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ABSTRACT

In this work a method for splitting continuous mixture density
hidden Markov models (HMM) is presented. The approach com-
bines a model evaluation measure based on the Maximum Mu-
tual Information (MMI) criterion with subsequent standardMax-
imum Likelihood (ML) training of the HMM parameters. Exper-
iments were performed on theSieTill corpus for telephone line
recorded German continuous digit strings. The proposed split-
ting approach performed better than discriminative training with
conventional splitting and as good as discriminative training af-
ter the new splitting approach.

1. INTRODUCTION

An important observation is that the improvements obtainedby
discriminative training methods in comparison with conventional
Maximum Likelihood (ML) training are especially high for low
model complexity. Therefore discriminative training criteria
might be a good candidate to give an estimation of the ability
of an acoustic model to describe the data.

The standard approach to acoustic modeling in speech recog-
nition uses Hidden Markov Models (HMM) in combination with
continuous mixture densities. When using mixture densities, a
crucial point is the choice of the model complexity, i.e. thede-
termination of the number of densities to be assigned to each
mixture model. The usual splitting methods try to double the
number of densities iteratively as far as enough observations are
assigned to a density. On the one hand one would expect to
increase the number of densities for a given mixture with the
heterogeneity of the according distribution of the acoustic data.
On the other hand this number is clearly limited by the amount
of data available for a given task. In order to take this into ac-
count, likelihood threshholds could be used to limit the number
of densities to be splitted.

In [1] a discriminative measure for model complexity eval-
uation was introduced. For each mixture model this measure
was used to choose the optimal model from ML trained models
with differing number of densities. It could be shown that nearly
equal performance could be obtained with significantly lower
numbers of parameters. Furthermore, in [4] a mixture split-
ting algorithm fully based on the Maximum Mutual Information
(MMI) criterion is introduced. There, a discriminative measure
derived from the MMI criterion is used to choose those densities,
which are to be splitted up. This was then combined with MMI
training of the according models. For connected digit recogni-
tion, significant improvements in sentence error rate were ob-
served with this approach when compared to both ML and sub-
sequently MMI trained models of even higher complexity. A
similar approach [8] was chosen for large vocabulary speech
recognition with similar success, although the approach was not
pursued up to optimal model complexities.

Based on the observation, that the advantages of discrimina-
tive training criteria diminish with increasing model quality, in

this paper we present a method, which combines the use of an
MMI based measure to evaluate densities for splitting with sub-
sequent ML training of the according upsplitted models. In our
approach, the derivatives of the MMI criterion with respectto the
density weights are sorted in order to obtain their median and
only those densities with derivatives higher than the according
median will be splitted. Experiments on theSieTill corpus for
telephone line recorded German continuous digit strings show
that the combined MMI/ML splitting approach gives better re-
sults than conventional splitting with discriminative training and
equal results as a subsequent discriminative training after the
new splitting approach.

2. DISCRIMINATIVE TRAINING

Before introducing the discriminative splitting criterion proposed
here, we will revisit the unified approach for discriminative train-
ing proposed in [7]. LetXr = xr1; xr2; :::; xrTr andWr =wr1; wr2; :::; wrNr denote the sequences of acoustic observation
vectors and corresponding spoken words of utterancesr = 1:::R
of the training data. The acoustic emission probability fora word
sequenceW shall be denoted byp�(XrjW ), with � the set of
all parameters of the acoustic model. For the following, thelan-
guage model probabilitiesp(W ) for word sequencesW are sup-
posed to be given. For discriminative training we further define
the set of alternative word sequencesMr, which are considered
for discrimination in utterancer, a smoothing functionf and a
smoothing exponent�. Using these definitions, we define the
following unified discriminative training criterion,F(�;�; f; fMg) = RXr=1 f� log p�(Wr)p��(XrjWr)XW2Mr p�(W )p��(XrjW )�;
Depending on�, f andfMg, criteria included in this approach
are the Maximum Likelihood (ML), the Maximum Mutual Infor-
mation (MMI) and the Minimum Classification Error (MCE) cri-
terion. The according choices of(�; f; fMg) are summarized
in Table 2. Since we want the criterion to be maximized in any
case, we take thenegativesigmoid function for the MCE case.
Corrective training [5] is an approximation to the MMI criterion,
where only the best recognized word sequence is considered for
discrimination. Similarly, using the best scored butincorrectly
recognized word sequence only we call falsifying training (FT)
as a limiting case to MCE training for�!1. In all practical
cases the set of alternative word sequencesMr is obtained by a
recognition pass.

