
Progress in Dynamic Programming Search
for LVCSR

Hermann Ney, Stefan Ortmanns
Lehrstuhl für Informatik VI, Computer Science Department

RWTH Aachen, University of Technology
D-52056 Aachen, Germany

Abstract - This paper gives an overview of the recent improvements in dynamic pro-
gramming search for large vocabulary continuous speech recognition: search using lex-
ical trees, time-conditioned search and word graph construction.

1 Introduction

Search strategies based on dynamic programming (DP) are currently being used
successfully for a large number of speech recognition tasks, ranging fromdigit string
recognition through medium-size vocabulary recognition using heavily constrained
grammars to large vocabulary continuous speech recognition (LVCSR) withvirtu-
ally unconstrained speech input.

Several variants of DP search had already been known in the early days of auto-
matic speech recognition [5, 14, 17]. Over the past two decades, these and related DP
strategies have turned out to be surprisingly successful in handling vocabularies of
20k and more words. Nevertheless, until recently, it was among the experts a highly
controversial issue whether high-perplexity LVCSR could be handled efficiently by
DP. The scepticism seems to have been concerned mainly with the following issues:� The extension from a 10-digit vocabulary to a 20k-word vocabulary would

blow up the search space dramatically. Could this huge search space be han-
dled by DP in an efficient way ?� In particular, each variant of DP search in speech recognition is more or less
’notorious’ for its operations at the 10-ms frame level. How could this low-
level acoustic search interact efficiently with the higher knowledge sources in
the recognition system such as the pronunciation lexicon and language model
(LM) ?� DP typically computes only the best single sentence. But in many recognition
systems, it is desirable for various reasons to produce alternative sentences or
a word graph. Could the conventional DP strategy be extended to generatea
word graph rather than only the single best sentence ?

1

In the following, we try to present an overview of the progress in the applications
of DP strategies to LVCSR. Due to space limitations, we present only the basic
principles and omit most details.

2 The specification of the search problem

The acoustic models are given in terms of Hidden Markov Models (HMMs)
representing either context dependent or independent phoneme units. For ahypoth-
esized word sequencewN1 = w1:::wN , we imagine a super HMM that is obtained
by concatenating the corresponding phoneme HMMs using a pronunciationlexicon.
At phoneme and word boundaries, we have to allow for transitions thatlink the ter-
minal states of any predecessor HMM to the initial states of any successor HMM.
Thus, we can compute the joint probability of observing the sequencexT1 = x1:::xT
of acoustic input vectors and the state sequencesT1 = s1:::sT through this super
HMM: Pr �xT1 ; sT1 ���wN1 � = TYt=1 p(xt; stjst�1; wN1) ; (1)

wherep(xt; stjst�1; wN1) denotes the product of the transition and emission proba-
bilities for the super HMMwN1 .

Denoting the LM byPr(wN1), the Bayes decision rule results in the following
optimization problem:maxwN1 (Pr(wN1) �maxsT1 Pr �xT1 ; sT1 ���wN1 �) : (2)

Here, we have made use of the so-called maximum approximation. Instead ofsum-
ming over all paths, we consider only the most probable path. Note thatfor the
maximum approximation to work, we need only the assumption that the resulting
optimal word sequences are the same, not necessarily that the maximum provides a
good approximation to the sum.

In this maximum approximation, the search space can be described as a huge
network through which the best path has to be found. The search has to be performed
at two levels: at the state level (sT1) and at the word level (wN1). As we will see, as
a result of the maximum approximation, it will be possible torecombine hypotheses
at both levels efficiently by DP. Thus the combinatorial explosion of the number of
search hypotheses can be limited, which is one of the most important characteristics
of DP. At the same time, the search hypotheses are constructed and evaluated in
a strictly left-to-right time synchronous fashion. This property allows an efficient
pruning strategy to eliminate unlikely search hypotheses, which is referred to as
beam search.

2

3 DP one-pass search using a lexical prefix tree

Originally, the one-pass DP algorithm [2, 6, 17] had been designed for small-
vocabulary continuous speech recognition. Within the maximum approximation,
the one-pass DP algorithm presents a closed-form solution for handling the inter-
dependence of the various operations in continuous speech recognition: nonlinear
time alignment, word boundary detection, taking into account the LM, andword
identification.

