Progress in Dynamic Programming Search
for LVCSR

Hermann Ney, Stefan Ortmanns
Lehrstuhl fur Informatik VI, Computer Science Department
RWTH Aachen, University of Technology
D-52056 Aachen, Germany

Abstract - This paper gives an overview of the recent improveents in dynamic pro-
gramming search for large vocabulary continuous speech ragnition: search using lex-
ical trees, time-conditioned search and word graph constration.

1 Introduction

Search strategies based on dynamic programming (DP) are currently bethg us
successfully for a large number of speech recognition tasks, ranginglfgirstring
recognition through medium-size vocabulary recognition using heawihstrained
grammars to large vocabulary continuous speech recognition (LVCSR)istith
ally unconstrained speech input.

Several variants of DP search had already been known in the early days of auto-
matic speech recognition[5, 14, 17]. Over the past two decades, these aed Détat
strategies have turned out to be surprisingly successful in hgnedicabularies of
20k and more words. Nevertheless, until recently, it was among thetexpleighly
controversial issue whether high-perplexity LVCSR could be handfedesftly by
DP. The scepticism seems to have been concerned mainly with the follassingsi

e The extension from a 10-digit vocabulary to a 20k-word vocabularylevo
blow up the search space dramatically. Could this huge search space be han-
dled by DP in an efficient way ?

¢ In particular, each variant of DP search in speech recognition is more or less
'notorious’ for its operations at the 10-ms frame level. How cotid tow-
level acoustic search interact efficiently with the higher knowledge sources i
the recognition system such as the pronunciation lexicon and languatg mo
(LM) ?

e DP typically computes only the best single sentence. But in many recogniti
systems, it is desirable for various reasons to produce alternativensestor
a word graph. Could the conventional DP strategy be extended to geaerate
word graph rather than only the single best sentence ?

In the following, we try to present an overview of the progress sdpplications
of DP strategies to LVCSR. Due to space limitations, we present dw@\basic
principles and omit most details.

2 The specification of the search problem

The acoustic models are given in terms of Hidden Markov Models (HMMs)
representing either context dependent or independent phoneme unitshyfuoth-
esized word sequenee” = w;...wy, We imagine a super HMM that is obtained
by concatenating the corresponding phoneme HMMs using a pronunditioon.

At phoneme and word boundaries, we have to allow for transitionditikathe ter-
minal states of any predecessor HMM to the initial states of any successor HMM.
Thus, we can compute the joint probability of observing the sequefice z; ...x7

of acoustic input vectors and the state sequetice= s;...s through this super
HMM:

T
Pr (%Tasﬂwfv) =[] p@t silsi—1,wl), 1)

t=1

wherep(z¢, s¢|s;—1, wl) denotes the product of the transition and emission proba-
bilities for the super HMMw}Y .

Denoting the LM byPr(wi¥), the Bayes decision rule results in the following
optimization problem:

max {Pr(w{v) -max Pr (xf, slT‘w{V) } . 2
wy 51
Here, we have made use of the so-called maximum approximation. Insteachef
ming over all paths, we consider only the most probable path. Notedhdbe
maximum approximation to work, we need only the assumption thatethgting
optimal word sequences are the same, not necessarily that the maximunepravid
good approximation to the sum.

In this maximum approximation, the search space can be described as a huge
network through which the best path has to be found. The search hasddtened
at two levels: at the state leved() and at the word levehg). As we will see, as
a result of the maximum approximation, it will be possiblegcombine hypotheses
at both levels efficiently by DP. Thus the combinatorial explosiorhefriumber of
search hypotheses can be limited, which is one of the most important chistacter
of DP. At the same time, the search hypotheses are constructed and evaluated in
a strictly left-to-right time synchronous fashion. This propeatiows an efficient
pruning strategy to eliminate unlikely search hypotheses, which isreeféo as
beam search.

