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ABSTRACT the probability that the recognized word is correct and aexden-
) ] N sion of the word graph link probabilities presented in [4jethcan
Estimates of confidence for the output of a speech recogrsiie-  pe regarded as posterior probabilities for hypotheseseimtbrd-

tem can be used in many practical applications of speectyreco graph. The novel contribution of this paper is the estimatibthe
nition technology. They can be employed for detecting fiesi  posterior word probabilities as the sum of all posterior avhy-
errors and can help to avoid undesirable verification tunnau- pothesis probabilities which represent the occurrenck@bame

tomatic inquiry systems. In this paper we propose to esémat word in more or less the same segment of time.
the confidence in a hypothesized word as its posterior pibbab

ity, given all acoustic feature vectors of the speaker attee. The

basic idea of our approach is to estimate the posterior warogp 2. COMPUTING HYPOTHESISPROBABILITIES
bilities as the sum of all word hypothesis probabilities erhiep- ) ) - ]
resent the occurrence of the same word in more or less the samd Ne posterior word hypothesis probability for a word hyjesis
segment of time. The word hypothesis probabilities are@ppr ~ w With starting and ending time, andt. respectively —i.e. start-
mated by paths in a wordgraph and are computed using a simpli-iNg with feature vector:;, and ending with feature vectar;, —

fied forward-backward algorithm. We present experimersiits ~ 9iven a sequence of acoustic feature vectdrsis computed in the

on the NORTHAMERICAN BUSINESS(NAB’94) and the German framework of a forward-backward algorithm, summing up the-p

VERBMOBIL recognition task. terior probabilities of all those word hypothesis sequenehich
contain the word hypothesis with the same starting and ending
time.

1. INTRODUCTION
p(w,tatelz?) =Y > p(Wa,w, Welzt)

With the rising number of different application areas foesgh Wa W

recognition systems, the demand for the ability to spotreroos

words also increases. Confidence measures can be sudgessful Z Zp(a:ﬂWa,w, We) - p(Wa, w, We)

used for tagging the output of a speech recognizer with Eitoe- _ Wa We Q)
rect’ or ‘incorrect’, enabling the recognition system t@sthe po- p(z¥) ’

sition of possible errors in its output. In automatic ingueystems,

e.g. train timetable information systems or switchboamis)fi- where W, denotes all word hypothesis sequences preceeding
dence measures can be employed to avoid unnecessary aryd annoandW. all those succeeding. p(z1 |W., w, W.) is the acoustic
ing verification turns if the confidence for the relevant keysls model probabilityp(W., w, We) the language model probability

in the speaker utterance is high enough. In this case, ndciexpl  and

verification is needed and the dialogue duration can beidadigt

shortened. pD) =33 p(al [Wa,w, Wo) - p(Wa,w, We) . (2)
Previous work on confidence measures has either invedigate w Wa We

the computation of confidence measures during the acoustic d . .

coding process, e.g. [1, 2] or the computation of confidenea-m Since a word graph is a compact representation of_ the most pro

sures on the basis of word lattices, e.g. [4] and n-best Bsgs[6]. able word sequences, the summation can be restricted teall w

Gillick et at. [3] have estimated and evaluated their comizde ~ NyPOthesis sequences represented in the word graph. Tps-si

measure in the framework of a probabilistic approach, ngkise fication can easily be justified, as the probability of theussgpes

of generalized linear models for relating a confidence fearac- ~ contained in the word graph should clearly dominate the rema
tor directly to the probability of a word to be correct. Weinib ing probability mass of word hypothesis sequences not owda
et at. [9] have used artifical neural networks to model thaticah Init. _

between the different features and this probability. Let us assume that we use a conventianagram language

The computation of posterior word probabilities in this gap ~ Model for obtaining the conditional language model prolis

can be seen as an extension of [3], i.e. interpreting cordilas ~ P(w|h), whereh = (hi...hn—1) is the history of wordv. Regard-
ing h as an equivalence class containing all word sequences whose
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framework of the ARISEproject under grant LE3-4229. The responsibility ~probability ®;(h). ®.(h) is the probability that the lask — 1
for the contents of this study lies with the authors. word hypotheses of a word hypothesis sequence ending at time




are identical toh:

®e(h) = Y p(@i|W.) - p(W.)