When applying the one-pass DP algorithm to large-vocabulary recognition, say a
20k-word task, it seems natural and very desirable for efficiency reasons to organize
the pronunciation lexicon in the form of a prefix tree, in which each arc represents a
phoneme unit [7]. This idea of using a tree representation was already suggested in
the seventies in the CASPERS system [4] and in the LAFS system (LAFS= lexical
access from spectra) [3]. However, when using such a lexical tree in connection
with a typical LM, e. g. a bigram model, it is by no means clear how to apply the
DP strategy to this task. The difficulty is that the DP strategy can be applied in
a straightforward wayonly if there are no dependencies on previous decisions. In
other words, the network for the path-finding task must have such a structure that
the cost of each edge depends only on the edge and nothing else.

When using a bigram language model in connection with such a prefix tree repre-
sentation of the pronunciation lexicon (for short: lexical tree), we face the problem
that a complete word hypothesis is generated only when an end node of the lexical
tree has been reached. Therefore the LM bigram probabilityp(wjv) can only be fully
incorporated after reaching the terminal state of the second wordw of the bigram.
For this operation, however, we have to make sure that the hypothesesfor each pos-
sible predecessor wordv are still available. Therefore, for each predecessor wordv,
we introduce a separate copy of the lexical tree so that during the search process we
always know the predecessor wordv when a word endw is hypothesized.

Throughout the paper for notational convenience, we will always consider the
state indexs of an arc rather than the arc itself and assume that the lexical structure
is fully captured by the transition probabilities of the super HMM representing the
lexical tree. To formulate the DP approach, we introduce the followingquantity
[12]: Qv(t; s) := overall score of the best partial path that at timet ends

in states of the lexical tree for predecessor wordv.

Within words, i. e. for internal states of the lexical trees, we have thenthe well-
known DP recursion for time alignment:Qv(t; s) = max� f p(xt; sj�) �Qv(t� 1; �) g ; (3)

where by construction,p(xt; sj�), the product of HMM transition and emission
probabilities doesnot depend on any word index. To allow for word boundaries,
we have to find the best predecessor wordu for each wordv when a path hypothesis
reaches the associated terminal stateSv . Thus, at the word level, we have the DP

3

recursion: Qv(t; s = 0) = maxu f p(vju) �Qu(t; Sv) g ; (4)

where we have assumed a fictitious states = 0 for the root of the lexical tree.
As a result, the optimization over the unknown word boundary is included in the
above two DP recursions. The above DP recursions are evaluated in a strictly left-
to-right time-synchronous fashion [7]. To avoid storing the full tableQv(t; s) and to
arrive at a memory-efficient implementation, so-called back pointers were found to
be extremely useful [2, 6, 8].

4 Beam search and LM look-ahead

For large vocabulary speech recognition, the search method described cannot
be used without somehow limiting the possible search space. As an example, we
estimate the size of the search space for the 20k-word WSJ system [12]:

20k trees * 60k arcs/tree * 6 HMM states/arc = 7.2 * 109 HMM states .

Therefore, in full search, there are this number of HMM states for which theDP re-
cursions have to be evaluated every 10-ms time frame of the input signal. In contrast
with this astronomic number, experimental tests show that by using the beam search
method (in its most refined form) this number can be reduced to less than an average
of 4000 HMM states per time frame (without loss in performance). In beam search,
at each time frame, only the most promising hypothesesQv(t; s) are retained for
further evaluation; the other hypotheses are removed [5].

