64

© Lorena Rodgers

“F carch strategies based on dynamic programming (D) are currently being used successtully for
alarge number of speech recognition tasks, ranging from digit sering recognition through me-
L rdiumesize vocabulary recognition using heavily constrained grammars to large-vocabulary
continuous speech recognition (LVCSR) with virtually unconstrained speech input.
Several variants of DP scarch were already known in the carly days of automatic speech recogni-
tion [24], [37], [65],166], | 75],[76],]77]. Over the past three decades, these and related DP strate-
gies have turned out to be surprisingly successful in handling vocabularies of 20k or more words.
Nevertheless, until recently, among the experts, it was a highly controversial
issue whether high-perplexity LVCSR could be handled by DP.
The skepticism seems to have been concerned mainly with the following
issues, which we will address especially in this article:
& ‘Theextension froma 10-digit vocabulary to a 20k-word vocabulary would
blow up the search space dramatically. Could this hage search space be han-
dled by DP in an efficient way? [
A In particular, cach variant of DI scarch in speech recognition is more or
less “notorious” for its operations at the 10-ms frame level. How could this
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low-level acoustic scarch interact cfticiently with the
high-level knowledge sources in the recognirion system
stuchas the pronunciation lexicon and the language model
(1.M)? In addition, in order to narrow down the search,
an carly integration of' these knowledge sources might be
mandatory.

4 DP typically computes only the single best sentence.
But in many recognition systems, it is desivable for vari-
ous reasons to produce alternative sentences or a word
graph. Could the conventional DY strategy be extended
to generate a word graph rather than only the single best
sentence?

Where do we stand in speech recognition in compari-
sont with 20 years ago? At that time, widcly held opinions
were quite different, with respeet to both acous-
ric-ph()nctic modeling and to scarch. A number of experts
predicted that considerable progress could be made by
getting rid of “primitive techniques” like staristical pat-
tern recognition and beam search. However, the cxperi-
cnce gained over the last two decades has shown that the
judgement passed by Klatt on the principles of the
DRAGON and HARPY systems developed in 1976 is
now more truc than ever before [26, pp. 261 |:

‘...the application of simple structured models
to speech recognition. Iv might scem to someone
versed inthe intricacies of phonology and the
acoustic-phonetic characteristics of’ speech that a
scarch ofa graph of expected acoustic segments is a
naive and {oolish technique to use to decode a sen-
tence. Tn fact, such a graph and scarch strategy (and
probably a numbu' of other simple models) can be
constructed and made to work very well indeed if
the proper acoustic-phonctic details are embodicd
in the structure.”

By extending Klatt’s statement to include the language
m()dd, we obrain the topic of this article, Table 1sunma-
rizes the definitions of some frequently used terms in the
context of the scarch process i speech recognition. In
this article, we will attempt to give a unifying view of' the
dynamic programming approach to the scarch problem.
For adiscussion of othersearch strategies and related top-
ics, see a companion article appearing in this issuc | 16].

The orgamzationof thearticle is as follows. Tn “System
Architecture,” we will review the scarch problem from
the statistical point-of-view and show how the scarch
space results from the acoustic and language modcels re-
quired by the statistical approach. “One-LPass DP Search
Using a Lincar Lexicon™ presents a bascline algorithm
that will then be extended to handle a prefix tree organiza-
tion of the pronunciation fexicon in“One-Pass D P Scarch
Using a Tree Lexicon.” In “Refinements and Implemen-
tation Issues,” we will discuss the practical implementa-
tion ot the scarch strategy and related issues such as the
details of the pruning operations and the language model
look-ahead. [n “One-Pass DP Scarch for Word Graph
Construction,” we will extend the one-pass strategy trom
the single best sentence to a word graph in ordert o gener-

‘I'able I Definitions and. Explanatlons of
. -Frequently Used Terms.

f— _

Decoder: [n an analogy with the terminology of fi-
nite-state methods for decoding ] 20} in information the-
ory, the search afgorithm in speech recognition is often
referred to as a decoding algorithm.

Integrated scarch: We call a scarch strategy incegrated iff
all available knowledge sources, e.g., acoustic-phonetic
models, the constraints of the pronunciation lexicon, and
the language maodel, are exploited in the scarch process at
the same time; typically this concept is implemented in a
OnC-Pass STrarcgy.

Time-synchronous: A scarch strategy is called
time-synchronous if the search hypotheses are formed in a
time-synchronous fashion over the sequence of acotistic
veetors. Typically, the time-synchronous concept goes
hand-in-hand with the one-pass scarch strategy. A* scarch
or stack decoding is an example of a scarch strategy that is
rot necessarily time-synchronous.

laps between word hypotheses are not allowed.

One-pass vs. multi-pass: We call a scarch a one-pass strat-
cgy if there is one single pass over the input sentence, as
opposed to a multi-pass or multi-level concepr. The
one-pass search strategy is virtuably always based on dy-
namic programming,

” 1
Word-conditioned vs. time-conditioned: These terms
refer to the way in which the search space, especially in the
context of dynamic programming, is structured. Ina
word-condirioned search, cach scarch hypothesis is condi-
tioned on the predecessor word. This implies that the opti-
mization over the unknown end time of the predecessor
word, 1.¢., the word boundary between the predecessor
word and the word under consideration, is alceady carvied
out in an carly phase of the scarch. Therefore, this method
ts different from a time-conditioned search, where, for
cach search hypothesis, the dependence on the end time of
the predecessor word is explicitly retained and the optimi-
7ation over the unknown word boundaries is performed as
a final step of the search.

Single best vs. word graph: The attribute “single best” is
used to denote a search concept that determines the single
most likely word sequence. The alternatives are, among,
others, n-best conceepts and word graph methods. The idea
of a word graph here is to organize the high-ranking sen-
teuce hypotheses in the form of a graph whose edges rep-
resent the hypothesized single words. Sometimes, the term
“word lattice™ is used synonymously. However, in this arti-
cle, by the ferm “word graph,” we imply that gaps or over-

Linear vs. tree lexicon: For a small-vocabulary task, it is
sufficient to have a separate representation of'each vocab-
ulary word in terms of phonemes or HMM states (HMM
= hidden Markov model). In nearly all cases, this is just a
lincar sequence of phonenies or HMM states. Therefore,
this approach is referred to as linear lexicon. For a large
vocabulary, however, it is typically very useful to organize
the pronunciation lexicon as a tree, whosce arcs are the
phonemcs.
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ate sentence alternatives, Fimally, we will present experi-
mental results for the search algorithms on a 64k-word
speech recognition task.

System Architecture

Why Is CSR Hard?

The ultimate long-term goal of automatic speech recog-
nition is to build a system or machine that can “hear™ in
the sense that, for a spoken utterance, it converts the
acoustic signal into the sequence of written words, The
major problems for unrestricted, continuous speech ree-
ognition can be summarized as follows:

& In the acoustic signal, there 1s no clear indication or no
indication at all of the boundaries between words or pho-
nemes. Thus, not only the spolen words, but also the pho-
neme boundaries and the word boundarics arc unknown.
2 Thereis a large variation in the speaking rates in contin-
uous speech.

