
EXTENSIONS TO THE WORD GRAPH METHOD FOR LARGE VOCABULARYCONTINUOUS SPEECH RECOGNITIONH. Ney, S. Ortmanns, I. LindamLehrstuhl f�ur Informatik VI, RWTH Aachen { University of Technology,D-52056 Aachen, GermanyABSTRACTThis paper describes two methods for constructing wordgraphs for large vocabulary continuous speech recognition.Both word graph methods are based on a time-synchronous,left-to-right beam search strategy in connection with atree-organized pronunciation lexicon. The �rst method isbased on the so-called word pair approximation and �tsdirectly into a word-conditioned search organization. Inorder to avoid the assumptions made in the word pairapproximation, we design another word graph method.This method is based on a time conditioned factoring ofthe search space. For the case of a trigram language model,we give a detailed comparison of both word graph methodswith an integrated search method. The experiments havebeen carried out on the North American Business (NAB'94)20,000-word task.1. INTRODUCTIONThis paper studies some questions arising in the contextof word graphs for large vocabulary continuous speechrecognition [1]. In particular, we study two word graphmethods in detail. In addition to the method based on thewidely used word pair approximation, we present anotherapproach, in which we try to avoid assumptions such as theword pair approximation. The novel contributions of thispaper are:� To improve the word pair approximation, we describeanother word graph method which tries to avoid anytype of approximation. The method is based on a timeconditioned factoring of the search hypotheses.� We give an exact comparison of the two wordgraph methods with an integrated search method incombination with a trigram language model. Thiscomparison is needed, because for short predecessorwords the quality of the word pair approximation isquestionable.� We present experimental results on the North Amer-ican Business (NAB'94) 20,000-word task. For thecase of a trigram language model, the recognitionexperiments demonstrate that the integrated searchmethod leads only to a slight improvement over theword graph methods in recognition accuracy.2. DEFINITION OF WORD GRAPHS2.1. Problem Speci�cationThe basic idea of a word graph is to represent allword sequence hypotheses whose scores are very close

to the locally optimal hypothesis in the spirit of beamsearch. Unlike the n-best approach for �nding the n-bestsentences, the word graph method results in more compactrepresentation of word and sentence alternatives.The goal of constructing a word graph can be summarizedas follows. In principle, we consider all n-best sentenceswith a huge value for n. All these sentences are now to berepresented by a word graph with the following properties:1) The acoustic scores of each sentence should not bea�ected. 2) The word boundaries should be preserved. 3) Ingeneral, the word graph may contain more than the originaln-best sentences, however, with worse scores. 4) The wordgraph should have a minimum number of word arcs.2.2. Word Boundary FunctionTo describe the generation of a word graph, we introducethe following de�nitions:h(w; �; t) = probability that word w produces theacoustic vectors x�+1:::xt.H(wn1 ; t) = (joint) probability of generating theacoustic vectors x1:::xt and a word sequence w1:::wnwith ending time t.The score H(wn1 ; t) can be computed from the scoresH(wn�11 ; � ) and h(w; �; t) by optimizing over the unknownword boundary � :H(wn1 ; t) = max� �Pr(wnjwn�11 ) �H(wn�11 ; � ) � h(wn; �; t)	= Pr(wnjwn�11 ) �max� �H(wn�11 ; � ) � h(wn; �; t)	 ;where we have used the probability Pr(wnjwn�11 ) of ageneral language model. To describe the construction ofa word graph, we introduce a formal de�nition of the wordboundary � (wn1 ; t) between the word hypothesis wn endingat time t and the predecessor sequence hypothesis wn�11 :� (t;wn1 ) := argmax� �H(wn�11 ; � ) � h(wn; �; t)	 :In the case that we are given an m-gram language model,we could further simplify the search and recombine partialsentence hypotheses if they do not di�er in their �nal (m�1)words [5]. However, we do not exploit this property for theword graph construction since we want to consider the mostgeneral case.1787