An optimization of the unified discriminative training crite-
rion leads to a simultaneous maximization of the emission prob-
abilities of the spoken word sequences and minimization of the
weighted sums over the emission probabilities of each allowed
alternative word sequence given the acoustic observation
sequence for each training utterance. In other words, discrimina-



tive training optimizes class separability according to the choices
of alternative word sequences and the language model.

Table 1: Settings of the set of alternative words for discrimina-
tion Mr and smoothing functionf and exponent� for several
criteria.criterion smoothing word sequences exponent

functionf(z) included inMr �
ML identity – obsolete

MMI all 1
CT identity best recogn. 1

MCE all withoutWr free
FT

� 11 + e2%z best recogn.6= Wr 1
2.1. Parameter Optimization

Before introducing reestimation equations derived from the uni-
fied criterion, we will define discriminative averages, which make
use of the following definitions. The mixture density for an
acoustic observation vectorx given an HMM states shall be de-
noted byp(xjs; �s). The according parameters�s of the mixture
density identify the weightscsl and parameters�sl of densitiesl
of the mixture. For the case of maximum approximation consid-
ered here we further introduce density probabilities beingequal
to 1 for the best density of a mixture and zero otherwise:�rt(ljs) = ��l; argmaxk cskp(xrtj�sk)�;
where�(i; j) denotes the Kronecker delta. Accordingly we de-
fine the time alignment probability of a word sequenceW and
of a single wordw with word boundary timests; te in Viterbi
approximation [3]:srt(W ) = argmaxst maxst�11 ;sTrt+1 p(sT1 ; xrTr1 jW );srt(w; ts; te) = argmaxst maxst�1ts ;stet+1 p(stets ; xrtets jw):
Further we define theForward-Backward(FB) probabilities of
the spoken word for word sequenceWr in Viterbi approxima-
tion, 
rt(s;Wr) = p�(st = sjXr;Wr)Viterbi= �(s; srt(Wr))
and the generalized FB probabilities in Viterbi approximation,
rt(s) = XW2Mr p�(Xr;W )XV 2Mr p�(Xr; V ) 
rt(s;W )Viterbi= Xts;te:ts�t�te qts;te(wjXr) �s;srt(w;ts;te); (1)

withqts;te(wjxT1 ) ==XWs;We2M p�(xts�11 jWs) p�(xtets jw) p�(xTte+1jWe) p�(Ws; w;We)XV 2M p�(xT1 jV ) p�(V ) ;
whereWs andWe define starting and ending word sequences
enclosing wordw. The generalized FB probability
rt(s) de-
notes the probability for states at timet, given the total of all
alternative word sequencesW defined by the setsMr. Repre-
senting these sets by word graphs and using the Viterbi approx-
imation, the sum over all alternative word hypotheses in Eq.(1)
could be partially separated from the according time alignments,
which leaves us with the sum over time alignments of each word

w of the word graph multiplied by the according word proba-
bilities qts;te(wjXr) defined above. The time alignments of the
words are obtained within the recognition pass. The word proba-
bilities could be calculated efficiently using a forward-backward
scheme on word graphs, as described in detail in [10].

Using the above definitions, the density specific discrimina-
tive averages are defined by the difference of the averages onthe
spoken word sequences (spk) and the sets of alternative word
sequences represented by the generalized FB probability (gen),�sl (g(x)) = �spksl (g(x))� �gensl (g(x)) (2)

with�spksl (g(x)) = � RXr=1 fr TrXt=1 
rt(s;Wr) � �rt(ljs) g(xrt);�gensl (g(x)) = � RXr=1 fr TrXt=1 
rt(s) � �rt(ljs) g(xrt):
Using discriminative averages, derivatives of the discriminative
criterionF with respect to density specific parameters�sl could
be written in the following compact form:@FD(�)@�sl = �sl�@ log cslp(xj�sl)@�sl � : (3)

For further convenience we additionally define the following state
specific and global discriminative averages:�s (g(x)) = Xl �sl (g(x))� (g(x)) = Xs �s (g(x)) :
Discriminative averages enable to write down reestimationfor-
mulae independent of the criterion in use. Accordingly, differ-
ences in criteria are introduecd solely by the discriminative av-
erages.

