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ABSTRACT

In this paper, we present an efficient look-ahead technicuiehw
incorporates the language model knowledge at the earlasstip
ble stage during the search process. This so-called larguadel
look-ahead is built into the time synchronous beam seaggrighm
using a tree-organized pronunciation lexicon for a bigrangliage
model. The language model look-ahead technique explatéulth
knowledge of the bigram language model by distributing e |
guage model probabilities over the nodes of the lexicalftreeach
predecessor word. We present a method for handling thetiresul
memory requirements. The recognition experiments peddron
the 20 000-word North American Business task (Nov."96) demon-
strate that in comparison with the unigram look-ahead aatéatu

the factored language model probabilities for each tree raodi for
each tree copy. In this paper, we present a couple of techsiiu
order to reduce these memory costs and to obtain an effiomie

mentation of the LM look-ahead:

e To reduce the memory requirements, we first generate a com-
pressed LM look-ahead tree by eliminating those arcs of the
lexical tree that only have one successor arc. The congtruct
of this compressed tree can be performed in a pre-processing
step.

e The LM look-ahead tree probabilities are computed only for
those tree copies that are hypothesized during the seaweh pr
cess. To compute these look-ahead probabilities effigiemnt

demand, we use a backward dynamic programming scheme.

by a factor of5 in the acoustic search effort can be achieved without
loss in recognition accuracy. The paper is organized as follows. In Sectiowe will give a brief
review of the standard pruning methods which are integratted
INTRODUCTION the word conditioned tree search algorithm. In Section &,l&n-

1

This paper describes a language-model (LM) look-aheadhigeh
for large vocabulary continuous speech recognition. Tsécheea
of this technique is to incorporate the language model fitibas
as early as possible in the pruning process of the beam sst@ach
tegy.

In the context of the word conditioned tree search algorittins
method seems to require huge memory costs. Therefore,,iarf9]
approximation based on a unigram language model was used s
cessfully. However, if the bigram language model is fulliegrated
into the beam search, the beam search method is expectesiito re
in a higher efficiency. So, in [2], a large static state nelwior
cluding the bigram language model was proposed and suatligssf
tested. However, this method exploits the special strectdithe
bigram language model and is less efficient if the bigramuage

guage model look-ahead technique will be described alotiy avi
method for handling the memory requirements. To measurirthe
provements by the bigram look-ahead, we will analyze thectea
space in Sectiod. The recognition experiments have been carried
out on the North American Business tagk (00-word vocabulary,
NAB’'94 H1 development corpus).

2. BEAM SEARCH AND PRUNING
METHODS

uc

In this section, we briefly describe the pruning methodsaratised
in the so-called word conditioned tree search algorithmis @lgo-
rithm is based on a strictly time-synchronous left—to-rigkarch

method combined with a tree-organized pronunciation texig].

To incorporate a bigram language model, we use the word €ondi
tioned tree search algorithm. For each predecessor wongk in-
troduce a separate copy of the lexical tree so that duringebhech
process we know the predecessor wonghen a leaf of the lexical
tree, e.g. the final state of a wotd, is reached. This allows us
to apply the bigram probability(w|v). To formulate the dynamic
programming approach, we introduce the following quarty7]:

model is fully trained, i.e. if most of the relevant word tagns were
seen in training.

Therefore, in this paper, we present a method for incorpagany
type of bigram language model in the tree-based beam seaath s
egy. To use the look-ahead for a bigram language model, wetbav
factor the bigram probabilities over the nodes of the (pjééixical
tree for each copy of the lexical tree [1, 6, 8]. Thereforeriimgi-

ple, we have to keep a huge table in computer memory, containi Qo (t,s) := score of the best path up to tintethat ends in

states of the lexical tree for predecessor



The dynamic programming recursion ¥, (, s) in the word inte- 3. LANGUAGE MODEL LOOK-AHEAD

rior is:

3.1. Basic Concept
Qv(tvs) = mgax {q(xtvskf)'Qv(t_lvo)} )

The basic idea of this pruning method is to incorporate thguage

whereq(z:, s|o) is the product of transition and emission proba-model knowledge as early as possible into the search proThis
bilities of the underlying Hidden Markov Model. At the woreMel,  is achieved by factoring the language model probabilitiesr the
we have to find the best predecessor word for each word hygisthe nodes of the lexical tree. For a bigram language model, tttered

where the fictitious state = 0 is used to initialize a tree.