3 DP one-pass search using a lexical prefix tree

Originally, the one-pass DP algorithm [2, 6, 17] had been designedrfai-s
vocabulary continuous speech recognition. Within the maximum appetixim
the one-pass DP algorithm presents a closed-form solution for ngnitiie inter-
dependence of the various operations in continuous speech recognitidimeao
time alignment, word boundary detection, taking into account the LM, veod
identification.

When applying the one-pass DP algorithm to large-vocabulary recogrstigra
20k-word task, it seems natural and very desirable for efficiency reasorgatoipe
the pronunciation lexicon in the form of a prefix tree, in which each arespts a
phoneme unit [7]. This idea of using a tree representation was alreaggsed in
the seventies in the CASPERS system [4] and in the LAFS system (IAEScal
access from spectra) [3]. However, when using such a lexical tree in connection
with a typical LM, e. g. a bigram model, it is by no means clear how to apmy th
DP strategy to this task. The difficulty is that the DP strategy can Ipéieabin
a straightforward waynly if there are no dependencies on previous decisions. In
other words, the network for the path-finding task must have suttuetsre that
the cost of each edge depends only on the edge and nothing else.

When using a bigram language model in connection with such a prefix tree repr
sentation of the pronunciation lexicon (for short: lexical tree), aeefthe problem
that a complete word hypothesis is generated only when an end node afitta le
tree has been reached. Therefore the LM bigram probapilityv) can only be fully
incorporated after reaching the terminal state of the second warfithe bigram.
For this operation, however, we have to make sure that the hypotloeszsch pos-
sible predecessor wokdare still available. Therefore, for each predecessor word
we introduce a separate copy of the lexical tree so that during the seacgdspmwe
always know the predecessor warevhen a word enab is hypothesized.

Throughout the paper for notational convenience, we will always condiger t
state index of an arc rather than the arc itself and assume that the lexical structure
is fully captured by the transition probabilities of the super HMMressenting the
lexical tree. To formulate the DP approach, we introduce the followjngntity
[12]:

Q.(t,s) := overall score of the best partial path that at titends
in states of the lexical tree for predecessor ward

Within words, i. e. for internal states of the lexical trees, we have thenwvell-
known DP recursion for time alignment:

Qu(t,s) = max {p(at,slo) - Qu(t—1,0) } 3)

where by constructionp(z:, s|o), the product of HMM transition and emission
probabilities doesiot depend on any word index. To allow for word boundaries,
we have to find the best predecessor wefdr each word» when a path hypothesis
reaches the associated terminal sigte Thus, at the word level, we have the DP

recursion:
Qu(t,s=0) = max {p(ofu) - Qu(t,S) } @)

where we have assumed a fictitious state- 0 for the root of the lexical tree.
As a result, the optimization over the unknown word boundary isughedl in the
above two DP recursions. The above DP recursions are evaluated in lg &ftet

to-right time-synchronous fashion [7]. To avoid storing thiétble @, (¢, s) and to

arrive at a memory-efficient implementation, so-called back pointers wengl fiou
be extremely useful [2, 6, 8].

4 Beam search and LM look-ahead

For large vocabulary speech recognition, the search method described cannot
be used without somehow limiting the possible search space. As an exan®l
estimate the size of the search space for the 20k-word WSJ system [12]:

20k trees * 60k arcs/tree * 6 HMM states/arc = 7.2 * MM states .

Therefore, in full search, there are this number of HMM states for whicib#ee-
cursions have to be evaluated every 10-ms time frame of the inpalsig contrast
with this astronomic number, experimental tests show that by usaggéam search
method (in its most refined form) this number can be reduced to less thartagav
of 4000 HMM states per time frame (without loss in performance). In besarch,
at each time frame, only the most promising hypoth&geg, s) are retained for
further evaluation; the other hypotheses are removed [5].