Wa€h

®3)

One should bear in mind that the beginning of a word hypothesi
sequence requires special treatment because no languatg mo
history or only a short history is known. The joint probatyilof

the word hypothesis sequenBé, = (a:...an) is therefore com-

puted as:
m—1 ] N

p(Wa) =p(a) - [] plaslai™) - [] plailai=hsn) - @)
=2 i=m

In our speech recognition system a word graph [5] is a dicecte
graph whose nodes are interpreted as starting and endieg tm
word hypotheses and whose edges represent word hypothiéses.
acoustic probabilitieg(z; |w) are therefore stored at the edges.
Once the wordgraph is sorted on the starting times of the word
hypotheses contained in it, dynamic programming can bdexppl
and the ‘forward’ probabilities can be computed succefsinvean
ascending order:

<I)tg (h;”_l,w) Zq)ta_l hl,hm 1)

p(wlhl,h? B

1}

a

- (9

Sincet,, is the starting time of worav, ¢, — 1 denotes the ending
time of the preceeding worid,,—1 . Analogously, lef®( f) denote
the ‘backward’ probability that the first — 1 word hypotheses of
a word hypothesis sequence beginning at tinege identical to

= fm-):

@i (f) (6)

3w W) -p(W2)

Weef

As h above,f is interpreted as an equivalence class, this time con-
taining all word hypothesis sequences which start (fth.. f,,—1).

As the word hypotheses preceedifig. in Equation (6) are not
known,p(W.) must be interpreted as in Equation (4). On the other
hand, the prediction of the word hypotheses containgdnmust be
based on the full history length. We therefore compute a ffeat]
backward’ probability:

Ti(f) = Y i W )

M

) I pleileiznsn)
Weef i=m
whereW, = (e1...enm). The missing language model probabili-
ties are included later on when computing the posterior vingrd
pothesis probabilities. Equation (7) can be evaluatedgudin
namic programming as well. The word graph is sorted on the
ending times of the word hypotheses and the ‘modified baakwar
probabilities are computed in a descending order:

_2) _ Z T (

p(fmfuw,fl -2

Uy, (waflm 1',5 afm 1)

a

.(8)

p(z

With the definitions in Equations (1), (5) and (8), the pdster
word hypothesis probability can now be computed as follows:

p(w,ta, telal)

DD DR

m—1 pm—2
ho fi

\Ilta (’LU, .f{ﬂiz)
1) - p(xie Jw)

: H p(filhT " w, fi71) 9)
i=1

Ty in the denominator can be evaluated as follows:

S er(hy T w)

m—1
hy

YN Tiw )

m—2 g
U

~ lH p(fi|w,ff-1>] p(w)

The last term in Equation (9) represents the language madbt p
abilities which are missing in Equation (7), as mentioneovab
Usually, the language model scores are multiplied with a lan
guage model scaling factor. During the recognition or reago
phase this strategy is equivalent to scaling the acoustie stown
(with the reciprocal language model scaling factor). Whem-<
puting posterior probabilities as specified in Equation (Bgse
two approaches are no longer equivalent. Besides numeriaid
lems which we have noticed when using the language model scal
ing factor, the sums in Equation (9) are dominated by onlya fe
word graph hypotheses, because of the large differencesein t
acoustic scores. In our opinion, these differences arelyndire
to the variance of the acoustic features which is generaltiet
estimated. If a reestimation of these variances is notliesihe
acoustic scores should at least be scaled down in order &nadt
useful result. The acoustic scaling factors have been astohon
the cross-validation corpora beforehand.

p(z1)

(10)

3. COMPUTING WORD PROBABILITIES

The posterior word hypothesis probability defined in Equa{)
has shown to have a very poor discriminating ability betweert
rect’ and ‘false’ words in all of our preliminary experimsntActu-
ally, this result is not surprising when considering the faat the
fixed starting and ending time of a word hypothesis in the word
graph are more or less arbitrary. In fact, the posterior @odb
ties of all those word graph hypotheses annotated with thel wo
index of the current word hypothesis for which we try to cotepu

a measure of confidence should be added if the starting and end
ing times of these hypotheses only slightly differ from thoé the
word hypothesis under consideration.