For this purpose, we define: LM probability 7, (s) for states and predecessor wotdis defined
as:
H(w;t) = max {p(w|v) Qu(t,5)} ,
! m(s) = max p(wlv),
whereS,, denotes a terminal state of the lexical tree for watdlo wEW)
start up new words, we have to initialig®; (¢, s) as: whereW(s) is the set of words that can be reached from tree state

s. The termp(w|v) denotes the conditional bigram probabilities.
Strictly speaking, we should use the tree nodes rather Heastates
of the Hidden Markov models that are associated with eacle.nod
However, each initial state of a phoneme arc can be identifitd

Qu(t—1,0) = H(vt-1),

Since full search is prohibitive, we use the time synchrenoeam  its associated tree node.

search strategy, where at each time frame only the most pirogni
hypotheses are retained. The pruning approach consistae# t
steps that are performed evar-ms time frame [9]:

After the LM look-ahead tree factorization, i.e. computings),
each node (or phoneme arc) of a lexical tree copy corresporitie
maximum bigram probability over all words that are reachdfdm

. . o this specific node with predecessor werdAn example is shown
e Standard beam pruning or so-called acoustic pruning is used;, Fig. 1.

to retain only hypotheses with a score close to the best state
hypothesis for further consideration. Denoting the bestext
state hypothesis by mif {pwiv)}

/

Qac(t) = max {Qu(t, )},
we prune a state hypothegis ¢; v) if:

Qu(t,s) < fac - Qac(t) . vV—-

The so-called beam width, i.e. the number of surviving state
hypotheses, is controlled by the so-called acoustic pgunin
thresholdf ac .

Language model pruning is applied only to hypotheses of tree
start-ups as follows. At word ends, the bigram probability i
incorporated into the accumulated score, and the best score Figure1: lllustration of LM tree factorization.
for each predecessor word is used to start up the corresgpnd
tree. The scores of these tree start-up hypotheses aretatbje
to an additional pruning step:

\we incorporate the factored LM probabilities, (s) into the dy-
namic programming recursion across phoneme boundaries:

my(s)

QLM(t) = m3X {Qv(taszo)} . Qv(t75) = p (g) . maa‘x {q(mt,s|a)-Qv(t—1,a)} )
Thus a hypothesis is removed if: wheres is the parent node of. For state transitions not involving
phoneme boundaries, we have to use the same equation abeléscr
Qu(t,s=0) < fom - Qrum(t), in Section2. To compute the start-up scofé(w, t), we have the

wherefr, s is the so-called LM pruning threshold. dynamic programming equation:
Histogram pruning limits the number of surviving state hy- H(w;t) := max {Q.(t,Sw)} .

potheses to a maximum numbédgxHyp). If the number of v

active states is larger thahaxHyp, only the besMaxHyp hy-  Strictly speaking, this equation has to be modified when thedw
potheses are retained. This pruning method is called histend represented by the stefig is associated with aord interior
gram pruning because we use a histogram of the scores of thede of the tree. This happens if a word is at the same timefix pre
active states [9]. of another word. As a result of this LM look-ahead, we can use a



tighter acoustic pruning thresholfh¢ in the acoustic pruning as o p3=p(W3lv)

the recognition experiments will show. p1=P(W V) P

. . P5gg py=p(wylv)
When computing all entries of the tablg, (s) beforehand, we
have to keep a huge table in main memory. In our recogni- 1 Ps=p(W5|v)

tion experiments, the lexical tree consistss6f000 phoneme arcs Pg/P11 Pe=P(WglV)
which are made up from an inventory #6883 context dependent o
phoneme models for thz0 000-word NAB task. Therefore, about v — 1%

20000 - 63 000 LM factored probabilities would have to be stored. Pg= p(wglv) 7Pl
Since the size of this table is prohibitive, we use a differan

proach. The main idea is to calculate the LM factored prdlissi ~1 1 Po/P1 Po=p(Wglv)
on demand, i.e. only for those tree copies for which actiegest Om - L

hypotheses exist. P10™ P(W0lV) 1ol

To reduce the memory and computational cost, this approemh-o P11=P(WlV)

demand calculation is further refined by additional stepikvive a)
describe in detail in the following. P3=p(W5lV)

3.2. Compression of the Lexical Tree
p4=p(wylv)
The memory cost for storing the LM look-ahead probabilities
pends on the number of nodes of the original pronunciatiea. tr
This tree can be compressed because there are many treameatdes Pg/P11
have only one successor node. In the NAB'94 task, the number

of nodes is thus reduced from 63155 to 29270 nodes, i.e. mone — 5.
than halved. In general, to represéfit words, a compressed tree

never needs more th&n W nodes. To provide a mapping from the

original lexical tree on the compressed tree, we use aniaddit

mapping array. An example of a compressed LM look-ahead tree

is given in Fig. 2. In this example, the lexical tree copy dejse

on predecessor worgdand includes 1 words. Furthermore in this P11=P(Wy 1lv)
example we havg(w;t1|v) > p(w;|v) fori =1,...,10. Afurther

reduction of the memory cost can be achieved without sigmific
loss in the recognition accuracy if we only consider the firgtarc
generations of the lexical tree.

ps=p(ws|v)

Pe=P(Wglv)

- p7=p(wy|v)
Pg= p(wglv)

Po= p(Wg|v)

p10= P(Wiglv)

Figure2: LM look-ahead tree: a) before compression, b) after com-
pression.

