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ABSTRACT

In this paper, a formally unifying approach for a class otdis
minative training criteria includingylaximum Mutual Information
(MMI) and Minimum Classification Erro(MCE) criterion is pre-
sented, including the optimization methods gradient deg¢&D)
andextended Baum-WeldEB) algorithm. Comparisons are dis-
cussed for the MMI and the MCE criterion, including the deter
mination of the sets of word sequence hypotheses for distam

only the best recognized word sequence is used for disciiim
We did not observe further improvements in word error rake, a
though in case of the use of word graphs a further convergaeince
the criterion was found.

2. DISCRIMINATIVE TRAINING

The training data shall be given by training utterances 1...R,

tion using word graphs. Experiments have been carried out oneach consisting of a sequen&® of acoustic observation vectors
the SieTill corpus for telephone line recorded German continuous Z-1, Zr2, ..., Z,7,. and the corresponding sequeri¢g of spoken

digit strings. Using several approaches for acoustic niogethe
word error rates obtained by MMI training using single d&asi
always were better than those for Maximum Likelihood (ML) us
ing mixture densities. Finally, results obtained for cotree train-
ing (CT), i.e. using only the best recognized word sequemeali

words. Thea posteriori probability for the word sequenc#’,.
given the acoustic observation vectoks shall be denoted by
pa(Wr|X,). Similarly, px (X,.|W,.) andp(W,) represent the ac-
cording emission and language model probabilities resbgt
In the following, the language model probabilities are sagmol

dition to the spoken word sequence, could not be improved by to be given. Hence the parameterepresents the set of all pa-

using the word graph based discriminative training.

1. INTRODUCTION

In an increasing number of applications discriminativénirey cri-
teria such asMaximum Mutual InformatiorfMMI) [6] and Mini-
mum Classification Erro(MCE) [1] have been used. In MCE
training, an approximation for the error rate on the trajntata
is optimized, whereas MMI optimizes tlzeposterioriprobability
of the training utterances and hence the class separatBlitged
on [6], we present a formally unifying approach for a clasdief
criminative criteria including the MMI and the MCE criteripthus
extending a comparison done in [7]. In a previous study [¥, w
also found a unifying approach for the optimization methgads
dient descent aneixtended Baum-Wel¢EB) algorithm which was
transfered to the unified criterion presented here.

Experimental results are presented for 8ieTill corpus for
telephone line recorded German connected digit stringsrder
to investigate the abilities of discriminative trainingnaprove ML
training results, we performed comparative experimentsév-
eral approaches of acoustic modeling, such as single vsturaix
densities, pooled vs. state specific variances and an aptinear
discriminant analysis (LDA).

Following previous studies [9], we also performed experitae
comparing GD with EB optimization for MMI training of mixter
densities showing no significant differences. Furthermfarede-
termining the sets of competing word hypotheses for disodam
tion, we performed experiments using CT [6], or word grapirs f
efficient representation of all competing word hypothesdsese
experiments were initialized with our best results using @fere

rameters of the emission probabilities (X.|W.). Finally, let
M, denote the set of word sequences, which are considered for
discrimination in utterance. A class of discriminative training
criteria Fip including MMI and MCE could then be defined by the
expression
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The choice of the exponeat the smoothing functioif and the set
M. of word sequences for discrimination decide which criterio
is represented. In particular, choosimg= 1 and f(¢) = ¢ yields
the MMI criterion. On the other hand, using the sigmoid func-
tion f(&) = —1/[1 + exp(20¢)] yields an equivalent version of
the MCE criterion, which is to be maximized. Ideally, in cade
the MMI criterion the seiM,. would contain all possible word se-
guences. In practiceM.. is obtained through a recognition pass
and is represented hy-best lists or word graphs. For MCE the
spoken word sequence has to be excluded from this set. Tk con
bution of each competing sentence to reestimation is cibedrby
the exponenty, where very large values af lead to a maximum
approximation. For the MMI criterion the latter is calledriez-
tive training (CT), where only the best recognized word seges
are used for discrimination. The smoothing functifrieads to
an optional weighting on the level of whole training utteres, as
can be seen in the following derivation of the iteration eiques
for the case of Gaussian mixture densities.

An optimization of the class of discriminative training teri
ria defined above tries to simultaneously maximize the aamss
probabilities of the spoken training sentences and to nmz@m



weighted sum over the emission probabilities of each comget
sentence given the acoustic observation sequence for esph t
ing utterance. Thus, these criteria optimize the classrabpity
according to the words under consideration of the languamgem

2.1. Parameter Optimization

One possibility to maximize discriminative training crite con-
sists of a gradient descent with the following reestimataymula
for the parameters:

~0Fp(N)
ox

A mixture density for an acoustic observation vectogiven an
HMM state s shall be denoted by(z|s, As). The according pa-
rameters\; of a mixture density are the weights; and parame-
ters),; of densitied of the mixture, and mixture densities shall be
calculated in maximum approximation. Then the derivativéhe
general discriminative criterioR’p with respect to parametefis;

is given by:
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where the discriminative averagEs; are defined by:
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where we have utterance weightswhich have to be considered
if the smoothing functiory is not the identity,
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Applying the maximum approximation for the calculation akm
ture densities, the density probabilitigs (I|s) are determined by
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with the Kronecker deltd(s, 7). The discriminative averages also
make use of th€orward-Backward(FB) probabilities of the spo-
ken word sequencl’,.:

'Yrt(S§Wr) = pk(st = S|X7'7W7'),

and the generalized FB probabilities for the total of all peting
word sequenceBl’ defined by the set$1,.:

(X, W
(s = 3 L& W),
wWeM, Z p (XT,V)
VEM,

The generalized FB probability is simply a sum over the conve
tional FB probabilities of each competing sentence weitjbieits
renormalized posterior probability.