3. WORD PAIR APPROXIMATIONIn the word pair approximation, the crucial assumption isthat the dependence of the word boundary � (t;wn1 ) canbe con�ned to the �nal word pair (wn�1; wn) [9]. Thisassumption can be expressed by the equation:� (t;wn1 ) = � (t;wnn�1) :By taking this property into account, we obtain thefollowing algorithm for the word graph construction[5] which �ts directly into a word-conditioned searchorganization:� At each time frame t, we consider all word pairs (v; w).Using a beam search strategy, we limit ourselves to themost probable hypotheses (t; v; w), i.e. word pair (v; w)with ending time t.� For each triple (t; v; w), we have to keep track of:{ the word boundary � (t; v; w){ the word score h(w; � (t; v; w); t)� At the end of the speech signal, the word graph isconstructed by tracing back through the bookkeepinglists.Given a word graph and an m-gram language model, thesecond-pass of the word graph method can be carriedout at the sentence level using a left-to-right dynamicprogramming algorithm as described in [1]. The wordgraph generated by the acoustic recognition process can bevery large. To reduce the size of the word graph, pruningmethods can be applied to the word graph without a�ectingthe word error rate. The pruning of the word graph isbased on the usual concept of beam search: hypotheses witha score relatively close to best hypothesis are retained asactive, the others are pruned. This pruning method can alsobe combined with histogram pruning to limit the maximumnumber of word hypotheses per time frame.From the viewpoint of the word pair approximation,the extensions to be presented in the next section can beinterpreted as follows. For a given speech signal to berecognized, there are two conditions which deserve moredetailed considerations:� There are regions in the acoustic signal such that thepartial sentence hypotheses do not require the wordpair approximation. In these cases, the word graphcan be further condensed.� There are regions in the acoustic signal and partialsentence hypotheses such that the word pair approx-imation is not su�cient. In these cases, a word tripleor even higher approximation for the word graph isneeded.4. IMPROVED WORD GRAPHS4.1. Concept: Time Conditioned SearchIn this section, we present another approach to word graphs,which avoids the word pair approximation. This method isbased on a time synchronous beam search strategy usingtime conditioned copies of the lexical pre�x tree [7]. Todescribe the time conditioned one-pass search algorithm,we de�ne the following quantity as introduced in [4]:

Q� (t; s) := overall score of the best path up to timet that ends in state s of the lexical pre�x tree withstarting time � .H(w; t) := (joint) probability of generating the acousticvectors x1:::xt and a word sequence with �nal word wand ending time t.To start up a new tree, i.e. new words, we initialize thisquantity as follows:Qt�1(t� 1; s) = � maxu H(u; t� 1) if s = 00 if s > 0The state s = 0 is used for initialization. The usual dynamicprogramming recursion for the word interior is:Q� (t; s) = max� f q(xt; sj�) Q� (t� 1; �) g :To formulate the recombination across word boundaries fora bigram language model, it is useful to introduce an addi-tional auxiliary quantity for an e�cient implementation:Ĥ(v; w; t) := max� ( H(v; � )maxu H(u; � ) �Q� (t; Sw)) ;where Sw denotes the terminal state of word w in the lexicaltree. To select the best predecessor word for each pair (w; t),i.e. word w with ending time t, two optimization stepshave to be performed. The �rst step is to maximize overall possible starting times � of word w. This optimizationresults in a list of predecessor words v of word w. Inthe equation above, a normalization is necessary since eachtree hypothesis is started with the best predecessor word.Second, we have to maximize the hypothesis score over thepredecessor words v for each w:H(w; t) = maxv � p(wjv) � Ĥ(v; w; t)	 :The best of the scores H(w; t) is used to start up thenew tree for time (t + 1). For the subsequent word graphconstruction, we compute the scores h(w; �; t) ash(w; �; t) = Q�(t; Sw)maxu H(u; � ) :It should be mentioned that these word scores h(w; �; t)de�ne already what could be called a time conditionedword lattice. However, this word lattice is much too bigand contains multiple paths for the same sentence becausethe optimization over the word boundaries has not beendone yet. The method presented in the next subsectionis aimed exactly at removing these redundant paths. Thesame principle was used for the approach presented in [6].4.2. Algorithmic DetailsUsing the time conditioned search strategy, a word graphcan be generated in a time-synchronous fashion. Tosimplify the description, we assume for the moment thatthe following two operations are performed subsequently:� Generation of the sentence hypothesis tree. Using theword hypothesis scores h(w; �; t), we extend the partialsentence hypotheses and compute the score H(wn1 ; t).1788



