. This allows us
to apply the bigram probabilityp(wjv). To formulate the dynamic
programming approach, we introduce the following quantity[5, 7]:Qv(t; s) := score of the best path up to timet that ends in

states of the lexical tree for predecessorv.



The dynamic programming recursion forQv(t; s) in the word inte-
rior is:Qv(t; s) = max� f q(xt; sj�) �Qv(t� 1; �) g ;
whereq(xt; sj�) is the product of transition and emission proba-
bilities of the underlying Hidden Markov Model. At the word level,
we have to find the best predecessor word for each word hypothesis.
For this purpose, we define:H(w; t) := maxv f p(wjv) �Qv(t; Sw) g ;
whereSw denotes a terminal state of the lexical tree for wordw. To
start up new words, we have to initializeQv(t; s) as:Qv(t� 1; 0) = H(v; t� 1) ;
where the fictitious states = 0 is used to initialize a tree.

Since full search is prohibitive, we use the time synchronous beam
search strategy, where at each time frame only the most promising
hypotheses are retained. The pruning approach consists of three
steps that are performed every10-ms time frame [9]:� Standard beam pruning or so-called acoustic pruning is used

to retain only hypotheses with a score close to the best state
hypothesis for further consideration. Denoting the best scored
state hypothesis byQAC(t) := max(v;s) f Qv(t; s) g ;
we prune a state hypothesis(s; t; v) if:Qv(t; s) < fAC �QAC(t) :
The so-called beam width, i.e. the number of surviving state
hypotheses, is controlled by the so-called acoustic pruning
thresholdfAC .� Language model pruning is applied only to hypotheses of tree
start-ups as follows. At word ends, the bigram probability is
incorporated into the accumulated score, and the best score
for each predecessor word is used to start up the corresponding
tree. The scores of these tree start-up hypotheses are subjected
to an additional pruning step:QLM (t) := maxv f Qv(t; s = 0) g :
Thus a hypothesis is removed if:Qv(t; s = 0) < fLM �QLM (t) ;
wherefLM is the so-called LM pruning threshold.� Histogram pruning limits the number of surviving state hy-
potheses to a maximum number (MaxHyp). If the number of
active states is larger thanMaxHyp, only the bestMaxHyp hy-
potheses are retained. This pruning method is called histo-
gram pruning because we use a histogram of the scores of the
active states [9].

3. LANGUAGE MODEL LOOK-AHEAD

3.1. Basic Concept

The basic idea of this pruning method is to incorporate the language
model knowledge as early as possible into the search process. This
is achieved by factoring the language model probabilities over the
nodes of the lexical tree. For a bigram language model, the factored
LM probability �v(s) for states and predecessor wordv is defined
as: �v(s) := maxw2W(s) p(wjv) ;
whereW(s) is the set of words that can be reached from tree states. The termp(wjv) denotes the conditional bigram probabilities.
Strictly speaking, we should use the tree nodes rather than the states
of the Hidden Markov models that are associated with each node.
However, each initial state of a phoneme arc can be identifiedwith
its associated tree node.

After the LM look-ahead tree factorization, i.e. computing�v(s),
each node (or phoneme arc) of a lexical tree copy correspondsto the
maximum bigram probability over all words that are reachable from
this specific node with predecessor wordv. An example is shown
in Fig. 1.

s
W(s)

max {p(w|v)}
W(s)w ∋

v

Figure 1: Illustration of LM tree factorization.

We incorporate the factored LM probabilities�v(s) into the dy-
namic programming recursion across phoneme boundaries:Qv(t; s) = �v(s)�v(~s) � max� f q(xt; sj�) �Qv(t� 1; �) g ;
where~s is the parent node ofs. For state transitions not involving
phoneme boundaries, we have to use the same equation as described
in Section2. To compute the start-up scoreH(w; t), we have the
dynamic programming equation:H(w; t) := maxv fQv(t; Sw) g :
Strictly speaking, this equation has to be modified when the word
end represented by the stateSw is associated with aword interior
node of the tree. This happens if a word is at the same time a prefix
of another word. As a result of this LM look-ahead, we can use a



tighter acoustic pruning thresholdfAC in the acoustic pruning as
the recognition experiments will show.

When computing all entries of the table�v(s) beforehand, we
have to keep a huge table in main memory. In our recogni-
tion experiments, the lexical tree consists of63 000 phoneme arcs
which are made up from an inventory of4688 context dependent
phoneme models for the20 000-word NAB task. Therefore, about20 000 � 63 000 LM factored probabilities would have to be stored.
Since the size of this table is prohibitive, we use a different ap-
proach. The main idea is to calculate the LM factored probabilities
on demand, i.e. only for those tree copies for which active state
hypotheses exist.

To reduce the memory and computational cost, this approach of on-
demand calculation is further refined by additional steps which we
describe in detail in the following.