& The words and especially the word endings are pro-
nonnced less carctully in fluent speech thanin an isolated
speaking mode.

A There is a great deal of inter- as well as intra-speaker
variability, caused by a number of factors such as sex,
physiotogical, and psychological conditions.

& The quality of the speech signal may be affecred by en-
vironmental noisc or the transter finetion of the trans-
mission system, c.g., microphone and telephone.

4 For unrestricted natural-language speech input, the
task-inherent syntactic-semantic constraints of the lan-
guage should be exploited by the recognition system, ina
way similar to human-to-human communication.

Bayes Decision Rule

Every approach to automatic speech recognition is faced
with the problem of making decisions in the presence of
ambiguity and context and of modeling the interdepen-

Speech Input

Acoustic
Analysis

Xy Xy

Global Search: Phoneme Inventory

Maximize

Prix,..xw,..w,)

Pronunciation l
Lexicon

Priw,...w, |
P i Language Model

Priw,...wy) * Pr(X,...xw,..w,)

over w,.w,

Recognized
Word Sequence

]

A 1. Bayes decision rule for speech recognition.
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dence of these decisions at various fevels. TFit were possible
to recognize phonemes or words with a very high reliabil-
ity, it would not be necessary to rely heavily on delayed de-
cision techniques, crror correcting techniques, and
statistical methods, Considering the experience gained
over the last 30 years, we do not expect that this problem of
rcliable and virtually error-free phoneme or word recogni-
tion without using high-level knowledge will be possible,
especially for LYCSR. As a consequence, the recognition
system has to deal with a large number of hypotheses about
phonemes, words and sentences, and ideally has to take
into account the “high-level constraints™ as given by syn-
tax, semantics and pragmatics. Given this state of aftairs,
staristical decision theory tells us how to minimize the
probability of recognition errors [7):

Maximize the posterior probability 2y (| .ap o | %) x40 ),

i.c. determine the sequence of words w, .o, ..owy ot un-
known length N, which has most probably caused the ob-
served sequence of acoustic vectors x, ..., ... &, over time
t=L1."7, which are derived from the speech signal in the
preprocessing step of acoustic analysis.
4 By applying Bayes theorem on conditional probabili-
tics, the problem can be written in the following form:
Determine the sequence of words w, .w .y, which
maximizes

Priwap,owy ) Prixg g, x| waweow ).

This so-called Bayes decision ruleisillustrated in Fig, 1. 1t
requires two types of probability distributions, which we
refer to as stochastic knowledge sources, along with a
scarch strategy:

& "Ihe language model, ie., Pr ()., ), is independent of
the acoustic observations and 1s meant to incorporate
{probabilistic) restrictions on how to concatenate words of
the vocabulary to form whole sentences. These restrictions
result from the syntactic, semantic, and pragmatic con-
straints of the recognition task, and may be modeled by
probalistic or nonprobalistic (yes/no) methods. In large-vo-
cabulary recognition tasks, the language model probabilitics
are typically approximated by bigram or trigram models:

P?"(?V” | H}l wu—l ): /’(mn ‘ W:r -1 )

l’r(lilﬂlln)] ”'”711‘ 1 j] = /)<”)”| ”JH*J_ 3 ”)"' I )'

4 The acoustic-phonetic model, Le., P7(%) 2y [ W) vy ),
is the conditional probability of observing the acoustic
veetors & .4, when the speaker utters the words
w, .y, Like the language model probabilitics, these
probabilitics are estimated during the training phase of
the recognition system. For a large-vocabulary system,
typically, there is a set of basic recognition units that are
smaller than whole words. Examples of these so-called
subword units are phonemes, demisyllables, or syllables.
‘The word models are then obtained by cotwcatenating; the
subword models according to the phonctic transeription
of the words in a pronunciation lexicon or dictionary. In
most systems, these subword units are modeled by hid-
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den Markov models (HMMs). HIMMs are stochastic {i-
nite-state automata (or stochastic regular grammars) that
consist of a Markov chain of acoustic states, modeling the
temporal structure ot speech, and a probabilistic function
for cach of the states, modeling the emission and observa-
tion of acoustic vectors | 7], [9], , 1351, 1621. In the
experiments reported in this article, the phoneme models
have a structure that is depicted in Fig. 2 along with the
l‘csulting scarch %p;\cc I'he ph()ncmc X consists of three
parts (X, X, , X, ), resulting in a lincar arrangement of
six states. Words are obtained by concatenating the
HMM phoneme units according to the bascline phonetic
transcriptionas it can be found ina pronunciation dictio-
nary. Usually, tor a given state 57 ina word mode! w, we
have a transition probability p(s|s”, w) for g g()ing to state «,
and an emission probability (density) p(x, |s”,w) for ob-
serving vector x, . For the following, it is SUHLL,ILHYT() con-
sider only the product of the emission and transition
probabilities:

| 53 )V)

which is the conditional probability that, given the statre s
in word w, the acoustic vector &, is observed and the state
s s reached.

Pl slsTw) = plol 5wy plac

Specification of the Search Problem

The decision on the spoken words must be made by an
optimization procedure that combines information from
several knowledge sources: the language model, the
acoustic-phonctic models of single phonemes, and the
pronunciation lexicon. "the optimization procedure is
ustially referred to as searchina state space defined by the
knowledge sources.

For a hypothesized word sequence w5 =w, .y, we
imagine a super FIMM that is obtained by concatenating,
the corresponding phoneme TIMMs using a pronuncia-
tion lexicon (see Lig. 2). Notethat by this process, we end
up with a large number of copies for cach phoneme and
thar these copies must be kcpt separate during the scarch
process to satisty the constraines of the pronunciation lex-
icon. At phoneme and word boundaries, we must allow
for transitions that link the terminal states ot any prede-
cessor HMM to the initial states of any successor [TIMM.,
Insucha way, we can u)mpum the joint pl()b.\blllrv() fob-
serving the sequence x| = =y of acoustic input vee-
tors and the state scqutnu §; =5, s, through this super
HMM;

Pris! sl w)

-
- - 1 ‘\’
):H /)(x/ sy I‘\r--l Py )’
i=l
b .
ol N (ZGA T
1l

)' /)(\“1 I"\-r ) ]w

where p(x, 5,15, , wf\" ydenotes the product of the tran-
sition and emission probabilitics for the super LIMM w [
The decomposition has been formulated in such a way
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instead of summing over all
paths, we consider only the most
probable path.

that we can distinguish between two components of the
approach:

4 The reference models with the emission probability
distributions p(x, |5) for the acoustic state s, c.g., after ty-
ing the emission distributions using decision trees [807] or
some other method. Note that, for the emission probabil-
ity p(x,]5), we strereh the notation a lictke bitand do not
necessarily distinguish between the state s 1y a phoneme
or word model and its associated generic emission proba-
bility distribution.