This includes the word boundary optimization over theunknown word boundary � for each partial sentencehypothesis wn1 . As usual in beam search, this is donefor all sentence hypotheses that survive within thebeam. These sentence hypotheses are organized inthe form of a tree the arcs of which are the wordhypotheses with speci�c start and end times. Whenconstructing this sentence tree, a purging operation isuseful to reduce the memory requirements by removingdead partial hypotheses. Evidently, this tree representsall sentence hypotheses; however, it is only practical forshort sentences, say less than a sentence length of 10words. To further reduce the memory requirements, a�rst step towards a graph representation is done asfollows. At time frame t, we merge all tree nodesthat are not reachable any more from any current statehypothesis Q� (t; s).� Generation of the word graph. In practice it is desirableto produce a word graph with a minimal word graphdensity. Starting with the tree (or graph) of sentencehypotheses, the �nal word graph is constructed bymerging all tree nodes with identical associated timesinto a single node. Each word arc of the sentencehypothesis tree is copied and added to the word graph.If for the same pair of nodes and for the same wordthere are multiple arcs, only one arc is retained. It isguaranteed that this word graph contains all sentencehypotheses of the original tree. However, there mightbe additional sentence hypotheses which in the originaltree did not survive within the beam due to thelanguage model score.In reality, the above two operations are carried out inparallel for each time frame.5. EXPERIMENTAL RESULTS5.1. Word Graph Quality MeasuresTo specify the quality of a word graph, we introduce thefollowing de�nitions:� Size of the word graph. For a spoken sentence, the wordgraph density (WGD) is de�ned as the total number ofword graph edges divided by the number of actuallyspoken words. Similarly, the node graph density (NGD)and the boundary graph density (BGD) denote thenumber of nodes and of di�erent word boundaries,respectively, per spoken word.� Graph word error rate. The graph word error rate(GER) is computed by determining that sentencethrough the word graph that best matches the spokensentence. The matching criterion is de�ned in termsof word substitutions (SUB), deletions (DEL) andinsertions (INS). This measure provides a lower boundof the word error rate for this word graph and givesa better measurement of the word graph quality thanthe graph sentence error rate. Note that the graphword error rate (GER) is to be distinguished from thestandard recognition word error rate (WER).5.2. Test ConditionThe experimental condition for the recognition experimentscan be summarized as follows:

� NAB'94 H1 development test set including 310sentences with 7387 spoken words from the 10 maleand 10 female speakers. 199 of the spoken words wereout-of-vocabulary words.� In all the recognition experiments, we used the o�cial20 000-word trigram language model for the NAB'94task [8].� The training of the emission probability distributionsof the Hidden Markov models was performed on theWSJ0 and WSJ 1 training data [2].5.3. Recognition ExperimentsAs baseline results, we use the speech recognition resultsobtained for the integrated search method in combinationwith a trigram language model [7]. The recognition resultsare given in Table 1. Table 1 shows the search space, whichis given in terms of the average number (per time frame) ofactive states, of active arcs and the recognition word errorrate. It can be seen that by increasing the average numberof active states per time frame from 4 714 to 86 772 the worderror rate is reduced from 14:8% to 13:9%.To test and compare the two word graph methods, wecarried out a series of recognition experiments. Table 2summarizes the results. The table consists of two parts,namely part (a) for the word graph method based on theword pair approximation and part (b) for the improvedword graph method. The table was produced in thefollowing way. For each of the two word graph methods,a conservatively large word graph was constructed using abigram language model with a test set perplexity of 198:1.Then the size