3.2. Compression of the Lexical Tree

The memory cost for storing the LM look-ahead probabilitiesde-
pends on the number of nodes of the original pronunciation tree.
This tree can be compressed because there are many tree nodesthat
have only one successor node. In the NAB’94 task, the number
of nodes is thus reduced from 63155 to 29270 nodes, i.e. more
than halved. In general, to representW words, a compressed tree
never needs more than2 �W nodes. To provide a mapping from the
original lexical tree on the compressed tree, we use an additional
mapping array. An example of a compressed LM look-ahead tree
is given in Fig. 2. In this example, the lexical tree copy depends
on predecessor wordv and includes11 words. Furthermore in this
example we havep(wi+1jv) > p(wijv) for i = 1; :::; 10. A further
reduction of the memory cost can be achieved without significant
loss in the recognition accuracy if we only consider the first2-4 arc
generations of the lexical tree.

3.3. Factorization of the LM Look-Ahead Tree

Instead of calculating the LM factored probabilities for all possible
tree copies beforehand, we calculate the LM factored probabilities
on demand for each new tree copy depending on predecessor wordv. In a typical case, we have a maximum of, say,300 active trees. So
before computing the LM factored probabilities, we have to check
whether these probabilities for the required tree copy exist in the
lookup table or not.

A dynamic programming procedure allows us to compute the LM
factored probabilities in an efficient way. We initialize the leaves
of the LM look-ahead tree with the bigram language model proba-
bilities p(wjv). Then the LM factored probabilities are propagated
backwards from the tree leaves to the tree root. For each node, the
successor node with maximum look-ahead probability is selected.

4. RECOGNITION EXPERIMENTS

The experimental analysis of the language model look-aheadtech-
nique was performed on the North American Business (NAB,
Nov.’94) H1 development corpus. The test set contains310 sen-

1

1
1 1

1
1 1

1

1V

1

1

1

1

p1 = p(w1|v)
p3=p(w3|v)

p4= p(w4|v)

p5= p(w5|v)

p6= p(w6|v)

p7= p(w7|v)

p9= p(w9|v)

p11= p(w11|v)

p10= p(w10|v)

p8= p(w8|v)

p2=p(w2|v)

p1/p8

p8/p11

p11

p2/p8

p7/p8

p5/p7

p3/p5

p4/p5

p6/p7

p9/p11

1

1
1

1

1V

1

1

1

p1 = p(w1|v)

p3=p(w3|v)

p4= p(w4|v)

p5= p(w5|v)

p6= p(w6|v)

p7= p(w7|v)

p9= p(w9|v)

p11= p(w11|v)

p10= p(w10|v)

p8= p(w8|v)

p2=p(w2|v)

p1/p8

p8/p11

p11

p2/p8

p7/p8

p5/p7

p3/p5

p4/p5

p6/p7

p9/p11

a) 

b) 

Figure 2: LM look-ahead tree: a) before compression, b) after com-
pression.

tences with7 387 spoken words. In the experiments, we used a20 000-word vocabulary and a bigram language model with a test
set perplexity ofPPbi = 205:4. 199 of the spoken words were
not part of the vocabulary. The corresponding lexical tree of the20 000-word vocabulary consists of63 155 phoneme arcs which are
distributed over17 arc generations. The training of the emission
probability distributions was carried out on the WSJ 0 and WSJ 1
training data as described in [3].

Table 1 shows the results for various LM look-ahead types. For
each LM look-ahead type the table shows the total number of arcs,
arc generations and the maximum number of LM look-ahead trees.
In addition, the search space and the recognition word errorrate
(WER[%]) are given. In an initial experiment, we performed tests
without any language model look-ahead. To achieve a word error
rate of16:6 %,65 907 states per time frame were needed. For com-
parison purposes, we tested two approximations for the LM look-
ahead, namely the unigram [9] and the so-called maximum bigram
approximation which is defined as�(s) := maxvf�v(s)g. For
the unigram approximation, we used three different values for the
acoustic pruning thresholdfAC . The unigram approximation seems
to be slightly more efficient than the max-bigram approximation and



Table 1: Effect of the LM look-ahead on the search effort and recognition results for the NAB’94 H1 development set using a bigram
language model (PPbi = 205:4).

type of LM LM look-ahead tree search space DEL–INS WER[%]
look-ahead generations arcs trees states arcs trees
no look-ahead – – – 65907 17050 21 180 - 197 16.6

– – – 50299 13129 20 182 - 193 16.8
unigram 17 63155 1 26493 7223 46 179 - 195 16.5
(PPuni = 972:6) 17 63155 1 16377 4509 37 180 - 196 16.6

17 63155 1 9333 2593 28 181 - 197 16.8
max-bigram 17 63155 1 23183 6056 16 179 - 200 16.7
bigram 17 29270 300 3385 918 13 180 - 199 16.6
(PPbi = 205:4) 4 18625 300 3317 934 13 180 - 198 16.6