& The transition probabilitics /1( 08, ) )Y ) depending
onaword sequence hypothesis w5 this unpllcs ahuge fi-
nite network of states (super HMM) that must be consid-
cred for cach word sequence hypothesis w,'

Denoting the language model (IL.M) probability by
Pr(w)"), the Bayes decision rule results in the following
optimization problem:

AN P '\ P
)T =argmax Prw ) > Pr( (% 8
w il

|
Yl

i

:-.ugmax{ Pr(w) )‘n};{lx Prix, s/ w}) }

IHere, we have made use of the so-called maximum ap-
proximation, which is also referred to as Viterbi approxi-
_ Instead of summing over all paths, we
consider only the most probable path. Note that for the
maximum approximation to work, we need only the as-
sumption that the resulting optimal word sequences are
the same, not necessarily that the maximum provides a
good approximarion ro the sum.

In this maximum approximation, the scarch space can
be deseribed. as a huge network through which the best

D
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& 2. Structure of o phoneme model and search space.
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A 3. lllustration of the search problem for a three-word vocabu-
lary (A,B,C)

time alignment path has to be found. 'T'he scarch has to be
performed at two levels: at the state level (s; ) and at the
word level (w¥). As we will see, as a resule of the maxi-
mum approximation, it witl be possible to recombine hy-
potheses cfficiently at both levels by DP. Thus, the
combinatorial explosion of the number of scarch hypoth-
eses can be limited, which is once of the most important
characteristics of DP. At the same time, the scarch hy-
potheses are construcrted and evaluated in a strictly
lett-to-right rime-synchronous fashion. This characteris-
tic property allows an cthicient pruning strategy to climi-
nate unlikely search hypotheses, which is usually referred
to as beam search.

One-Pass DP Search Using a Linear Lexicon

Definition of the Search Space

In rhis section, for a lincar lexicon, we describe the
one-pass algorithm thar forms the bascline for all scarch
strategies described in this article. Originally the
onc-pass algorithm had been designed for
small-vocabulary recognition tasks like digit string ree-
ognition [13], [41], [42], [77]. Over the last 30 ycears,
however, these algorithms and their extensions have
turned out to be surprisingly successful in handling vo-
cabularies of 20,000 or more words.

5 i
S60) ! w=5
1 i
St4) ! 5
! H
' : w=4
i :
1 ' i
g sl T
c% E ! E w=3
1 : ! .
5(2) | !
H ! w=2
1 : )
8(1) '
| w=1
1 h
1 Time t T

A 4. Example of a time dlignment path.
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The term “lincar lexicon™ denotes the fact that the
words are kept strictly separate in the scarch process. Un-
like a tree lexicon, there is no sharing between the words
as far as the scarch hypotheses are concerned. For a
three-word vocabulary, the search space is illustrated in
Fig. 3. There are two types of transitions, namcly the
acoustic transitions representing the probabilities of the
acoustic word models (4, B,C in Fig. 3), and the lan-
guage ransitions representing the language model prob-
abilities. In Fig. 3, a bigram language model is assumed.
Foreach possible word bigram (», ), there is a 1M transi-
tion that is assigned the conditional bigram .M probabil-
ity p(wp), and that links the end of predecessor v to the
beginning of' word w. For recognition, as shown in Lig. 3,
we unfold the finite-state machine along the tme axis of
the spoken utterance. For the sake of simplicity, Fig. 3
docs not cover the details of the acoustic models and
shows the language model transitions at times #, and 7,
only. RBoth the acoustic transitions (as shown in Fig. 2)
and the language transitions must be considered every
10-ms time frame. As a result, there is a huge number of’
possible state sequences, and all combinations of state and
time must be considered systematically for recognition.

In the maximum approximation, the search problem
can be specified as follows. We wish to assign cach acous-
tic vector observed at time # to a (state,word) index pair.
This mapping can be viewed as a time alignment path,
which is a sequence of (state,word) index pairs (stretch-
ing notation):

(5151 Yoo (5,512, Dyeens (S s 0 ).

An example of such a time alignment path in con-
nected word recognition is depicred in Fig. 4. Tor such
paths, there are obvious continuity constraints or transi-
tion rules as shown in Fig, 5. Since the word models are
obtained by concatenating phoneme models, the transi-
tion rules in the word interior (Fig. 5, top) are those of
the used HIMMs as shown in Lig. 2. At word boundaries
(Fig. 5, bottom), we have to allow for transitions that link
the terminal state §, ofany predecessor word p to the be-
ginning states s = L and s =2 of’any word w. T'he dynamic
programming scarch to be presented will allow us to
compute the probabilities (stretching notation)

Pr(w .., ) Prix, x589 ..0)

in a left-ro-right fashion over time 7 and to carry out the
optimization over the unknown word scquence at the
same time. Note that the unknown word sequence and
the unknown state sequence arce determined simulta-
neously, Within the frameworle of the maximum ap-
proximation or Viterbi criterion, the dynamic
programming algorithm presents a closed-form solu-
tion for handling the interdependence of nonlinear time
alignment, word boundary detection, and word identiti-
cation in continuous speech recognition [13], |34],

[37], [40], [42], |65], [77].
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A 5. Path recombinations.

DP Recursion
The key concept of the dynamic programming strategry is
based on the following two quantities:

O, s;w) r=scorc of the best path up to time ¢ that ends

in state s of word w.
and

B(z,s;w) = start time of the best path up to time ¢

that ends in state s of word .

[ooking at the imain memory sizes available today, we
should add that the back pointer B(2,s;w) is not abso-
lutely needed for small-vocabulary tasks like digit string,
recognition. For vocabularics of 20,000 or more words,
however, itis essential to reduce the storage requirements
as imuch as possible.

As shown in Fig. 4, there are two types of transition
rules for the path, namely rules in the waord interior and at
word boundarics, 'I'he coneept of dynamic programming
is to use these rules to decompase the path into two parts
and formulate recurrence relations that can be solved by
filling in tables, which, in this case, s the table Q(#,55w),
In a morce general setting of optimization problems, this
concept is often referved to as Bellman’s principle of
optemality | 10]. In the word interior, we have the recuy-
rence equation:
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Qt,syw)=max{ p(x, s|s"w) Q(f = 1,s"5w))

B(e,sym) = Bt — 1,5, (£,55w)5w),
where s, (£,5;w) is the optimum predecessor state for
the hypothesis (£,5;w). The back pointers Bz, s;w) are
propagated simply according to the DI decision as
shown in Fig. 6 and report the start time for cach word
end hypothesis. When encountering a potential word
boundary, we must perform the recombination over the
predecessor words and, therctore define:

H(wit):=max! p(w|p)- QF,S, ;1) ),

where p(w|p) is the conditional 1M probability of word
bigram(r,w). The symbal S, denotes the terminal state of
word ». Toallow for successor words to be started, we in-
troduce a special stare s =0 and pass on both the score and
the time index:

Qi =1,5=0yw)=H(w;t —1)
Bt -1,s=0w)=t—-1.