3.3. Factorization of theLM L ook-Ahead Tree

tences with7 387 spoken words. In the experiments, we used a
Instead of calculating the LM factored probabilities fdrdssible 20 000-word vocabulary and a bigram language model with a test

tree copies beforehand, we calculate the LM factored piibtied set perplexity ofPP,; = 205.4. 199 of the s_poken _Words were
on demand for each new tree copy depending on predecessir wgpt part of the vocabulary. The corresponding lexical trlgme
v. Inatypical case, we have a maximum of, ) active trees. So 20 000-word vocabulary consists 68 155 phoneme arcs which are

before computing the LM factored probabilities, we havetedk distribu_t_ed o_ver_17 arc generation_s. The training of the emission
whether these probabilities for the required tree copyterishe pro_b_ablllty d|str|but|oqs was carried out on the WSJO0 andW/'s
lookup table or not. training data as described in [3].

A dynamic programming procedure allows us to compute the LM’abIhe 1 slhovll/s rt1he dresults ;or VE"”OU; LM Ir?ok-ahlead tt)J/pesr Fo
factored probabilities in an efficient way. We initializestteaves each LM ook-ahea type t e_ta & shows the total numberos ar
of the LM look-ahead tree with the bigram language model @rob arc gep_eratlons and the maximum number of LM look-ahead .tree
bilities p(w|v). Then the LM factored probabilities are propagated” 2ddition. the search space and the recognition word eater
backwards from the tree leaves to the tree root. For each tisele (WWERI[%]) are given. In an initial experiment, we performests
successor node with maximum look-ahead probability iscsede  WVithout any language model look-ahead. To achieve a wouf err
rate of16.6 %, 65 907 states per time frame were needed. For com-

4. RECOGNITION EXPERIMENTS parison purposes, we tested two approximations for the Ldk-lo

ahead, namely the unigram [9] and the so-called maximunaiyigr

The experimental analysis of the language model look-atezie ~ @PProximation which is defined as(s) := max, {mu(s)}. For
nique was performed on the North American Business (NABt,he unigram approximation, we used three different valoesHe

Nov.’94) H1 development corpus. The test set contaits sen- acoustic pruning thresholflic.. The unigram approximation seems
to be slightly more efficient than the max-bigram approxioraand



Table 1: Effect of the LM look-ahead on the search effort and recagmitesults for the NAB’94 H1 development set using a bigram

language modelR P,; = 205.4).

17 63155

type of LM LM look-ahead tree search space DEL-INS WER[%)]

look-ahead generations  arcs  trees states arcs  treep

no look-ahead - - —| 65907 17050 21| 180-197 16.6
- - 50299 13129 20| 182-193 16.8

unigram 17 63155 26493 7223 46| 179-195 16.5

1

(PPyn; = 972.6) 17 63155 1| 16377 4509 37| 180-196 16.6
1| 9333 2593 28 | 181-197 16.8
1

max-bigram 17 63155

23183 6056 16| 179-200 16.7

(PPy; = 205.4)

bigram 17 29270 300 3385 918 13 | 180-199 16.6
4 18625  300| 3317 934 13 | 180-198 16.6
3 12002 300| 3329 936 13 | 181-197 16.7
2 4097 300| 3676 1029 13 | 182-203 17.0

Table2: Computational effort using a unigram and a bigr@92(0

arcs) LM look-ahead (subset of NAB'94 H1 development corpus 1
10 female speakers, 10 sentence®7s spoken words = 107 sec,
PP,;, = 241.6). The experiments were run on a SGI workstation
(Indy R4600, SpecInt’9261).

look-ahead unigram bigram 2
search: states/arcs/tregs17643/4837/40| 3582/997/14
time [sec] [%] | [sec] [%0]
log-likelihood comput. || 7210 77.3| 4990 73.6

LM look-ahead - - 990 14.6
acoustic search 1830  19.6| 570 84 3
LM recombination 70 0.7 50 0.7
other operations 220 24| 180 2.7
overall recognition 9330 100.0| 6780 100.0

4

reduces the search space by a fact@.diwithout any loss in recog-
nition accuracy.

Finally, we tested the bigram LM look-ahead as describedhim t

paper. The acoustic pruning threshglge was fixed. Instead, we 5,

tested different numbers of arc generations of the LM |olo&zal
trees, namely 2,3,4 and 17 (which is the full look-ahead tr€em-
paring these results with the other results shown in Tableelsee
that the bigram LM look-ahead results in an additional réidnc

of the search space over the unigram LM look-ahead by a fattor
about5. In comparison with no LM look-ahead, we have a reduc-
tion by a factor of about5 without loss in recognition accuracy.

Assuming a maximum number 800 active trees, the bigram LM

look-ahead need29 225 - 300 table entries. Using only the fir8t 7.

arc generations, this memory cost is reduced dowid%. Table 2
shows a breakdown of the computational cost over the vanpus
erations in search using a unigram and a bigraé270 arcs) LM
look-ahead. In both cases, the log-likelihood calculatifor the
290 000 densities take aboub % of the computation time. The bi-
gram LM look-ahead requirels!t.6% in comparison witt8.4% for
the acoustic search. The cost of the LM look-ahead includés b
accessing the bigram probabilitip&u|v) and the LM factorization
by dynamic programming.
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