3 12002 300 3329 936 13 181 - 197 16.7
2 4097 300 3676 1029 13 182 - 203 17.0

Table 2: Computational effort using a unigram and a bigram (29270
arcs) LM look-ahead (subset of NAB’94 H1 development corpus:
10 female speakers, 10 sentences =273 spoken words = 107 sec,PPbi = 241:6). The experiments were run on a SGI workstation
(Indy R4600, SpecInt’92:61).

look-ahead unigram bigram
search: states/arcs/trees17643/4837/40 3582/997/14
time [sec] [%] [sec] [%]
log-likelihood comput. 7210 77.3 4990 73.6
LM look-ahead – – 990 14.6
acoustic search 1830 19.6 570 8.4
LM recombination 70 0.7 50 0.7
other operations 220 2.4 180 2.7
overall recognition 9330 100.0 6780 100.0

reduces the search space by a factor of3:5 without any loss in recog-
nition accuracy.

Finally, we tested the bigram LM look-ahead as described in this
paper. The acoustic pruning thresholdfAC was fixed. Instead, we
tested different numbers of arc generations of the LM look-ahead
trees, namely 2,3,4 and 17 (which is the full look-ahead tree). Com-
paring these results with the other results shown in Table 1,we see
that the bigram LM look-ahead results in an additional reduction
of the search space over the unigram LM look-ahead by a factorof
about5. In comparison with no LM look-ahead, we have a reduc-
tion by a factor of about15 without loss in recognition accuracy.

Assuming a maximum number of300 active trees, the bigram LM
look-ahead needs29 225 � 300 table entries. Using only the first3
arc generations, this memory cost is reduced down to40%. Table 2
shows a breakdown of the computational cost over the variousop-
erations in search using a unigram and a bigram (29270 arcs) LM
look-ahead. In both cases, the log-likelihood calculations for the290 000 densities take about75 % of the computation time. The bi-
gram LM look-ahead requires14:6% in comparison with8:4% for
the acoustic search. The cost of the LM look-ahead includes both
accessing the bigram probabilitiesp(wjv) and the LM factorization
by dynamic programming.

Acknowledgment. This work was in part supported by the Siemens
Aktiengesellschaft, Munich.

REFERENCES

1. F. Alleva, X. Huang, M.-Y. Hwang: “Improvements on the Pro-
nunciation Prefix Tree Search Organization”, Proc. Int. Conf.
on Acoustics, Speech and Signal Processing, Atlanta, GA, pp.
133 - 136, May 1996.

2. G. Antoniol, F. Brugnara, M. Cettolo, M. Federico: “Language
Model Representations for Beam-Search Decoding”, Proc. Int.
Conf. on Acoustics, Speech and Signal Processing, Detroit,MI,
Vol. 1, pp. 588 - 591, May 1995.

3. C. Dugast, R. Kneser, X. Aubert, S. Ortmanns, K. Beulen, H.
Ney: “Continuous Speech Recognition Tests and Results for
the NAB’94 Corpus”, Proc. ARPA Spoken Language Technol-
ogy Workshop, Austin, TX, pp. 156-161, January 1995.

4. R. Haeb-Umbach, H. Ney: “Improvements in Time-
Synchronous Beam Search for 10000-Word Continuous
Speech Recognition”, IEEE Trans. on Speech and Audio Pro-
cessing, Vol. 2, pp. 353-356, April 1994.

5. H. Ney: Search Strategies for Large-Vocabulary Continuous-
Speech Recognition. NATO Advanced Studies Institute, Bu-
bion, Spain, June-July 1993, pp. 210–225, in A.J. Rubio Ayuso,
J.M. Lopez Soler (eds.): “Speech Recognition and Coding –
New Advances and Trends”, Springer, Berlin, 1995.

6. J.J. Odell, V. Valtchev, P.C. Woodland, S.J. Young: “A One
Pass Decoder Design for Large Vocabulary Recognition”, Proc.
ARPA Human Language Technology Workshop, Plainsboro,
NJ, Morgan Kaufmann, pp. 405 - 410, March 1994.

7. S. Ortmanns, H. Ney, F. Seide, I. Lindam: “A Comparison of
Time Conditioned and Word Conditioned Search Techniques
for Large Vocabulary Speech Recognition”, Proc. Int. Conf.on
Spoken Language Processing, Philadelphia, PA, October 1996.

8. S. Renals, M. Hochberg: “Efficient Search Using Posterior
Phone Probability Estimates”, Proc. Int. Conf. on Acoustics,
Speech and Signal Processing, Detroit, MI, Vol. 1, pp. 596 -
599, May 1995.

9. V. Steinbiss, B.-H. Tran, H. Ney: “Improvements in Beam
Search”, Proc. Int. Conf. on Spoken Language Processing,
Yokohama, pp. 2143-2146, September 1994.