This cquation assumes that first the normal stares
s=1,...,8, arc cevaluated tor cach word w before the
start-up states s =0 are evaluated. The same dme index ¢
is used intendionally, because the language model does
not “absorb™ an acoustic vector. Note that the scores
Q(t,s;w) capture both the acoustic observation depend-
ent probabilities resulting, from the HMM and the lan-
puage model probabilities.

"The operations to be performed are summarized in"la-
ble 2. "Fhe sequence of acoustic veetors extracted from the
input speech signal is processed strictly from left to righe,
According to the DP equations, two levels are distin-
guished in Table 2: the acoustic level at which the word in-
ternal recombinations are performed and the word pair
level ar which the bigram LM recombinations are per-
formed. The scarch procedure works with a

S(w)|=
s|-

States s of Word w

S(w)|- o4 O

Time

A 6. lllustration of back pointers.
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0 Time t T

A 7. lllustration of traceback arrays.

time-synchronous breadth-tirst strategy, 1.c., all hypothe-
ses for word sequences are extended in parallel for cach in-
coming acoustic vector. To reduce the storage
requirements, it is suitable to introduce a traceback array in
addition to the back pointers. For cach time frame, the
traceback array is used to record the decisionabout the best
word end hypothesis and its start time. Using the traceback
array, the recognized word sequence can be recovered effi-
ciently by a few table look-ups into the tracebaclk arrays at
the end of the utterance as shown in Vg, 7.

Beam Search

Since, for a tixed time frame, all (word,state)-hypothescs
cover the same portion of the input, their scores can be di-
rectly compared. This enables the system to avoid an ex-
haustive scarch, and to perform a data-driven scarch
instead, 1.¢., to focus the scardh on those hypotheses that
are most likely to result in the best state sequence [37].
Livery 10-ms frame, the score of the best hypothesis is de-
termined, then all hypotheses whose scores fall short of
this optimal score by more than a fixed factor are pruned,
Le., are removed from further consideration. "I'he experi-
mental tests indicate that for this type of beam scarch, de-
pending on the acoustic input and the language model
constraints, only a small fraction of the overall mumber of
possible (word,state)-hypotheses have to be processed
for every 10 ms of the input speech, while at the same

Table 2. One-Pass DP Algorithm
Using a Linear Lexican.

Proceed over time £ from left to right

Acoustic Level: Process (word,state)-hypotheses

- Initialization: Q(¢ -1, s =0;w)=H(w;t-1)
Bt-1,s=0w)=t-1

- "lime alignment: Q (¢, 5;w) using DY
- Propagate back pointers B(z,s;w)

- Prunc unlikely hypotheses
- Purge bookkeeping lists

Word DPair Level: Process word end hypotheses

For cach word w do

FH(H)‘,Z") =argmax{p(w|v) O#,S,;w)}
vy (w38 =arg max { p(wr) O(z, 8,5 )}

- Store best predecessor vyi= v, (w;¢)
- Store best boundary t,:= B(2,S,, 3 v,)
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time, the number of recognition errors is virtually not in-
creased, This beam scarch strategy will be considered in
full detail later in the context of a tree organization of the
pronunciation lexicon. In addition, to fully exploit the
computational advantages of this beam scarch strategy, a
dynamic construction of the active scarch space is suitable
as we will also discuss later. This one-pass dynamic pro-
grammiag algorithm in combination with beam scarch
forms the foundation of the scarch component in many
successful systems for both small-vocabulary and
large-vocabulary speech recognition [11,[ 5], | 141, [17],
21,1231, 1301, [33], [34},1 391, [461, |55, [72], | 79).

One-Pass DP Search Using a Tree Lexicon

Definition of the Search Space
When applying the algorithm presented to
large-vocabulary recognition, say a 20,000-word task, it
scems natural and very desirable, for efficiency reasons, to
organize the pronunciation lexicon in the form of a pretfix
tree, in which each arc represents a phoneme model, be it
context dependent or independent |22], |46], [55]. A
part of such alextcal pronunciation tree is shown in ig. 8.
T'his idea of using a tree representation was already sug-
gested inthe 70s in the CASPERS system |28 | and in the
lexical access from spectra (LALS) system [27]. How-
ever, when using such a lexical tree in the framework of a
language model, ¢.g., a bigram model, and dynamic pro-
gramming, therc arc DP-specific technical details that
must be taken into account and require a suitable struc-
turing of the scarch space [22], [46]. Next we will preseot
the scarch algorithm for such a context tn full detail,
When using a bigram LM in connection with such a tree
representation of” the pronunciation lexicon, we face the
problem that the identity of the hypothesized word w is
known only when a leaf of the tree has been reached. There-
fore, the language model probabilities can only be tully in-
corporated after reaching the terminal srate of the second
word of the bigram. As a result, we can apply the language
maxel probability only at the end of'a tree. To make the ap-
plication of the dynamic programming princples possible,
we structure the scarch space as follows. For cach predeces-
sorword », we introduce a separate copy of the lesical treeso
that during the search process we will always know the pre-
decessor word » whena word end hypothesis w is hypothe-
sized. Tig, 9 illustrates this concept for a three-word
vocabulary (A, B,C), where the lexical tree is depicted in a
simplified schematic form. T'o avoid any potential miscon-
ceptions, we would like o siress that Tig. 9 shows the con-
ceptaend scarch space, which is too big to be constructed as a
whole. Instead, as we will show later, we will construct the
active portions of this scarch space dynamically in combina-
tion with beam scarch. In the set-up of Fig. 9, we apply the
bigram [.M probability /)(w‘v) when the final state of word
w with predecessor v has been reached, and use the resulting,
overall score to start up the corresponding lexical tree, e,
the tree that has word w as predecessor.

SEPTEMBER 1999



In the recognition process, in addition to the spoken
words, we must account tor possible pauses berween the
spoken words. To handle these so-called intraphrase
pauscs, we havea special HMM silence model and add a
separate copy of this model (8if) to cach tree. Further-
more, for the possible pause at the sentence beginning,
we have a separate copy of the lexical tree for the first
word in the sentence; this tree copy is given silence as its
predecessor word. As a result of this approach, the silence
model copies do not require a special treatment, but can
be processed like regular words of the vocabulary, How-
ever, there is one exceeption: atword boundaries, there is
no language model probability for the silence models. As
shown in Fig. 9, there are two types of path exeensions
and recombinations, namely it the interior of the words
or lexical trees and at word boundaries. In the word inte-
rior, we have the bold lines representing the transitions in
the HMMs. At word boundaries, we have the thin and the
dashed lines, which represear the bigram LM
recombinations. [ike the acoustic recombinations, they,
too, are performed every 10-ms time frame. ‘The dashed
lines are related to recombinations for intraphrase silence
copics. To start up a new word hypothesis, we must in-
corporate the bigram probability into the score and deter-
mine the best predecessor word. This best score 1s then
propagated into the root of the associated lexical tree,
which is represented by the symbol £ The symbol O de-
notes a word end.