A naive approach to specifying the vague definition of ‘sigh
differing’ starting and ending times would be to experimeiith
different percentages of overlaps between the current tugudth-
esis and all other hypotheses with the same word index. I fac
this approach can be successfully used and there is no eff¢oe
confidence error rate defined in section 4, as long as the rinim
overlap ranges between 0% and 30%. Overlaps above 30% have



the disadvantage of this criterion, we first give a definition

H(C) - H(C|X)

=" H©)

12)
H(C) is the initial entropy of the recognizer output when tagging
all words with ‘correct’ andH (C'|X') can be interpreted as the
entropy of the tag sequence attached to the recognizertoptpu
vided with the information contained in the confidence measu
For details, the reader is referred to [8]. Althou§hcan easily
be interpreted as the relative reduction in entropy, it idanger
sensibly defined as soon as the posterior probability for ral wm
be correct equals one, even though the word has not been-recog
nized correctly. If this happens only once in the testingasr it
will have almost no effect on the overall quality of the corfide
measure. Still, the normalized cross entropy will approadin-
ity. One way to elude this problem is to guarantee that theepias
probabilities never equal one, either by removing all wdrdsn
the test corpus whose posterior probabilities are identicane
or by inserting alternative hypotheses into the word grapbth
methods circumvent the restrictions imposed by the retiogni
task itself. With a given wordgraph and no alternative to advo
hypothesis one cannot do anything but state that this warthéan
recognized correctly. Moreover, the confidence error tadre
intuitive and practically oriented. We therefore confineselves
to the use of this quantity.

We have performed evaluation experiments on two different
corpora, on the North American Business corpusgi4 H1 de-
velopment corpus) and on the offical evaluation corpus o1 886
VERBMOBIL recognition task. The ¥RBMOBIL translation sys-
tem generates speech-to-speech translations betweeraGand
English in the appointment scheduling domain. The corpus co
sists of spontaneous human-to-human dialogs, includirgeap
hesitations and false starts.

As Siu et at. [8] have pointed out, the improvements obtained
with confidence measures are very sensitive to the recogrop-
erating points across different recognition systems amndeegily
be increased by changing the baseline confidence error raté w
is identical to the number of correctly recognized wordsdiid
by the total number of recognized words. We therefore give-a d
tailed specification of the word graphs used and the baselowg-
nition results which we have obtained with our word graphs in

wordgraph hypotheses

time

Figure 1: The plain lines indicate different hypothesegliersame
word w, the dotted lines represent hypotheses for other words.

produced worse results. It is therefore intuitive to simglyn up
all posterior probabilities of those hypotheses with theeavord
index as long as they have an overlap with the current hypisthe
atall.

The problem with this definition is that we no longer have a
probability distribution. The posterior word hypothesi®lpabil-
ities sum up to unity for each time frame by definition, butcsin
the posterior word probabilities as defined above are nacdg
over only one time frame, we run into problems. As shown in Fig
ure 1, the word hypotheses; andw,s do not overlap. Still, when
computing the accumulated posterior word probability fgpdth-
esiswi, both probabilities would be included in the sum. To avoid
this problem, the summation of posterior hypotheses musabe
ried out on the basis of time frames. Therefore, we have added
the posterior probabilities of all hypotheses for the samedvior
each time frame betwedn andt. which they intersect and esti-
mated the posterior word probabilites as the arithmeticosar
all these time frames or as the maximum, respectively. We tav
tected no difference between these two criteria and havdetbto
use the maximum for algorithmic reasons. We can now guagante
that the word posterior probabilities sum up to unity. Thetpe
rior word probability which we use as a measure of confideace i

therefore defined as: Table 1. For the definition of the word graph density (WGDg th
- T node graph density (NGD), the boundary graph density (BGid) a
pw,ta, tefz1) for the graph error rate (GER) and for further details on hei-
- max Z p(w,ti, t|z]) (11) cation of word graphs, the reader is referred to [5]. Figusa@vs
tita <t<te the probability histogram for the two classes ‘correct’ datse’.

