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ABSTRACT

In this work a method for splitting continuous mixture deysi
hidden Markov models (HMM) is presented. The approach com-
bines a model evaluation measure based on the Maximum Mu-
tual Information (MMI) criterion with subsequent standfex-
imum Likelihood (ML) training of the HMM parameters. Exper-
iments were performed on tt&ieTill corpus for telephone line
recorded German continuous digit strings. The proposét spl
ting approach performed better than discriminative tragrwith
conventional splitting and as good as discriminative trejraf-

ter the new splitting approach.

1. INTRODUCTION

An important observation is that the improvements obtaimed
discriminative training methods in comparison with corti@mal
Maximum Likelihood (ML) training are especially high fordo
model complexity. Therefore discriminative training erit
might be a good candidate to give an estimation of the ability
of an acoustic model to describe the data.

The standard approach to acoustic modeling in speech recog-
nition uses Hidden Markov Models (HMM) in combination with
continuous mixture densities. When using mixture dersitée
crucial point is the choice of the model complexity, i.e. tee
termination of the number of densities to be assigned to each
mixture model. The usual splitting methods try to double the
number of densities iteratively as far as enough obsemnstoe
assigned to a density. On the one hand one would expect to
increase the number of densities for a given mixture with the
heterogeneity of the according distribution of the acaudéta.

On the other hand this number is clearly limited by the amount
of data available for a given task. In order to take this inte a
count, likelihood threshholds could be used to limit the bam

of densities to be splitted.

In [1] a discriminative measure for model complexity eval-
uation was introduced. For each mixture model this measure
was used to choose the optimal model from ML trained models
with differing number of densities. It could be shown thadihg
equal performance could be obtained with significantly lowe
numbers of parameters. Furthermore, in [4] a mixture split-
ting algorithm fully based on the Maximum Mutual Informatio
(MMI) criterion is introduced. There, a discriminative nsege
derived from the MMI criterion is used to choose those dessit
which are to be splitted up. This was then combined with MMI
training of the according models. For connected digit recog
tion, significant improvements in sentence error rate wére o
served with this approach when compared to both ML and sub-
sequently MMI trained models of even higher complexity. A
similar approach [8] was chosen for large vocabulary speech
recognition with similar success, although the approach na
pursued up to optimal model complexities.

Based on the observation, that the advantages of discAmina
tive training criteria diminish with increasing model qityl in

this paper we present a method, which combines the use of an
MMI based measure to evaluate densities for splitting with+ s
sequent ML training of the according upsplitted models. un o
approach, the derivatives of the MMI criterion with respedhe
density weights are sorted in order to obtain their mediath an
only those densities with derivatives higher than the atiogr
median will be splitted. Experiments on ti&eTill corpus for
telephone line recorded German continuous digit stringsvsh
that the combined MMI/ML splitting approach gives better re
sults than conventional splitting with discriminativeitiag and
equal results as a subsequent discriminative training #ite
new splitting approach.

2. DISCRIMINATIVE TRAINING

Before introducing the discriminative splitting criteniproposed
here, we will revisit the unified approach for discriminativain-
ing proposed in [7]. LetX, = z,1,2,2,..., 2,7, andW, =
we1, Wr2, ..., Wr N, denote the sequences of acoustic observation
vectors and corresponding spoken words of utteraneed...R

of the training data. The acoustic emission probabilityaferord
sequencdV? shall be denoted by (X.,.|[W), with X the set of
all parameters of the acoustic model. For the following,l&me
guage model probabilitigg 1) for word sequenced’ are sup-
posed to be given. For discriminative training we furthefirse
the set of alternative word sequenges., which are considered
for discrimination in utterance, a smoothing functiorf and a
smoothing exponent. Using these definitions, we define the
following unified discriminative training criterion,

pa(Wr)p(i(XAWT) )
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Depending ony, f and{M}, criteria included in this approach
are the Maximum Likelihood (ML), the Maximum Mutual Infor-
mation (MMI) and the Minimum Classification Error (MCE) cri-
terion. The according choices @&, f, {M}) are summarized
in Table 2. Since we want the criterion to be maximized in any
case, we take theegativesigmoid function for the MCE case.
Corrective training [5] is an approximation to the MMI criien,
where only the best recognized word sequence is considered f
discrimination. Similarly, using the best scored mdorrectly
recognized word sequence only we call falsifying trainif@ )

as a limiting case to MCE training fer — co. In all practical
cases the set of alternative word sequentésis obtained by a
recognition pass.