DP Recursion

For a quantitative specification of the search procedure,
we assume that cach arc of the lexical tree is represented
by a HMM. We will use the state index s directly and as-
sume that the lexical structure is captured by the transi-
tion probabilities of the HMM. To formulate the
dynamic programming approach, we introduce the tol-
lowing two quantitics [45]:

Q,(t,5):= scorcof the bese partial path that ends at time ¢
i state s of the lexical tree for predecessor v,

B, (t,s):= starttime of the best partial path thatends at
time # in state s of the lexical tree for
predecessor ».

In other words, B, (#,) is the back pointer that points
back to the start time of the lexical tree copy for predeces-
sor word ». This back pointer is needed because the defi-
nition of the score Q, (¢,5) implics that the optimization
over the unknown start time of the lexical tree copy for
predecessor word v has been carried out. Both quantities
are evaluated using the dynamic programming recursion

for Q, (t,s):
Q. (t)=max{p(x, ,s|s")- Q,(r - Ls")}
B,(2,5) = B,(r — 15 ™ (£,5))
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Symbols: :word end hypothesis A, B, C;
1rroot of a tree copy for history A, B, C;
bold fine: acoustic model recombination within a tree copy;
thin line: bigram language model recombination;
dashed line: wore bouneiary recombination for silence hypothesis.

A 9, Bigram LM recombination and intraphrase silence (Sif) hand/-
ling for a tree lexicon (three-word vocabulary: AB,C) .
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where s ™ (#,5)is the optimum predecessor state for the hy-
pothesis (¢, 5) and predecessor word ». As before, the back
pointers B, {¢,s) are propagated according to the dynamic
programming decision. Unlike the predecessor word », the
indexw for the word under consideration is only neededand
known when a path hivpothesis reaches an end node of the
lexical tree: each end node of the lexical tree is labeled with
the corresponding word of the vocabulary.

Using a suitable initialization for s =0, this cquation
includes the optimization over the unknown word
boundarics. At word boundarics, we have to find the best
predecessor word p for cach word w. As in the case of a
lincar lexicon, we define:

FI(wse):=max{ p(w]v)- Q, (2,5, 1

where thestate S, denotes the terminal state of word win
the lexical tree. 'T'o propagate the path hypothesis inco the
lexical tree hypotheses or to start them up in case they do
not cxist yet, we pass on the score and the time index be-
Jore processing the hypotheses for time frame ¢

Q-1Ls=0)=H(r;r-1)
B(t—1s=0)=¢-1

The details ot the algorithm are summarized in Table 3.

Extension to Trigram Language Models

So far, we have considered the one-pass scarch approach
only in the context of a bigram language model. To ex-
tend the tree search method from a bigram to a trigram
LM, we take into account that for a trigram, the language
model probabilitics are conditioned on the previous two
words rather than on one predecessor word in the case of

Table 3. One-Pass DP Algorithm
Using a Tree Lexicon.

Proceed over time ¢ from left to right

Acoustic Level: Process (tree,state)-hypotheses

- Initialization:  Q (#~1,s =0)= H (vt —1)

B (t—1,5=0)=t-1

- Time alignmene: Q, (2, s) using DP
- Propagate back pointers B, (¢,5)

- Prune unlikely hypotheses
- Purge bookkeeping lists

Word Pair Level: Process word end hypotheses

For cach word do

H ) =argmax {p(w]r) Q,(2.8,)}
,

vy (w;t) =argmax { p(w]v) Q,.(¢,5,)}

~<»

- Store best predecessor  pi= v (w;e)
- Store best boundary — t:=8, (2,9,)
E ’t
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a bigram LM |45, |50], |57]. Therefore, the incorpora-
tion ofa trigram [L.M into the tree search method requires
a restructuring of the scarch space organization. Lig, 10
illustrates the scarch space using a trigram model. For
cach two-word history (u,7), we introduce a separate
copy of the lexical tree; in Fig. 10, the root of cach tree
copy is labeled with its two-word history. As in the case of
a bigram .M, the structure of the scarch space is defined
i such a way that, in the scarch network, the probabilitics
orcosts of cach edge depend ordy on the edge irself (along
withitsstartand end vertex) and nothing clse. 'This prop-
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Symbols: :,: word end hypothesis A, B, C;

:root of atreecopy forhistory AA, BA, CA, AB, ...;
boldline: acoustic model recombination within a tree copy;
thin line: trigram language model recombination;

& 10. Trigram LM recombination for a tree lexicon (three-word
vocabulary: A,B,C)}.
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erty of the scarch network allows us to directly apply the
principle of dynamic programming. Note thatin compar-
ison with a bigram .M organized scarch space, the size of
the potentind scarch space is increased drastically by an ad-
ditional factor, which is the vocabulary size. Henee, in or-
der to keep the scarch cffort manageable, an efficient
pruning strategy as described before is even more crucial
for the case of a trigram language model.

For simplicity, we have omitted the silence copies in
Fig. 10. T'o allow for intraphrase silence, we use the same
concept as for the bigram language model [ 221, |46]. For
the trigram language model recombination, we need the
identity of the two non-silence predecessor words, and
therefore, a separate copy of the silence model is required
tor cach pair of non-silence predecessor words.

Refinements and Implementation Issues

"l'o obtain an estimate of the overall number of state hy-
pothescs, we consider a typical rask such as the 20k-word
NAB task |29]:
& 20,000-word vocabulary witlia 65,000-arc tree for the
pronunciation lexicon
& Bigram language model
A Six stares per HMM arc

Tor this task, we obtain the following size of the poten-
tial scarch space:

200 trees - 65k arcs/tree - 6 IHMM statesfarc=7.8-10° TIMM
states.

‘Therefore, i full DP search, there are this many MM
states for which the DI recursions have to be evahiated
cvery 10-ms time frame of the input signal. In contrast
with this astronomic number, the experiments will show
that, without loss in recognition accuracy, it is sutficient
to evaluate only 10,000 and fewer state hypotheses on av-
crage per 10-ms time frame.

Pruning Refinements

Lvidently, full scarch is prohibitive. Asa result, we use the
time synchronous beam scarch strategy, where, for every
time frame, only the most promising hypotheses are re-
tained. The pruning approach consists of three steps that
are performed cevery L0-ms time frame |73

a Aconstic prawming is used to retain only hypotheses with
a score close to the best stare hypothesis for further con-
sideration, Denoting the best scoring statehypothesis by

-Q/I(j (t\):: n]{‘lx{ Ql) (t 3"“)}3
(s8]
we prune a state hypothesis (¢, 5;v) i

Qu(4,5)< e Cac ()

"T'he so-called beam width, i.c., the number of surviv-
ing state hypotheses, is controlled by the so-called acous-
tic pruning threshold f,..
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The basic idea of the language
model look-ahead is to incorporate
the language model probabilities
as early as possible into the search
process.