Using the Viterbi approximation [4], i.e. calculating th& F
probabilities from the according time alignment, the suraraad|

competing word hypotheses for calculation of the genezdlizB
probability could be separated from the time alignment. riTthe
according word-posterior probabilities needed could beutated
efficiently by applying a FB calculation scheme on the basis o
word hypotheses on a word graph. Thus word graphs could also
be used, ifa is not 1, which would not be possible if the word
graph FB scheme is applied on state level already, as dorikeor
MMI criterion in [10]. It should be noted that the calculatiof
word-posterior probabilities also finds applications ihestareas
of speech recognition like the determination of confideneam
sures, e.g. [8].

Discriminative training with the MMI criterion usually apes
an extended version &aum-Welchraining, the EB algorithm [5,
6]. We extended this approach to the general critefipn which
could be maximized via the following auxiliary function:
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s r=1 =

log p(xrels, Xs)
+aZD /da:p z|s, As) log p(z|s, As),

which is to be optimized iteratively. Differentiation witespect to

the iterated parametehs; leads to the following expression, from
which reestimation formulae can be derived:
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Using discriminative averages for writing down reestiroati
formulae yields expressions which are formally independéthe
particular criterion chosen. Thus, differences of craeate intro-
duced via the discriminative averages only and comparisonkl
be reduced to this level.

Performing the EB algorithm, we obtain the following reesti
mation equations for the meaps;, state specific diagonal vari-
ancess2 and mixture weights,; of Gaussian mixture densities:
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An alternative would be to perform gradient descent on tle cr
terion Fp. Doing this and comparing both sets of reestimation
formulae we arrive at step sizes for gradient descent [9]chvh
lead to reestimation formulae, which differ only for the iaaices



by terms containing the squared step sizes of the means atthe
cording mixture:

ﬂsl,GD = ﬂsl,EB
~2 ~2 Fsl 1 + D Csl ~
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The reestimation formulae for the mixture weights do notites
directly from the optimization of the criterion but are sntiwed
versions for better convergence [5]. For this version ttserifini-
native average¥,;, as defined in Equation 1, are separated ac-
cording to the FB probability for the spoken (spk) word setmqee
and the generalized (gen) FB probability for the total ofcalin-
peting word sequences.

Settingae = 1 for comparison purposes, we observe only two
differences between MCE and MMI. Firstly, for MMI the spoken
word sequence is considered for discrimination, wherelastto
be excluded when using MCE. Since the word-posterior proba-
bilities of correct words securely recognized will be ngdr] the
differences of FB probabilities in the discriminative aages for
MMI are nearly zero, such that those words do not contribigte s
nificantly to reestimation. Secondly, the worse the recigmire-
sults for an utterance are, the more it will contribute to Migés-
timation, which is not the case for MCE. For MCE, hopelessig b
recognized utterances together with securely recognined are
weighted down as a whole according to their posterior pritibab
ties via the smoothing functiofi.

Fast convergence is achieved if the iteration constantare
chosen such that the denominators in the reestimation ieqaat
and the according variances are kept positive:

ﬂ—rsu)}.

Here, D, min denotes an estimation for the minimal iteration con-
stant which guarantees the positivity of the variance itestand
the iteration factoh > 1 controls the convergence of the iteration
process, high values leading to low step sizes. The constand
is chosen to prevent overflow caused by low-valued denomigat
Similarly, the iteration parametets, for the mixture weights are
chosen such that all weights are positive:

:| ,0} + €,
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with a small constart.
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3. RESULTS

Experiments were performed on tiSeTill corpus [2] for tele-
phone line recorded German continuous digit strings. Siedill
corpus consists of approximately 43k spoken digits in 13k se
tences for both training and test.

The recognition system for tt&ieTillcorpus is based on whole
word HMMs using continuous emission distributions. It isucdc-
terized as follows:

e Gaussian mixture emission distributions,
e pooled or state dependent variance vectors,

e gender dependent whole word HMMs for 11 German digits
including 'zwd and gender dependent silence models,

Table 1: Comparison of recognition results on 8ieTill corpus
for ML and discriminative training for different acousticoakeling
and training techniques.

corp | LDA | var | dns| crit | opt WER[%)]
del | ins || tot
test no PV 1| ML -107|10| 56
4 | ML -104|18| 48
1| CT |GD|08]06]| 33
SV 1| ML -106|16| 52
4 | ML -1 05|17 46
25| ML -104|16| 41
1| CT|GD|08]|07]| 34
yes | PV 1] ML -1 05]07] 4.0
CT |GD|05]|07]| 28
4 | ML -103[10]| 3.0
CT |GD | 06|05| 25
CT | EB| 06| 05| 26
WG | GD | 0.7 | 05| 2.6

e per gender 132 states plus one for silence,

e 12 cepstral features plus first derivatives and the second
derivative of the energy.