An optimization of the unified discriminative training @it
rion leads to a simultaneous maximization of the emissiobpr
abilities of the spoken word sequences and minimizatiomef t
weighted sums over the emission probabilities of each aitbw
alternative word sequence given the acoustic observation
sequence for each training utterance. In other words,idista-



tive training optimizes class separability according ®¢hoices
of alternative word sequences and the language model.

Table 1: Settings of the set of alternative words for disaran
tion M, and smoothing functiorf and exponent for several

Critéteaion smoothing word sequences | exponent
function f(z) included inM,. e
[ ML [ identity | - | obsolete ]
MMI . . all 1
CT identity best recogn. 00
MCE 1 all without W, free
FT 1+ ¢?%* [ bestrecognZ W, )

2.1. Parameter Optimization

Before introducing reestimation equations derived frogthi-
fied criterion, we will define discriminative averages, whinake
use of the following definitions. The mixture density for an
acoustic observation vectergiven an HMM states shall be de-
noted byp(z|s, As). The according parameteks of the mixture
density identify the weights,; and parameterk,; of densitied

of the mixture. For the case of maximum approximation consid
ered here we further introduce density probabilities beiggal

to 1 for the best density of a mixture and zero otherwise:

nre(l]s) = 5[l,argmax cskp(a:”p\sk)],
k

whered (i, j) denotes the Kronecker delta. Accordingly we de-
fine the time alignment probability of a word sequen®eand

of a single wordw with word boundary times,, t. in Viterbi
approximation [3]:

spe(W) = argmax max p(sT,zr " |W),

St si_ st+1

sre(w, ts,te) = argmax max p(st,x” |w).
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Further we define th€orward-Backward(FB) probabilities of
the spoken word for word sequentg, in Viterbi approxima-
tion,

Yre(s;We) = pa(se = s| Xy, W)
55, 500 (W)

and the generalized FB probabilities in Viterbi approxiioat
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whereW, and W, define starting and ending word sequences
enclosing wordw. The generalized FB probability.+(s) de-
notes the probability for stateat timet, given the total of all
alternative word sequencé® defined by the setd1,.. Repre-
senting these sets by word graphs and using the Viterbi &ppro
imation, the sum over all alternative word hypotheses in(Ey.
could be partially separated from the according time alignis,

w of the word graph multiplied by the according word proba-
bilities g:, . (w|X,) defined above. The time alignments of the
words are obtained within the recognition pass. The worbgro
bilities could be calculated efficiently using a forward:kaard
scheme on word graphs, as described in detail in [10].

Using the above definitions, the density specific discrimina
tive averages are defined by the difference of the averagt®eon
spoken word sequences (spk) and the sets of alternative word
sequences represented by the generalized FB probabéity,(g

Ty (g(z)) = T3P (g(z)) = T%" (9(x)) (2
with
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azfrZ'Yrt “nre(l]8) g(zre).

Using discriminative averages, derivatives of the distrative
criterionF with respect to density specific parametggscould
be written in the following compact form:

0Fp()) —r, (Blog cslp(x|)\sl)) . @)
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For further convenience we additionally define the follogvitate
specific and global discriminative averages:

Lo(g@) = 3 Tulg)
l
ST, (9(@))

Discriminative averages enable to write down reestimafiion
mulae independent of the criterion in use. Accordinglyfeaif
ences in criteria are introduecd solely by the discrimiragiv-
erages.