& Language model pruning (o word end pruntag) s only
applied to tree start-up hypotheses as follows. For word
end hypotheses, the bigram LM probability is incorpo-
rated into the accumulated score, and the best score tor
cach predecessor word is used to start up the correspond-
ing tree hypothesis ot is propagaced into this tree hyporh-
esis if it already exists. The scores of these tree stare-up
hypotheses are subjected to an additional pruning step:

oy

Q,u@=max{Q, (r,s=0)},

where s =0 1s the fictitious state ol the tree root used for
initialization. Thus, a tree start-up hypothesis (£,5 =0;v) is
removed if:

Qs =01< [0 Q0 0)

where f,, 3s the so-called langnage model pruning
threshold.

A Histogram prusangy limits the number of surviving state hy-
potheses to a maximumn number (M, ). 1 the number of
active states is larger than M o only the best M, hypothe-
ses are retained while the other hypotheses are removed. T'his
pruning method is called histogram pruning hecause we use a
histogram of the scores of the active states | 73]

Language Model Look-Ahead

The basic idea ofthe language model look-ahead is to in-
corporate the language model probabilitics as carly as
possible into the scarch process and thus into the associ-
ated pruning process, 'This is achieved by anticipating the
LM probabilitics as a function of the nodes of the lexical
tree so that cach node corresponds to the maximum LM
probability over all words that can be reached via this spe-
cific node. Using; the bigram LM conditional probability
pv|w), the anticipated 1M probability ~, (s) for state s

()= max p(w|v),

weW(s)

where W (s) is the set of words that can be reached from
tree state 5. Strictly speaking, we should use the tree nodes
(or arcs) rather than the states of the HMMs that are asso-
ciated with each arc. However, cach initial state of'a pho-
neme are can be identitied with its associated tree node.
The coneept ofanticipating the .M probabilities for cach
node of the lexical tree is illustrated in Fig. 11.
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To keep the computational

cost dowit in this forward-
recombination schemie, it is
important to have direct access to
each new successor hypothesis.

"T'o incorporate the anricipated 1M probabilitics into
the three pruning operations of the scarch, we combine
the anticipared 1.M probabilitics with the score of the hy-
pothesis (¢, ;) and define a modified score @, (£, 5):

Q. (F,5):=1,(5) Q. (#,5).

Yor the acoustic pruning, we compute the modified
score of the best state hypothesis:

Qaclry=madt G, (t,5)

and prunc a hypothesis (#,s3) if

O, F5)< fae ',QA(: (t).

The same modified score is used for the histogram
pruning. As the recognition experiments will show, the
number of state hypotheses can be significantly reduced
by this look-ahead.

When computing all entrics of the table n, (5) before-
hand, we have to keep a huge rable in main memory. In the
task under consideration, abour 20,000 - 65,000 antici-
pated LM probabilitics would have to be stored. Since the
size ofthis table is probibitive, we compute the anticipated
LM probabilitics tor the tree copics on demand and cache
thescanticipated probabilities ina look-up table tora maxi-
mum of] say, 300 I.M look-ahcad trees. So, before com-
puting the anticipated LM probabilities, we first check
whether or not the probabilitics of the required tree copy
already exist in the look-up table. In addition, it is often
sutticient to compute the anticipated LM probabilitics
only for the first, say four, arc generations of the lexical tree
[57]. T'his LM look-ahcad or similar variants arc now used
in manv systems for large-vocabulary speech recognition
121, 131, 151, 101, [491, [50], [541, 163}, 73]

Implementation

Although a full deseription of the implementation is out
of the scope of this article, we will present some concepts
and details,

Dynamic Seurch Space Construction
In this paragraph, a dynamic construction of the scarch is
derived from the time-synchronous DP beam scarch by

74 IEEE SIGNAL PROCESSING MAGAZINE

introducing a sct representation of the active hypotheses.
The basic difficulty with the scarch implementation is to
pertorm the recombination of path hypotheses cfficiently
without cxplicitly constructing the overall scarch space.
The navie implementation of the DP equations would re-

checked whether it is still active. Thus, there would be a
computational overhead that is proportional to the num-
ber of state hypotheses in the overall scarch space.

For scarch using a lincar lexicon, the dynamic con-
struction of the search space was described in detail in
[47]. To arrive at an cfticient implementation for tree
scarch, we use the following coneepts:

A Set wepresentation of active hypotheses: For cach time
frame £, we maintain scts of active hypotheses. For cffi-
ciency reasons, these active hypetheses ave stored in static
arrays whose maximum sizes are specified beforchand.
These hypotheses are organized ina three-level hicrarchy:

a At the highest level, we have the set of active trees or

predecessor words v,

a Forcach tree, there is the set of active phoneme arcs.

Due to our notational scheme, the are dependence is

not explicitly captured in the DP equarions.

a For cachtree vy and for cach arc, we have the set of active

1MM states. Fach state hypothesis consists of three parts,

namely state index s, score Q,(¢,5), and back pointer

B.(t,s).

A Forward DP recombination: D rccombination occurs
at three levels: word boundaries, phoneme boundarics
and TIMM states. T'o confine the computational eftort to
the active scarch space, we convert the DI recursions
from the usual backward direction (as cxpressed by the
cquations) into a farward direction; using the active hy-
pothescs, we construct dynamically the sct of suscessor hy-
potheses. To keep the computational cost down in this
forward-recombination scheme, it is important to have
divect nccess to cach new successor hypotheses.

‘This is achicved by an array-based representation of sets
in combination with a stack of indirected pointers | 38, pp.
289-290x], [47], [78, pp. 121-123]. In this way, there is
no need to scarch through lists to find a hypothesis. This
forward recombination is of varying importance at the

max {p(wiv)}

we W(s) W(s)

t .
A 11, Anticipated LM probabilities for LM look-ahead.
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three levels. For the FIMM state level, there is no real prob-
lem becaase within a phoneme arc of the tree, there is a
maximum number of six states. At the arc level, e, for re-
combination across phoneme boundarics, this is much
morce important because, fora fixed tree, there might be up
o 65,000 active are hypotheses.

There is one condition for which we cannot use the di-
rect aceess approach, namely the 1.M recombination for a
trigram LM, The problem is that there might be up to W?
predecessor histories for a vocabutary of Wwords. T'here-
fore, we tLp'dLC the direct access method by a hashing ap-
59/. The index tor the hash table is computed by
hashing, a bijective funcrion of the word pair index (a1, »),
c.g flu,v) :117‘11 + .