(tit;):t; <t<t;

wheret; andt; are the starting and ending time of the hypothe-

sized wordw. We have used this criterion in the following evalu- Table 1: Wordgraph specification for theas'94 H1 and the
ation experiments. It can directly be interpreted as thégidity VERBMOBIL COrpuS

that the word under consideration is correct.

corpus spoken| WGD | NGD | BGD | GER
0,
4. EXPERIMENTAL RESULTS words [%]
NAB'94 H1
We have decided to evaluate our confidence measure usingrthe ¢ cross-val. 8186 | 352.8| 545|109 |51
fidence error rate (CER) which is simply defined as the number o eval. 7387 | 1174.9| 156.3| 186 | 4.2
incorrectly assigned tags divided by the total number obgec VERBMOBIL
nized words. Another criterion is the normalized crossatrS cross-val. | 11129| 308.8| 47.3| 12.0 | 8.2
as proposed by NIST. In our opinion, this quantity is not ukfefr eval. 5421 | 328.6| 52.8| 124 | 6.7

evaluating our confidence measure. In order to be able toshsc



number of tags
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5. CONCLUSION

We have proposed to use a posterior word probability as a con-
fidence measure for a word in the output of a speech recognizer
We have used a forward-backward algorithm in the word graph t
compute posterior hypothesis probabilities and estimgtegos-
terior word probability summing up these probabilities ooee
time frame between the starting and ending time of the word hy
pothesis under consideration. We have discussed thectestep-
plicability of the normalized cross entropy for evaluatiognfi-
dence measures and we have presented results omth®@ M H1

L
0.4703 0.6 0.8 1

posterior word probability

Figure 2: Histogram plot of the posterior word probabistfer the
two classes ‘correct’ and ‘false’ on thea’94 H1 development
corpus using a trigram language model.

The number of events with the same probability is plotted on a
logarithmic scale. The decision whether to tag a word agénr

or false’ is based on thresholding the posterior probahiiftthis
word as defined in Equation (11). The threshold is optimized o
the cross-validation corpora beforehand and is abotit in this
specific case. Words with a smaller posterior probabiligntthe
threshold are tagged as false and all other words as cofféet.
results we have obtained are summarized in Table 2. The base-
line confidence error rate is identical to the number of itiges

and substitutions divided by the total number of recognizers.

Our results on the NB'94 H1 recognition task are promising. In
terms of the relative improvement in the confidence erra, nae
have noticed almost no difference when using a trigram auste

a bigram language model. With only the posterior word prdbab
ity as a confidence measure, we have obtained an improverhent o
21% - 23% relatively. The relative reduction of the confiderc-

ror rate on the ERBMOBIL task is lower for both a bigram and a
trigram language model. Still, with only one feature we hake
tained a reduction of about 14% - 18% relatively. It is instireg

to note that the probability thresholds which have beenstélion

the cross-validation corpora are almost optimal for théuatan
corpora.

Table 2: Results for the confidence measure on the two ei@uat
corpora

corpus errors [%] baseline | CER [%]
del/ins/WER | CER [%]
NAB'94 H1
bigram: 2.4/2.6/16.3 13.9 10.7
trigram: 1.7/2.5/13.7 11.9 9.4
VERBMOBIL
bigram: 4.4/3.9/21.7 17.4 14.9
trigram: 3.8/3.2/19.4 15.7 12.9

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

1 and the German ¥RBMOBIL recognition task for a bigram and
] trigram language model. We have obtained relative imprergm
in the confidence error rate between 14% and 23%.
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