' (g(z))

2.1.1. Discriminative Reestimation Formulae

In[6] and [7] we analytically and experimentally showedttha-
rameter optimization of the MMI and the MCE criterion is very
similar using the extended Baum-Welch (EB) or gradient elesc
like methods by introducing a special choice of step sizes fo
gradient descent. Here we chose the EB optimization method.

Performing the EB algorithm for optimization of the means
s, global pooled diagonal variances and mixture weights
cs; Of Gaussian mixture densities, we obtain the following rees
timation equations,
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For details on the determination of the smoothing pararadder

which leaves us with the sum over time alignments of each word andC; we refer to [7].



3. DISCRIMINATIVE SPLITTING

As could be seen in Table 4, the improvements obtained by dis-
criminative training methods in comparison to conventidvia
training are especially high for single Gaussian densituae
tic models, i.e. for low model complexity. On the other hanel t
relative improvements obtained by discriminative tragnéme re-
duced for more complex models. The comparatively good per-
formance for low model complexity suggests that discrirtiiea
training criteria should be well suited to evaluate theigbif
an acoustic model to describe the data. Taking a closer ok t
the discriminative countE,; (1) we come to the following inter-
pretations.

For the case of the MMI criterion, the couRt?* (1) for

The recognition system for th8ieTill corpus is based on
whole word HMMs using continuous emission distributions. |
is characterized as follows:

e vocabulary of 11 German digits includingwad

e gender-dependent whole-word HMMs, with every two sub-
sequent states being identical

o for each gender 214 distinct states plus one for silence,
e Gaussian mixture emission distributions,
¢ global pooled diagonal covariance matrix,

e 12 cepstral features plus first derivatives and the second
derivative of the energy.

the spoken word sequences just gives the number, how often an The baseline recognizer applies ML training using the Viter

observation is aligned to densityand states given the spoken
word sequence. Ideally, the couRi{;" (1) for the alternative
word sequences would be the same, if the posterior probabili
of the spoken word sequence is always considerably higher th
the posterior probabilities of all other word sequencesiciwh
suggests suboptimal modeling. Accordingly{"fi" (1) is lower
thanij’“(l), the spoken word sequence is underrepresented in
the set of alternative word sequencesI'{f” (1) is higher than

['*P%(1), then densityl in states even becomes contributions

from more alternative word sequences than the spoken ones.

Both latter cases suggest sufficiently well modeling. Asesta
in [4] for the case of the MMI criterion, this suggests thalyon
those densities be splitted, which have the highest valtid®o
discriminative count';(1).

Another heuristic derivation of model evaluation by distri
inative averages might be drawn from the derivatives of thie u
fied discriminative criterion by the mixture weights (Eq.( 3)),

OFp(\) _ 1
e = o Ta).

Csl
According to gradient descent based parameter optimizatio
large positive derivatives would indicate large increasethe
criterion by increasing the according mixture weight, ¢des
ing the normalization constraint and provided the critei®to
be maximized. This could also be interpretated as the need of
the according density to be better modelled. If, in additios
derivative is multiplied by the according mixture weigtgstf,
i.e. by its relative importance for a given state, we agaiivar
at the interpretation, that the value of the discriminatieaint
indicates the modeling ability of a density.

After choosing a density for splitting, in conventionalispl
ting the mixture weight is equally distributed upon both rdam-
sities and the mean is perturbed by small amounts in opposite
directions. In our discriminative splitting approach wstead
reestimate the density according ML and MMI to obtain the new
pair of densities. In other words, the mean and mixture weigh
from ML reestimation are assigned to one density, and thexmea
and mixture weight from MMI reestimation are assigned to the
other density, which we believe to be a better estimation tha
perturbation around the density to be splitted.

In each splitting step we split0% of the densities accord-
ing to their discriminative counts. Finally the resultimgieased
parameter set is trained until convergenceMaxmimum Likeli-
hood (ML) training.