Traceback and Garbage Collection

For large-vocabulary recognition, it is essential to keep the
storage costs as low as possible. "l'o this purpose, in addi-
tion to back pointers, we use a special traceback array
whosc entries keep track of word end hypotheses. 'Uhe con-
ceprofthis traceback array is based on an extension of the
traceback method presented in Fig. 7. For cach word end
hypothesis, we store the following picees of information:
word index, end time of the predecessor word, score, and
back pointer, L.e., a pointer into the array itself for finding,
the predecessor word end hypothesis. The end time of the
predecessor word is not really needed, but useful tor diag-

nostic purposes. During the recognition process, many of’

the hypothesis entries in the traceback arrays will become
obsolete because their path extensions dic out aver time
dne to both the recombination and the pruning of hy poth-
eses. In order to remove these obsolere hypothesis entries
from the traceback arrays, we apply a garbage collection or
purging method as follows. Fach entry of the traceback ar-
ray is cxtended by an additional component called the
“time stamp,” as suggested by Steinbiss [71]. Using the
back pointers B, (¢, ) of the state hypotheses, we performa
traceback for cach hypothesis and mark the traceback cn-
tries reached with the current time frame as time stamps.
Hence, all traceback entries that have a time stamyp ditfer-

The basic idea is to represent all
these word sequences by a word
graph in which each edge repre-
sents a word hypothesis.

ent from the current time frame can be re-used to store new
hypotheses. Note that this garbage collection process is
controlled using only the state bypotheses and veachable
tracehack entrics so that the number of dead traceback en-
trics does not matter. [n principle, this garbage collection
process can be performed every time frame, but to reduce
the overhead, it is sufticient to perform it in regiular time in-
tervals, say every 50-th time frame.

Memory Requirements

By using the above methods, we obtain typical memory
costs as shown in"Table 4. Tor cach of the various arrays
used, we simply report the number of bytes required
without going into all technical details. The three arrays
of tree, are, and state hypotheses store the corresponding
hypotheses per time frame, and thus, we have a maximum
of 20,000 tree iypotheses, 200,000 arc hyporheses (over
all wee hypotheses), and a total of 600,000 state hypothe-
ses (overall tree and are hypotheses). For the recombina-
tion at the arclevel, anausiliary array is included in "Fable
4. As a result, the toral storage cost tor the 20,000-word
task is abour 14 Mbytes for the scarch procedure.

One-Pass DP Search for
Word Graph Construction

T'he main idea of'a word graph is to come up with word
alternatives in regions of the specch signal, where the am-
biguity about the actually spoken words is high. "The ex-
pected advantage is thar the acoustic recognition process
is decoupled from the application of a complex language

T T e =7 maodel and that this language model can be applied in a
.;il:;';:arc PE;:‘ (’)‘g?)mv%‘: d“:;‘:l:rel;:’;';:: f:arntghueagz _ subsequent postprocessing step. xamples of long-span
! " ’ - 11 6 (> o e v eTe-lyaee N O o
Model Single Best Sentence) Withaut Storage for lapgmgm models are cachie-based language models [31],
-Acoustic and Language Model. trigger-based language models |74] and long-range
Entre rrigram language modcels [ 15] that can be viewed as sto-
Type of Array K Entrics StlelCtl)ll‘C Kbves chastic lexicalized context-free grammars, The number of
Yk ) i (bytes) ¥ word alternatives should be adapted to the level of ambi-
guity in the acoustic recognition.
Tree hypotheses 20 3-4 240
Are hypotheses 200 2-4 1,600 Word Graph Specificati
ord Gra cification
State hypotheses 600 34 7,200 Lo P pe N T
- In this section, we will formaily specify the word graph
Auxiliary arc generation problem and pave the way for the word graph
hypotheses 05 4-4 1,040 algorithim. We start with the fundamental prablem of
i“'ﬂCCh‘JCli array 200 5.4 4’()0() \’V()l‘(l gljal])h y’CHL‘I"J.I'i()III . .
— Hypothesizing a word w and its end time #,
Lotal amounr 1.085 - 13,820 how can we find a limited number of “most
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likely™ predecessor words? This task is difticult
since the start time of word w may very well de-
pend on the predecessor word under consider-
ation, which results in an interdependence of
start times and predecessor words.

In view of the most successtul one-pass beam scarch
strategy, what we want to achieve conceptually is to keep
track of word sequence hypotheses whose scores are very
close to the locally optimal hypothesis, but that do not
survive due to the recombination process.

The basic idea 1s to represent all these word sequences
by a word graph in which cach cdge represents a word hy-
pothesis, Each word sequence contained inthe word graph
should be close (in terms of scoring) to the single best sen-
tence produced by the one-pass algorithm. In the one-pass
algorithm for computing the single-best sentence, we have
computed the hypotheses in a time-synchronous fashion
and propagated the hypotheses from left to right over the
time axis. We will use the same principle of time synchrony
tor the word graph gencration. "To this purposc, we intro-
duce the following definitions:

Ayt ) =maxPrixt 5%, |w)
Y
=Conditional probability that word w
y
produces the acoustic vectors x°,

Gw]sty:=Pr(wy maxPrx] 5] |w]")
L)

= Joint probability of obscrving the acoustic
veetors &) and a word sequence w)” withend
time .

Using these definitions, we can isolate the probability
contributions of a particular word hypothesis with respect
to both the language model and the acoustic model (see
Lig. 12). This decompaosition can be visualized as follows:

Kooy X Xy X, Xy BT
AL PN

Gewlit) 50,7

From this decomposition, it is clear that the score
P

G(w/";5t) can be compured from the scores G(w"™ 51) and
h(w T, 1) by optimizing over the unknown word boundary T:

Gw! ;) =max{Pr(w,|w/ ") -Gw/™ 0 -bw, ;t,0)}
T

=Pr(w, |w! ) madGor 1) bw, 3T
T

where we have used the conditional probability
Pr(w,w" ") of the language model. To construct a word
graph, we introduce a tormal definition of the word
boundary T(w," ;#) between the word hypothesis w, ending

at time # and the predecessor sequence hypothesis w/' ™ :

Wt w! ) =arg max{G(w/ 10 biw, T, 0) )
T

It should be emphasized that the language model
probability does st atfect the oprimal word boundary
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A 12. lllustration of path decomposition.

Upq=v

Upp=c {a,b}

/7

Time ¢

A 13. llustration of the word pair approximation for two cases.
Top, good example: the predecessor word u,, ,:=v of word
u,,:= wis sufficiently long. Bottom, bad example: the predeces-
sorword u,, ,:=v of word u,,:=w is too shorl.

m-1 [N

and is, therctore, omitted in the detinition of the word
boundary tunction t(mw|" ;¢). Thus far we have considered
the most general case in two aspects: First, the word
boundary finction has not been constrained in any way.
Second, the language imodel has not been constrained in
any way. We will firse narrow down the language model
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to the widely used #-gram language modcels and come
back to the word boundary function later.