Due to the delayed application of the LM probabilities in tree search, the effi-
ciency of this pruning method is drastically improved by including the LM proba-
bilities as early as possible into the pruning process. This operation, referred to as
LM look-ahead, works as follows [9, 11, 16]. Considering a states in the lexical
tree for predecessor wordv, we know that the extensions of this state hypothesis
cannot produce all wordsw of the vocabulary, but only a certain subset, which we
denote byW(s). Thus to anticipate the effect of the LM probabilities, we compute
the probability of the most likely word that can be generated for each states and
predecessor wordv: �v(s) := maxw2W(s) p(wjv) : (5)

To incorporate the anticipated LM probabilities�v(s) into the beam search strategy,
we consider the modified scores:~Qv(t; s) = �v(s) �Qv(t; s) : (6)

At time t, we compare each hypothesis~Qv(t; s) with thebest hypothesis at that time.
We prune a hypothesis(v; s; t) with scoreQv(t; s) if:~Qv(t; s) < f0 �maxv0s0 n ~Qv0(t; s0) o ; (7)

4

where the thresholdf0 < 1 is used to control the number of surviving state hypothe-
ses. In addition to this type of pruning, there are other (however less important)
types of pruning such as language model pruning and subtree dominance pruning
[1, 12, 16].

To fully exploit the advantages of beam search, a dynamic construction of the
search space is necessary [8]. In addition, when computing all entries of the table�v(s) beforehand, we have to keep a huge table in main memory which is pro-
hibitive. Therefore we calculate the entries of the table�v(s) on demand and cache
them [9, 11].

5 From word-conditioned to time-conditioned search

The search strategy described so far can be called a word-conditionedstrategybe-
cause the hypothesesQv(s; t) are conditioned on the predecessor wordsv. Another
approach is to structure the search space by using the end time of the predecessor
word or equivalently the start time of the successor word. This concept has already
been used in other contexts, namely connected digit recognition [14] and word lat-
tice generation [10]. Without a time-synchronous evaluation, this concept has certain
similarities to stack decoding orA� search. To describe the time-conditioned search
strategy and to arrive at the DP formulation, we define the followingquantities as
introduced in [13]:h(w; �; t) := maxst�+1 Pr(xt�+1; st�+1jw)= probability that wordw produces the acoustic vectorsxt�+1.G(wn1 ; t) := Pr(wn1) �maxst1 Pr(xt1; st1jwn1)= probability of observing the acoustic vectorsxt1

and a word sequencewn1 with end timet.
By using these definitions, we can isolate the probability contributions of a particular
word hypothesis with respect to both the LM and the acoustic model:x1; � � � ; � � � ; x�| {z }G(wn�11 ; �) x�+1; � � � ; xt| {z }h(wn; �; t) xt+1; � � � ; � � � ; xT| {z }: : :
To extend the word sequence hypothesiswn�11 by one more wordwn, we have to
optimize over the unknown word boundary� :G(wn1 ; t) = max� fPr(wnjwn�11) �G(wn�11 ; �) � h(wn; �; t)g (8)= Pr(wnjwn�11) �max� fG(wn�11 ; �) � h(wn; �; t)g ; (9)

where we have incorporated the conditional LM probabilityPr(wnjwn�11). So far,
we have not constrained the LM in any way, and no recombination of hypotheses is

5

possible. This, however, is different for anm-gram LMp(vmjvm�11). We define:H(vm2 ; t) := maxwn1 �Pr(wn1) �maxst1 Pr(xt1; st1jwn1) : wnn�m+2 = vm2 �= probability of observing the acoustic vectorsxt1 and a
word sequence withend sequencevm2 andend time t.

Thus, we have the DP recursion:H(vm2 ; t) = maxv1 n p(vmjvm�11) �max� fH(vm�11 ; �) � h(vm; �; t)go : (10)

To compute the scoresh(vm; �; t) efficiently, we again use a prefix tree for the pro-
nunciation lexicon and organize all evaluation steps in a left-to-righttime-synchronous
strategy. Stretching notation, we use the symbolQ� (t; s) to denote tree internal
search hypotheses with respect to start time� :Q� (t; s) := overall score of the best partial path that at timet ends

in states of the lexical tree with start time� .