4. EXPERIMENTAL RESULTS

Experiments were performed on tB&eTill corpus [2] for tele-
phone line recorded German continuous digit strings. Sib&ill
corpus consists of approximately 43k spoken digits in 13k se
tences for both training and test.

approximation which serves as a starting point for the aatuit
discriminative training. A detailed description of the blase
system could be found in [9].

As shown in Table 4 the best result for conventional splittin
with ML training was obtained using 64 densities per mixfure
leading to a word error rate of 1.81%.

Table 2: Word error rates on thgieTill test corpus obtained
for conventional (conv.) mixture density splitting with Mind
several discriminative training methods and for discriative
(disc.) splitting with ML and subsequent MMI training. In
the column 'dns’ the average number of densities per mixture

is given.

split dns | training error rateg%
criterion criterion | del-ins | WER | SER
- 1 ML 0.71-0.63| 3.78 9.74
CT 0.76-0.47| 2.85 | 7.27
MMI 0.81-041] 2.81 7.13
FT 0.65-0.64| 2.80 | 7.27
MCE 0.73-0.41| 2.60 | 6.73
convent.| 32 ML 0.46-0.47| 1.97 5.31
64 0.46-0.38| 1.81 | 4.93
128 0.45-0.39| 1.85 | 4.94
32 CT 0.52-0.30| 1.82 | 4.97
MMI 0.42-0.37| 1.74 | 4.80
FT 0.41-0.37| 1.67 | 4.50
64 MCE 0.42-0.34| 1.69 | 4.64
discrim. | 14 ML 0.42-0.31| 1.77 | 4.77
33 0.41-0.23| 1.61 | 4.42
MMI 0.40-0.24| 1.61 | 4.46

The best result for conventional splitting with discrimina
tive training was obtained using only 32 densities per nmixtu
givining a word error rate of 1.67%. The best overall resélt o
1.61% word error rate on this task we obtained using diso@dmi
tive splitting and ML training leading to on average 33 déasi
per mixture. For a solely discriminative splitting apprban the
TI-digitstringtask it was reported in [4] that further ML training
gave an increase in error rate. Since our final models are ML
trained in the first place, we tried to improve them furthesbi-
sequent MMI training, which lead to no additional improverne
Fig. 1 clearly shows, that the results for discriminativéitsp
ting are significantly better than those obtained by corigaeat
splitting and both ML and MMI training, especially for equal
parameter numbers. Fig. 2 shows a plot of the log-likelihood
convergence for ML training with conventional and discrian
tive splitting. For equal number of parameters, the disitrém
tive splitting approach clearly leads to lower likelihodtan the
conventional splitting. Finally, Fig. 3 shows the disttilom of
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Figure 1: Evolution of word error rates on tBéeTilltest corpus
for the proposed combined MMI/ML splitting approach and for
conventional splitting with ML and MMI training.
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Figure 2: Comparison of the average log-likelihood from ML
training against number of Gaussian densities for botlitisgi
approaches considered here (female portion ofStedill cor-
pus).

numbers of densities for each mixture of the whole word HMM
including silence. The values clearly vary very much, raggi
from a minimum of 1 density up to 270 densities for the silence
mixture. The latter could be motivated by the high overall si
lence ratio of more than 55% in ti&eTill corpus.

5. CONCLUSION

In this paper, a combined Maximum Mutual Information (MMI)
and Maximum Likelihood (ML) splitting approach was intro-
duced. The MMI criterion was used to evaluate mixture densi-
ties for splitting and the ML criterion was used for trainitige
model parameters. Initial word error rates on 8ieTill corpus
for telephone line recorded German continuous digit striiog
conventional splitting were 1.81% for ML training and 1.67%
for discriminative training. This is to be compared with 1%
word error rate for discriminative splitting. It should beted
that the result for discriminative splitting with ML traimj was
the same as after further discriminative training.

Currently experiments are performed in order to investigat
this splitting approach also for large vocabulary speechgei-
tion.
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