Due to the delayed application of the LM probabilities in tree search, fite ef
ciency of this pruning method is drastically improved by including tM proba-
bilities as early as possible into the pruning process. This operagtarred to as
LM look-ahead, works as follows [9, 11, 16]. Considering a state the lexical
tree for predecessor wong we know that the extensions of this state hypothesis
cannot produce all words of the vocabulary, but only a certain subset, which we
denote byW(s). Thus to anticipate the effect of the LM probabilities, we compute
the probability of the most likely word that can be generated for each stane
predecessor word

Ty (s) = x| p(wlv) . (5)
To incorporate the anticipated LM probabilities(s) into the beam search strategy,
we consider the modified scores:

Qv(t,s) = m(s) - Qul(t,s) . (6)

Attime t, we compare each hypothe§ls(t, s) with thebest hypothesis at that time.
We prune a hypothesis, s, t) with scoreQ, (, s) if:

Qu(t,5) < fo-max {Quit,s) } . (7)

4

where the threshold,, < 1 is used to control the number of surviving state hypothe-
ses. In addition to this type of pruning, there are other (howevsrifaportant)
types of pruning such as language model pruning and subtree dominamiegpr
[1, 12, 16].

To fully exploit the advantages of beam search, a dynamic constructidreof t
search space is necessary [8]. In addition, when computing all entries @itilee t
7, (s) beforehand, we have to keep a huge table in main memory which is pro-
hibitive. Therefore we calculate the entries of the tahlés) on demand and cache
them [9, 11].

5 From word-conditioned to time-conditioned search

The search strategy described so far can be called a word-conditioned strategy
cause the hypothesék, (s, t) are conditioned on the predecessor wardénother
approach is to structure the search space by using the end time of the psedeces
word or equivalently the start time of the successor word. This coneepalneady
been used in other contexts, namely connected digit recognition [14] artlater
tice generation [10]. Without a time-synchronous evaluation, thisept has certain
similarities to stack decoding ot* search. To describe the time-conditioned search
strategy and to arrive at the DP formulation, we define the followguantities as
introduced in [13]:

h(w;7,t) = E}axpr(xiﬂastrﬂm)
1

= probability that wordw produces the acoustic vectars, ;.

Gwi;t) = Pr(wf)-maxPr(z},sw})
1

= probability of observing the acoustic vectors
and a word sequeneg] with end timet.

By using these definitions, we can isolate the probability coninhstof a particular
word hypothesis with respect to both the LM and the acoustic model:

Tl Tr Trgly Tt Tegly 0y TT
< L < RS

~ '

Gw! ' 7) h(wp;T,t)

To extend the word sequence hypothesjs ' by one more wordy,,, we have to
optimize over the unknown word boundary

Git) = max{Pr(wn|w] ") Gwy ;1) h(wn; 7,)} (8)
= Pr(wn|w ™) max{Gw™"7) h(wa;m,t)}, (9)

where we have incorporated the conditional LM probabifty(w,, |w~"). So far,
we have not constrained the LM in any way, and no recombination of hgpeths

possible. This, however, is different for amgram LM p(v,,|[v*~!). We define:

H(vy';t) := max {Pr(w{‘) -max Pr(z}, st jw) w5 = Ué“}
’LUIL 3t1
= probability of observing the acoustic vectafsand a
word sequence withnd sequence]* andend time ¢.

Thus, we have the DP recursion:
H(v3';#) = max { p(omlvf' ™) - max{H@{"™57) - h(omi,)} } . (20)

To compute the scorégv,,,; 7, t) efficiently, we again use a prefix tree for the pro-
nunciation lexicon and organize all evaluation steps in a left-to-tigia-synchronous
strategy. Stretching notation, we use the symBol¢, s) to denote tree internal
search hypotheses with respect to start time

Q-(t,s) := overall score of the best partial path that at tiends
in states of the lexical tree with start time.