Before moving from time frame(t � 1) to t, we have to allow for a word boundary
hypothesis. To this purpose, we start up a new copy of the lexical treeat time� =t� 1: Qt�1(t� 1; s) = � Hmax(t� 1) if s = 00 if s > 0 ; (11)

where, again, the fictitious states = 0 is used for initialization andHmax(t� 1) is
defined to be the best existing hypothesis:Hmax(t� 1) := maxvm�11 H(vm�11 ; t� 1) : (12)

Note that there are only hypothesesQ� (t; s) for � < t. In the tree interior, we have
the usual DP recursion:Q� (t; s) = max� f p(xt; sj�) �Q� (t� 1; �) g : (13)

Of course, in beam search for a time framet, typically only a few different start
times� , say 50, are expected to survive. When performing the word boundary opti-
mization, we have to ’correct’ each word end scoreQ� (t; Svm) for the ’wrong’ start
scoreHmax(�) and thus obtain the DP recursion:H(vm2 ; t) = maxv1 � p(vmjvm�11) �max� �H(vm�11 ; �) � Q� (t; Svm)Hmax(�) �� : (14)

Back pointers as used in the word-conditioned search method are not needed since
each tree copy is directly conditioned on its start time� .

6

6 From the single best sentence to a word graph

We consider the problem of word graph construction:

Hypothesizing a word and its end time, how can we find a limited number
of ’most likely’ predecessor words? This task is difficult since the start time
of each word may very well depend on the predecessor word under consid-
eration, which results in an interdependence of start times and predecessor
words.

Considering the success of the one-pass beam search strategy, what we want to
achieve conceptually, is to keep track of word sequence hypotheses whose scores
are very close to the locally optimal hypothesis, but that do not survive due to the
recombination process. The basic idea is to represent all these word sequencesby a
word graph, in which each edge represents a word hypothesis. Each word sequence
contained in the word graph should be close (in terms of scoring) to the single best
sentence produced by the one-pass algorithm.

To construct a word graph, we introduce a formal definition of the word bound-
ary �(wn1 ; t) between the word hypothesiswn ending at timet and the predecessor
sequence hypothesiswn�11 :�(t;wn1) := argmax� �G(wn�11 ; �) � h(wn; �; t)	 : (15)

It should be emphasized that the LM probability doesnot affect the optimal word
boundary according to Eq.(9) and is therefore omitted in the definitionof the word
boundary function�(wn1 ; t). The crucial assumption now is that the dependence
of the word boundary�(t;wn1) can be confined to the final word pairwnn�1. The
justification is that the other words have virtually no effect on the position of the
word boundary between wordswn�1 andwn [15]. In general, this boundary, i. e.
the start time of wordwn as given by time alignment, will depend on the immediate
predecessor wordwn�1: if the predecessor wordwn�1 is sufficiently long, all time
alignment paths are recombined before they reach the final state of the predecessor
word. In formulae, we express this word pair approximation by the equation:�(t;wn1) = const(wn�21) or �(t;wn1) = �(t;wnn�1) ; (16)

i. e. the word boundary between wordswn�1 andwn doesnot depend on the prede-
cessor wordswn�21 . Under the assumption of this word pair approximation, it turns
out that only a small modification in the bookkeeping of the word-conditioned tree
search is needed [12]: when hypothesizing a word boundary as expressed by Eq.(4),
the algorithm must keep track of the scoreQv(t; Sw) of every word pair(v; w) to
generate a word graph rather than only thebest predecessor wordv for each succes-
sor wordw.

7 Experimental results

The methods described in this paper were tested in many systems. We only
summarize the results:

7

� In all experiments reported, e. g. see [1, 9, 13, 16], the word-conditioned DP
search in connection with beam search and LM look-ahead was found to be
surprisingly efficient. When using a trigram LM in lieu of a bigram LM,the
average number of hypotheses is only slightly increased. Of course, in all
these cases, it is important to make use of a clever memory organization.� Systematic experiments [12] showed that the DP word graph generation based
on the word pair approximation does not deteriorate performance, even for
very short words. Thus there is virtually no degradation in recognition perfor-
mance due to using DP word graphs.� The time-conditioned DP search was tested successfully in [13]. In terms
of search efficiency, it seems to be slightly inferior to word-conditioned DP
search. However for larger vocabularies and more complex language models,
the situation might be different.

References

[1] F. Alleva, X. Huang, M.-Y. Hwang: Improvements on the Pronunciation Prefix
Tree Search Organization. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Atlanta, GA, pp. 133 - 136, May 1996.