2.1.1. Discriminative Reestimation Formulae

In [6] and [7] we analytically and experimentally showed that pa-
rameter optimization of the MMI and the MCE criterion is very
similar using the extended Baum-Welch (EB) or gradient descent
like methods by introducing a special choice of step sizes for
gradient descent. Here we chose the EB optimization method.

Performing the EB algorithm for optimization of the means�sl, global pooled diagonal variances�2 and mixture weightscsl of Gaussian mixture densities, we obtain the following rees-
timation equations,�̂sl = �sl(x) +D csl�sl�sl(1) +D csl�̂2 = �(x2) +D Xs (�2 +Xl csl�2sl)�(1) +Xs �D�Xs Xl �sl(1) +D csl�(1) +Xs �D �̂2slĉsl = �spksl (1)�spks (1) � �gensl (1)�gens (1) + CsXl0 csl0 "�spksl0 (1)�spks (1) � �gensl0 (1)�gens (1)#+Cs csl:
For details on the determination of the smoothing parametersD
andCs we refer to [7].



3. DISCRIMINATIVE SPLITTING

As could be seen in Table 4, the improvements obtained by dis-
criminative training methods in comparison to conventional ML
training are especially high for single Gaussian density acous-
tic models, i.e. for low model complexity. On the other hand the
relative improvements obtained by discriminative training are re-
duced for more complex models. The comparatively good per-
formance for low model complexity suggests that discriminative
training criteria should be well suited to evaluate the ability of
an acoustic model to describe the data. Taking a closer look to
the discriminative counts�sl(1) we come to the following inter-
pretations.

For the case of the MMI criterion, the count�spksl (1) for
the spoken word sequences just gives the number, how often an
observation is aligned to densityl and states given the spoken
word sequence. Ideally, the count�gensl (1) for the alternative
word sequences would be the same, if the posterior probability
of the spoken word sequence is always considerably higher than
the posterior probabilities of all other word sequences, which
suggests suboptimal modeling. Accordingly, if�gensl (1) is lower
than�spksl (1), the spoken word sequence is underrepresented in
the set of alternative word sequences. If�gensl (1) is higher than�spksl (1), then densityl in states even becomes contributions
from more alternative word sequences than the spoken ones.
Both latter cases suggest sufficiently well modeling. As stated
in [4] for the case of the MMI criterion, this suggests that only
those densities be splitted, which have the highest values of the
discriminative count�sl(1).

Another heuristic derivation of model evaluation by discrim-
inative averages might be drawn from the derivatives of the uni-
fied discriminative criterion by the mixture weightscsl (Eq.( 3)),@FD(�)@csl = 1csl � �sl(1):
According to gradient descent based parameter optimization,
large positive derivatives would indicate large increasesin the
criterion by increasing the according mixture weight, consider-
ing the normalization constraint and provided the criterion is to
be maximized. This could also be interpretated as the need of
the according density to be better modelled. If, in additionthe
derivative is multiplied by the according mixture weight itself,
i.e. by its relative importance for a given state, we again arrive
at the interpretation, that the value of the discriminativecount
indicates the modeling ability of a density.

After choosing a density for splitting, in conventional split-
ting the mixture weight is equally distributed upon both newden-
sities and the mean is perturbed by small amounts in opposite
directions. In our discriminative splitting approach we instead
reestimate the density according ML and MMI to obtain the new
pair of densities. In other words, the mean and mixture weight
from ML reestimation are assigned to one density, and the mean
and mixture weight from MMI reestimation are assigned to the
other density, which we believe to be a better estimation than a
perturbation around the density to be splitted.

In each splitting step we split50% of the densities accord-
ing to their discriminative counts. Finally the resulting increased
parameter set is trained until convergence byMaxmimum Likeli-
hood(ML) training.