Before moving from time framé& — 1) to ¢, we have to allow for a word boundary
hypothesis. To this purpose, we start up a new copy of the lexicahtremer =
t—1:

where, again, the fictitious state= 0 is used for initialization and?,,,...(t — 1) is
defined to be the best existing hypothesis:

Hpop(t—=1) = maxH@" 't —1). (12)

Note that there are only hypothes@s(¢, s) for 7 < ¢. In the tree interior, we have
the usual DP recursion:

Q-(t,s) = max {p(zs,sl0) - Q- (t —1,0) } . (13)

Of course, in beam search for a time frameypically only a few different start
timesr, say 50, are expected to survive. When performing the word boundary opt
mization, we have to 'correct’ each word end sc@r€t, S,) for the 'wrong’ start
scoreH,,.. (7) and thus obtain the DP recursion:

H(vi;t) = n}}alxx { p(vm|U{n—1) - max {H(U{n—l;r) . %}} . (149

Back pointers as used in the word-conditioned search method are not neexted sin
each tree copy is directly conditioned on its start time

6 From the single best sentence to a word graph

We consider the problem of word graph construction:

Hypothesizing a word and its end time, how can we find a limited number
of 'most likely’ predecessor words? This task is difficult since ttatdime

of each word may very well depend on the predecessor word under consid-
eration, which results in an interdependence of start times and predecessor
words.

Considering the success of the one-pass beam search strategy, what we want to
achieve conceptually, is to keep track of word sequence hypotheses whose scores
are very close to the locally optimal hypothesis, but that do not geithiie to the
recombination process. The basic idea is to represent all these word sedueaces
word graph, in which each edge represents a word hypothesis. Each wordegquen
contained in the word graph should be close (in terms of scoringkgtsitigle best
sentence produced by the one-pass algorithm.

To construct a word graph, we introduce a formal definition of thedwmound-
ary 7(w}; t) between the word hypothesis, ending at time and the predecessor
sequence hypothesig' '

T(twy) = argmgx{G(w?il;T) h(wp;T,)} (15)

It should be emphasized that the LM probability doet affect the optimal word
boundary according to Eqg.(9) and is therefore omitted in the definitiadhe word
boundary functionr(w{;t). The crucial assumption now is that the dependence
of the word boundary (¢; wf*) can be confined to the final word paif?_,. The
justification is that the other words have virtually no effect on thsitun of the
word boundary between words, _; andw,, [15]. In general, this boundary, i. e.
the start time of wordw,, as given by time alignment, will depend on the immediate
predecessor word,, : if the predecessor word,, _, is sufficiently long, all time
alignment paths are recombined before they reach the final state of the predecess
word. In formulae, we express this word pair approximation by thextaoyo:

7(t;w}) = constw)) or T(t;wl)=71(t;w"), (16)

n—1

i. e. the word boundary between words_; andw,, doesnot depend on the prede-
cessor wordsy!" 2. Under the assumption of this word pair approximation, it turns
out that only a small modification in the bookkeeping of the word-dtmted tree
search is needed [12]: when hypothesizing a word boundary as expressed4)y Eq
the algorithm must keep track of the scapg(t, S,,) of every word pair (v, w) to
generate a word graph rather than onlylbes predecessor wordfor each succes-
sor wordw.

7 Experimental results

The methods described in this paper were tested in many systems. We only
summarize the results:

¢ In all experiments reported, e. g. see [1, 9, 13, 16], the word-comndit DP
search in connection with beam search and LM look-ahead was found to be
surprisingly efficient. When using a trigram LM in lieu of a bigram Lie
average number of hypotheses is only slightly increased. Of course, in all
these cases, it is important to make use of a clever memory organization.

e Systematic experiments [12] showed that the DP word graph generatieth bas
on the word pair approximation does not deteriorate performance, even for
very short words. Thus there is virtually no degradation in recagnierfor-
mance due to using DP word graphs.

e The time-conditioned DP search was tested successfully in [13]. In terms
of search efficiency, it seems to be slightly inferior to word-condéDP
search. However for larger vocabularies and more complex language models,
the situation might be different.

References

[1]

(2]

(3]

[4]

[5]

[6]

[7]

F. Alleva, X. Huang, M.-Y. Hwang: Improvements on the PronunciaPrefix
Tree Search Organization. IEEE Int. Conf. on Acoustics, Speech and Signal
Processing, Atlanta, GA, pp. 133 - 136, May 1996.