[2] J. S. Bridle, M. D. Brown, R. M. Chamberlain: An Algorithm for Connected
Word Recognition. IEEE Int. Conf. on Acoustics, Speech and Signal Process-
ing, Paris, pp. 899-902, May 1982.

[3] D. H. Klatt: SCRIBER and LAFS: Two New Approaches to Speech Analysis.
pp. 529-555, in W. A. Lea (ed.): ’Trends in Speech Recognition’, Prentice-
Hall, Englewood Cliffs, NJ, 1980.

[4] J. W. Klovstad, L. F. Mondshein: The CASPERS Linguistic Analysis System.
IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 23, pp. 118-123,
Feb. 1975.

[5] B. T. Lowerre, R. Reddy: The HARPY Speech Understanding System.
pp. 340-360, in W. A. Lea (ed.): ’Trends in Speech Recognition’, Prentice-
Hall, Englewood Cliffs, NJ, 1980.

[6] H. Ney: The Use of a One-Stage Dynamic Programming Algorithm for Con-
nected Word Recognition. IEEE Trans. on Acoustics, Speech and Signal Pro-
cessing, Vol. ASSP-32, No. 2, pp. 263-271, April 1984.

[7] H. Ney, R. Haeb-Umbach, B.-H. Tran, M. Oerder: Improvements in Beam
Search for 10000-Word Continuous Speech Recognition. IEEE Int. Conf. on
Acoustics, Speech and Signal Processing, San Francisco, CA, pp. 13-16,
March 1992.

8

[8] H. Ney, D. Mergel, A. Noll, A. Paeseler: Data Driven Organization of the Dy-
namic Programming Beam Search for Continuous Speech Recognition. IEEE
Trans. on Signal Processing, Vol. SP-40, No. 2, pp. 272-281, Feb. 1992.

[9] J. J. Odell, V. Valtchev, P. C. Woodland, S. J. Young: A One-Pass Decoder De-
sign for Large Vocabulary Recognition. ARPA Spoken Language Technology
Workshop, Plainsboro, NJ, pp. 405-410, March 1994.

[10] M. Oerder, H. Ney: Word Graphs: An Efficient Interface Between Continuous
Speech Recognition and Language Understanding. IEEE Int. Conf. on Acous-
tics, Speech and Signal Processing, Minneapolis, MN, Vol.II, pp. 119-122,
April 1993.

[11] S. Ortmanns, A. Eiden, H. Ney, N. Coenen: Look-Ahead Techniques for Fast
Beam Search. Int. Conf. on Acoustics, Speech and Signal Processing, Munich,
Vol. 3, pp. 1783-1786, April 1997.

[12] S. Ortmanns, H. Ney, X. Aubert: A Word Graph Algorithm for Large Vo-
cabulary Continuous Speech Recognition. Computer, Speech and Language,
Vol. 11, No. 1, pp. 43-72, Jan. 1997.

[13] S. Ortmanns, H. Ney, F. Seide, I. Lindam: A Comparison of Time Condi-
tioned and Word Conditioned Search Techniques for Large Vocabulary Speech
Recognition. Int. Conf. on Spoken Language Processing, Philadelphia,PA,
pp. 2091-2094, Oct. 1996.

[14] H. Sakoe: Two-Level DP Matching - A Dynamic Programming-Based Pat-
tern Matching Algorithm for Connected Word Recognition. IEEE Trans. on
Acoustics, Speech and Signal Processing, Vol. ASSP-27, pp. 588-595, Decem-
ber 1979.

[15] R. Schwartz, S. Austin: A Comparison of Several Approximate Algorithms for
Finding Multiple (N-Best) Sentence Hypotheses. IEEE Int. Conf. onAcoustics,
Speech and Signal Processing, Toronto, pp. 701-704, May 1991.

[16] V. Steinbiss, B.-H. Tran, H. Ney: Improvements in Beam Search. Int. Conf. on
Spoken Language Processing, Yokohama, Japan, pp. 1355-1358, Sep. 1994.

[17] T. K. Vintsyuk: Elementwise Recognition of Continuous Speech Composed of
Words from a Specified Dictionary. Cybernetics, Vol. 7, pp. 133-143, March-
April 1971.

9