of the word graph was reduced by applyinga pruning operation using a pruning threshold flat. Forthis resulting word graph, the table reports the size of theword graph in terms of the word graph density (WGD),the graph word error rate (GER) and the recognition worderror rate (WER), for both of which the number of worddeletions (DEL) and insertions (INS) is also given. For therecognition test, a full search through the word graph wasperformed using a trigram language model (perplexity of130.2).For the word graph method using the word pairapproximation (Table 2a), on average, the acoustic searchspace (when computing the initial word graph) consisted of27 672 active states, 7 674 active arcs and 115 active treesper time frame during the �rst pass of the two-pass searchstrategy and results in a word error rate of 16:5%. Whenvarying the word graph density from 1415:9 to 10:7, thegraph error rate is increased from 4:3% to 6:8%. At thesame time, there is no observable e�ect on the recognitionword error rate which is invariably 14:3%. This result isto be compared with a word error rate of 13:9% for theTable 1. Recognition results for the integratedmethod (trigram language model with PP = 130:2)as a function of the search space.Average number of active Recognition word error rate [%]States Arcs Trees DEL / INS WER4714 1392 29 1.7 / 2.9 14.818734 5430 70 1.6 / 2.8 14.248940 13877 112 1.6 / 2.8 14.167541 18764 130 1.6 / 2.7 14.086772 23688 145 1.6 / 2.7 13.91789



Table 2. Recognition results on the NAB'94 H1 development data (trigram language model with PP = 130:2;OOV rate: 2.7%): a) word graph method using the word pair approximation (word graph generation: 27672states, 7674 arcs, 115 trees), b) improved word graph method (word graph generation: 28017 states, 7998arcs, 37 trees). Graph density Graph word error rate [%] Recognition word error rate [%]Method flat WGD NGD BGD DEL / INS GER DEL / INS WERa) 150 1415.9 175.9 19.3 0.1 / 0.5 4.2 1.6 / 2.7 14.390 460.4 77.4 12.3 0.2 / 0.5 4.3 1.6 / 2.7 14.380 269.2 51.8 9.8 0.2 / 0.6 4.5 1.6 / 2.7 14.370 137.4 31.4 7.4 0.3 / 0.7 4.8 1.6 / 2.7 14.350 25.2 9.0 3.8 0.5 / 0.9 5.8 1.7 / 2.7 14.340 10.7 4.8 2.7 0.7 / 1.1 6.8 1.7 / 2.7 14.330 4.5 2.8 2.0 1.1 / 1.3 8.4 1.8 / 2.6 14.620 2.4 1.8 1.6 1.5 / 1.7 10.6 2.0 / 2.5 14.810 1.6 1.4 1.4 2.1 / 2.2 13.8 2.3 / 2.4 15.61 1.3 1.3 1.2 2.3 / 2.6 16.3 2.3 / 2.6 16.4b) 70 525.1 363.2 13.4 0.3 / 0.6 4.1 1.6 / 2.7 14.065 330.3 231.8 10.1 0.4 / 0.6 4.4 1.6 / 2.7 14.060 203.3 145.1 8.0 0.4 / 0.6 4.5 1.6 / 2.7 14.050 71.5 53.0 4.9 0.6 / 0.8 5.1 1.6 / 2.7 14.040 24.8 19.3 3.1 0.5 / 0.9 6.0 1.7 / 2.6 14.230 8.8 7.4 2.1 0.9 / 1.1 7.2 1.7 / 2.6 14.420 3.6 3.2 1.6 1.5 / 1.4 9.1 1.9 / 2.5 14.710 1.9 1.8 1.2 2.2 / 1.8 12.3 2.3 / 2.5 15.65 1.6 1.5 1.2 2.4 / 1.9 13.5 2.5 / 2.6 16.2integrated search method, which however involves a muchhigher computational cost.For the improved word graph method using timeconditioned search hypotheses (Table 2b), the acousticsearch space consisted of 28 017 states, 7 998 arc and 37tree hypotheses per time frame on average when computingthe initial word graph. As before, the size of the wordgraph was reduced by varying the pruning threshold flat,and both the word graph error rate and the recognitionword error rate were measured. Comparing the results inthe two parts of Table 2 for a �xed word graph density, wecan see that the improved word graph method leads to bothbetter recognition word error rates and better graph worderror rates. Furthermore, looking at Table 1, we see thatthere is only a slight degradation of the recognition worderror rate, namely 14:0% instead of 13:9%. We attributethis marginal degradation to the small size of the beamthat was used to construct the initial word graph.6. SUMMARYWe have presented an improved method for word graphconstruction, which avoids the widely used word pairapproximation. The experimental results performed on the20000-word NAB task con�rm that the method o�ers clearadvantages over the word pair approximation.REFERENCES[1] X. Aubert, H. Ney: Large Vocabulary ContinuousSpeech Recognition using Word Graphs. Proc. IEEEInt. Conf. on Acoustics, Speech and Signal Processing,Detroit, MI, pp. 49-52, May 1995.[2] C. Dugast, R. Kneser, X. Aubert, S. Ortmanns,K. Beulen, H. Ney: Continuous Speech RecognitionTests and Results for the NAB'94 Corpus. Proc. ARPASpoken Language Technology Workshop, Austin, TX,pp. 156-161, January 1995.
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