J. S. Bridle, M. D. Brown, R. M. Chamberlain: An Algorithm foro@nected
Word Recognition. IEEE Int. Conf. on Acoustics, Speech and Signal Psoces
ing, Paris, pp. 899-902, May 1982.

D. H. Klatt: SCRIBER and LAFS: Two New Approaches to Speech Analysis
pp. 529-555, in W. A. Lea (ed.): 'Trends in Speech Recognition’, Rrenti
Hall, Englewood Cliffs, NJ, 1980.

J. W. Klovstad, L. F. Mondshein: The CASPERS Linguistic Arsig System.
IEEE Trans. on Acoustics, Speech and Signal Processing, Vol. 23, pi2B18
Feb. 1975.

B. T. Lowerre, R. Reddy: The HARPY Speech Understanding System.
pp. 340-360, in W. A. Lea (ed.): 'Trends in Speech Recognition’, Peenti
Hall, Englewood Cliffs, NJ, 1980.

H. Ney: The Use of a One-Stage Dynamic Programming Algoritbnfon-
nected Word Recognition. IEEE Trans. on Acoustics, Speech and Signal Pro-
cessing, Vol. ASSP-32, No. 2, pp. 263-271, April 1984.

H. Ney, R. Haeb-Umbach, B.-H. Tran, M. Oerder: Improvements in Beam
Search for 10000-Word Continuous Speech Recognition. IEEE Int.. @onf
Acoustics, Speech and Signal Processing, San Francisco, CA, pp. 13-16,
March 1992.

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

H. Ney, D. Mergel, A. Noll, A. Paeseler: Data Driven Organization & By-
namic Programming Beam Search for Continuous Speech Recognition. IEEE
Trans. on Signal Processing, Vol. SP-40, No. 2, pp. 272-281, PéR.. 1

J. J. Odell, V. Valtchev, P. C. Woodland, S. J. Young: A One-Pasober De-
sign for Large Vocabulary Recognition. ARPA Spoken Language Technology
Workshop, Plainsboro, NJ, pp. 405-410, March 1994.

M. Oerder, H. Ney: Word Graphs: An Efficient Interface Between Cattirs
Speech Recognition and Language Understanding. IEEE Int. Conf. on Acous
tics, Speech and Signal Processing, Minneapolis, MN, Vol.ll, pp. 19-1
April 1993.

S. Ortmanns, A. Eiden, H. Ney, N. Coenen: Look-Ahead Techniquésdst
Beam Search. Int. Conf. on Acoustics, Speech and Signal Processing, Munich,
Vol. 3, pp. 1783-1786, April 1997.

S. Ortmanns, H. Ney, X. Aubert: A Word Graph Algorithm for barVo-
cabulary Continuous Speech Recognition. Computer, Speech and Language,
Vol. 11, No. 1, pp. 43-72, Jan. 1997.

S. Ortmanns, H. Ney, F. Seide, I. Lindam: A Comparison of Tinmndi-
tioned and Word Conditioned Search Techniques for Large Vocabulary Speech
Recognition. Int. Conf. on Spoken Language Processing, Philadelphija,

pp. 2091-2094, Oct. 1996.

H. Sakoe: Two-Level DP Matching - A Dynamic Programming-Based Pat-
tern Matching Algorithm for Connected Word Recognition. IEEE Trams. o
Acoustics, Speech and Signal Processing, Vol. ASSP-27, pp. 588-888nD

ber 1979.

R. Schwartz, S. Austin: A Comparison of Several Approximateofithms for
Finding Multiple (N-Best) Sentence Hypotheses. IEEE Int. ConfAooustics,
Speech and Signal Processing, Toronto, pp. 701-704, May 1991.

V. Steinbiss, B.-H. Tran, H. Ney: Improvements in Beam SearchConf. on
Spoken Language Processing, Yokohama, Japan, pp. 1355-1358, Sep. 1994

T. K. Vintsyuk: Elementwise Recognition of Continuous Speeom@osed of
Words from a Specified Dictionary. Cybernetics, Vol. 7, pp. 133-148¢d\i-
April 1971.