4. EXPERIMENTAL RESULTS

Experiments were performed on theSieTill corpus [2] for tele-
phone line recorded German continuous digit strings. TheSieTill
corpus consists of approximately 43k spoken digits in 13k sen-
tences for both training and test.

The recognition system for theSieTill corpus is based on
whole word HMMs using continuous emission distributions. It
is characterized as follows:� vocabulary of 11 German digits including ’zwo’� gender-dependent whole-word HMMs, with every two sub-

sequent states being identical� for each gender 214 distinct states plus one for silence,� Gaussian mixture emission distributions,� global pooled diagonal covariance matrix,� 12 cepstral features plus first derivatives and the second
derivative of the energy.

The baseline recognizer applies ML training using the Viterbi
approximation which serves as a starting point for the additional
discriminative training. A detailed description of the baseline
system could be found in [9].

As shown in Table 4 the best result for conventional splitting
with ML training was obtained using 64 densities per mixture,
leading to a word error rate of 1.81%.

Table 2: Word error rates on theSieTill test corpus obtained
for conventional (conv.) mixture density splitting with MLand
several discriminative training methods and for discriminative
(disc.) splitting with ML and subsequent MMI training. In
the column ’dns’ the average number of densities per mixture
is given.

split dns training error rates[%]
criterion criterion del - ins WER SER

– 1 ML 0.71-0.63 3.78 9.74
CT 0.76-0.47 2.85 7.27

MMI 0.81-0.41 2.81 7.13
FT 0.65-0.64 2.80 7.27

MCE 0.73-0.41 2.60 6.73

convent. 32 ML 0.46-0.47 1.97 5.31
64 0.46-0.38 1.81 4.93
128 0.45-0.39 1.85 4.94
32 CT 0.52-0.30 1.82 4.97

MMI 0.42-0.37 1.74 4.80
FT 0.41-0.37 1.67 4.50

64 MCE 0.42-0.34 1.69 4.64

discrim. 14 ML 0.42-0.31 1.77 4.77
33 0.41-0.23 1.61 4.42

MMI 0.40-0.24 1.61 4.46

The best result for conventional splitting with discrimina-
tive training was obtained using only 32 densities per mixture
givining a word error rate of 1.67%. The best overall result of
1.61% word error rate on this task we obtained using discrimina-
tive splitting and ML training leading to on average 33 densities
per mixture. For a solely discriminative splitting approach on the
TI-digitstring task it was reported in [4] that further ML training
gave an increase in error rate. Since our final models are ML
trained in the first place, we tried to improve them further bysub-
sequent MMI training, which lead to no additional improvement.
Fig. 1 clearly shows, that the results for discriminative split-
ting are significantly better than those obtained by conventional
splitting and both ML and MMI training, especially for equal
parameter numbers. Fig. 2 shows a plot of the log-likelihood
convergence for ML training with conventional and discrimina-
tive splitting. For equal number of parameters, the discrimina-
tive splitting approach clearly leads to lower likelihoodsthan the
conventional splitting. Finally, Fig. 3 shows the distribution of
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Figure 1: Evolution of word error rates on theSieTill test corpus
for the proposed combined MMI/ML splitting approach and for
conventional splitting with ML and MMI training.
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Figure 2: Comparison of the average log-likelihood from ML
training against number of Gaussian densities for both splitting
approaches considered here (female portion of theSieTill cor-
pus).

numbers of densities for each mixture of the whole word HMM
including silence. The values clearly vary very much, ranging
from a minimum of 1 density up to 270 densities for the silence
mixture. The latter could be motivated by the high overall si-
lence ratio of more than 55% in theSieTillcorpus.

5. CONCLUSION

In this paper, a combined Maximum Mutual Information (MMI)
and Maximum Likelihood (ML) splitting approach was intro-
duced. The MMI criterion was used to evaluate mixture densi-
ties for splitting and the ML criterion was used for trainingthe
model parameters. Initial word error rates on theSieTill corpus
for telephone line recorded German continuous digit strings for
conventional splitting were 1.81% for ML training and 1.67%
for discriminative training. This is to be compared with 1.61%
word error rate for discriminative splitting. It should be noted
that the result for discriminative splitting with ML training was
the same as after further discriminative training.

Currently experiments are performed in order to investigate
this splitting approach also for large vocabulary speech recogni-
tion.
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