The baseline recognizer applies ML training using the VYitap-
proximation [4] which serves as a starting point for the tddal
discriminative training. A detailed description of the blase sys-
tem could be found in [11].

In Table 1 the recognition results obtained for several afiou
modeling approaches using maximum likelihood trainingiadée
cated by ML. For ML training, state specific variances (SWega
better results than pooled variances (PV) for both singteraix-
ture densities. The best results for state specific varanere
obtained using approximately 25 densities per mixture, rede
for pooled variances the best results were already obtdamexp-
proximately 4 densities per mixture. Adding linear disdriemt
analysis (LDA) to using pooled variances gave our best Multes
with 4.0% word error rate for single densities ah®% word error
rate for mixture densities with approx. 4 densities per ot It
should be noted that the LDA gave a relative improvement ef ov
60% in word error rate for pooled variances and still more than
25% compared to state specific variances without LDA.

For CT, an iteration factor oh = 1.2 leads to relatively
smooth convergence. Fig. 1 shows a plot of the MMI criterion
for the male portion of the&SieTill training corpus for CT using
both GD and EB optimization starting from the according ML re
sult using Gaussian mixture densities with approx. 4 dessiter
mixture, pooled variance vector and LDA. After CT has cogeelr
(indicated by the vertical line), a plot of the MMI criteriarsing
word graphs for discrimination (WG) with an average number o
about 47 word hypotheses per spoken word is added. Certhaly
absolute values of the MMI criterion using CT and WG respec-
tively are not comparable. In a region where CT does not ageve
any more, the MMI criterion clearly converges, althoughwoed
error rate obtained by CT is even slightly better than thai/fi&

(cf. Table 1). The reason for this could be, that an utteranbéeh
is correctly recognized does not contribute to reestiméio CT.
Thus, also incorrectly hypothesized word sequences fdn atic
terances are not considered for discrimination using C&nef/



densities. For the best initial result using ML traininggs tielative
improvement obtained by a subsequent MMI training was about
1/6, leading to a word error rate 8f5%. This result, which was
obtained for corrective training, i.e. using only the bestognized
word sequence in addition to the spoken word sequence, notld
be improved by using the word graph based discriminativie-tra

ing

Acknowledgement. This work was partly supported by Siemens

AG, Munich.

0 T T T T T

-1
c
k=)
g 2 v
= MMI: CT,EB -----

-4 CT,GD —

WG, GD ---
5 ] ] ] ] ]
10 15 20 25 30

iteration index
Figure 1: MMI criterion for the male speakers of tBeTill train-

ing corpus for corrective training (CT) and the use of worans
(WG).

their posterior probabilities are only marginally smaliean the

maximum. Contrarily, using WG would try to reduce the poste-

rior probability of such marginal second best hypothedésoagh
this might not be necessary, so far as these wrong hypotkesps
being second best at most. Such, this further rearrangamére

posterior probabilites done using WG might have no or evgane

tive effects on the word error rate in comparison to CT, agniesl
in our experiments. Table 1 summarizes the recognitiortsefar

the SieTill test corpus using Gaussian emission densities. For dif-

ferent levels of acoustic modeling, we compare ML resulth wie
according discriminative training results using the MMiterion
with corrective training (CT) approximation and gradiersdent

(GD) optimization. The largest improvements using CT werse o

tained for our simplest system using single densities witblgd
variances (PV), where the ML training word error rate wasioed

by 40% relatively. Although the initial ML result for single den-

sities with density specific variances (SV) was better tienac-
cording result for pooled variances, the improvement oleihiby

additional CT was smaller, and the word error rate obtainad w

even slightly smaller than that for CT using single densitigth

pooled variance. It should be noted, that the result for CT us

ing single densities with density specific variances was -
ter than the according ML result using mixture densitiehv#ib
densities per mixture. The best results for CT were obtairsed
ing mixture densities with 4 densities per mixture, pooladance
(PV) and LDA, leading to a word error rate 5%, which is the

same as reported in [2]. Still, the according result for CThwi

single densities is slightly better than the results for Miining
using 4 densities per mixture. Finally, the best CT resuftgi&D
optimization was compared to CT using EB optimization, sihgw
no significant difference for mixture densities as was theedar
single densities [9].

4. CONCLUSION

We presented a formally unifying approach for a class ofrdisc

minative training criteria and optimization methods irtihg the
Maximum Mutual InformatiorfMMI) and the Minimum Classifi-

cation Error (MCE) criterion which were compared. For the MMI

criterion, experiments were performed on ®ieTill corpus. Rel-
ative improvements in word error rate of up406% compared to
ML training were obtained, and MMI training using single den
ties always produced better results than ML training usindure
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