Exploiting an m-gram language model pa , |u" "),
we can recombine word sequence hypotheses at the
phrase level if they do not ditfer in their final (s 1)
words. Theretore, it is sutficient to distinguish partial
word scquence hypotheses )" only by their final words

e

m
=
ﬂ?' U“ nrt 20

H (#5" 51), and is defined as the joint probability of gener-
ating the acoustic vectors x,...

p

with ending sequence #;, and eneding time £

The corresponding score is denoted by

x, e a word sequence

m, N i " gy L
Huy) st)= mnx{[’ v (W) Pr(x oo 0TS

wyaw

where, as expressed by the noration, the final portion# 5 of

the word sequence w)” is not subjected to the maximiza-
tion operation. Using the above definition, we can write
the dynamic programming cquation at the word level:

£ (18" t)’maxll(nl’“; )

")

with H(n’”' Vi plaey, [V (] 5 5)
bla,, 1t sm),1)

Hi 5

i

Here, we have used the function 1tz
word boundary between 2, and u,
quence with final portion 2 and end time £, Note that
we have included the I‘mgmz_‘c model to achicve a better
pruaing strategy. For the word boundary itself, we have
to use the quantity H (" ;1) rather than (‘I(wlN )

)to denote the
for the word se-

Ttu” =AY 1Ay P \
Sl ) LI]];\X‘{H u, T)l}( T )I-

Word Pair Approximation

So far this has been just a notational scheme for the word
boundary functiont(#;2"). The crucial assumption now is
that the dq)LlldLnLL of the word boundary (£ ;2" ) can be
confined to the final word pair 22 . "T'he justification is
thatthe other words have virtually no eftect on the position
of the word boundary between words 2, and #,, |67].
This so-called word pair approximarion is illustrated in
Fiz_, 13. Foraword hyp()thc%isw andanend time hypothe-
sis £, this figure shows the time alignment path for the
WOr d w=n ,, itsclf and its predecessor words 7 )’ff_i to illus-
trate the definirion of the word boundary o ;2,"). In gen-
cral, this boundary, i.c., the start time of word i as given by
time alignment, will depend on the immediate predecessor
word #u,, . The question of whether this dependence
reaches beyond the immediate predecessor word s illus-
trated by showing a good (Fig. 13, top) and abad (Fig, 13,
bottom) example. For simplification, we have assumed
that the reference models of the predecessor words
#,,_, =mandu  , =bhave the same length. From this fig-
ure, it is obvious that the assumption of the word pair ap-
proximation is satisficd i’ the predecessor word 2, | is
sufticiently long. All ime alignment paths then are recom-
bined betore they reach the final stave of the predecessor
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word. In formulae, we express the word pair approxima-
tion by the cquation:

(e Y=const(u]” *) or W) =1tm? ),

¢., the word boundary function docs not depend on

u” . Assuming the word pair approximation, we have
the following algorithm for word graph generation:
A /\t every time frame #, we consider all word pairs
#)  =(v,w). Using a beam scarch strategy, we will limit
ourselves to the maost probable word pairs.
& For cach triple (¢;9,w), we have to keep track of?

& the word boundary t(¢; v, w)

a the word score h(w;t(t v, w),t)
A Attheend of the speech signal, the word graph is con-
stencred by tracing back through the bookkeeping lists.

As long as only a bigram language model is used, the
word pairapproximation is still exact (assuming a conser-
vatively large pruning threshold). An even further simpli-
fication is rhe single word approximation vsed in | 70| to
produce a list ot z-best sentences.

Word Graph Generation Algorithm

The u)m])umn(m of the word boundary function
(¢ ; v, w) has not been specitied yet. Tn pr mup]g it can be
computed by usmg cither the so-called two-level algo-
rithm |65] or the one-pass algorithm desceribed before,
both of which compute only the best single word se-
quence. However, toapply beam scarch, it is more conve-
nient to use the one-pass algorithim preseoted i the
preceding section. Using thetrec organization of the pro-
nunciation lexicon, the hypotheses have been distin-
guished by the predecessor word anyway.

To extend the one-pass word algorithm from sin-
gle-best sentence compuration to word graph generation,
we only have to combine the two equations for calculat-
ing the word boundary function ©(¢; v, w) and the word
score (w;1,t). The word boundarics are obtained using
the back pointers at the word ends:

e, wy=B,(t.,5,)

For cach predecessor word v along with word bound-
ary T="1(t ;»,w), the word scores are recovered using the
cquation:
h(w;r,t)::VQJ%'“’S"’),

H ;1)

where we obtain F1(w;¢) as usual:
H (w; t;—max{jl (w|»)- Q, (t,S,)}

"I'he details of the algorithm are summarized in Table
5 Theoperationsarc organized in two levels: the acoustic
level and the word pair level. At the end of the utterance,
the word graph is constructed by tracing back through
the bookkeeping lists. A third level, the phrase level, has
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been included for the final recognition. Depending on
wherher the phrase-level recognition is carried out in a
time-synchronous fashion or not, we can distinguish the
following two strategics by using a trigram or higher
m-gram language model:

& txtended one-pass appronch:’I'he word pair approxima-
tion serves onlyasasimplitication inthe one-pass strategy
i order to avoid the large number of copics of the lexical
tree as required by the language model.

A Two-pass approach: First, a word graph is constructed.
Then, at the phrase level, the best sentence is computed
usmg a more u)mplcx language model. An L\AmplL of a
anbuabc model that is difticult to handle in integrared
scarch is a cache-based language model |317.

From the coneepts developed so far, it should be obvious
that there is only a gradual difference between these two
strategics.

What has ro be added to the single-best onc-pass strat-
egy, is the bookkeeping at the word level: rather than just
the best surviving hypothesis, the algorithm must memo-
rize all the word sequence hypotheses that are recom-
bined into just one hypothesis to stare up the next lexical
tree (or word models). In the single-best method, only
the surviving hypothesis (v,,,7,) has to be kept track of.

‘Table 5. Extension of the 0ne~Pass pp Algonthm
“from Single Best Sentence:
to Word Graph Generation.

Proceed over time from left to right

Acoustic Level: Process (tree state)-hypotheses

- Initialization: Q,(#-1,s=0)= H(»;t-1)
B (t-1,s=0)=4-1

- Time alignment: Q, (2, 5) using DP
- Propagate back pointers B,(¢, 5)

- Prunc unlikely hypotheses
- Purge bookkeeping lists

Word Pair Level: Process word end hypotheses

“single best™ for each word w do

FI (w;) =arg max {pw|») O,(£,5,)}
v, (myr) =argmax {p(w|v) Q,(#,8,)}

- Store best predecessor V“‘: vy (5t)
- Store best boundary 1= 8, (£,8,)

“Word graph™: for cach word pair (v, w) store

- Word boundary
- Word score

(e v, w)i=B,(,S,)
blwyt,ey=0Q,(t,5,)/ H(»;7)

=<

-Phrasc Tevel Search (optional)
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An example of a word graph for a three-word vocabu-

lary A,8,C (including silence at the sentence beginning
and end) is shown in Fig. 14, The edges stand for word
hypotheses, where the circles along with the word name
denote the word end. Note the following principal prop-
crties, which arc a result of the word graph algorithm:
& Thereisa maximum for the number of incoming word
edges in any node, namely the vocabulary size, which is
the maximum number of possible predecessor words.
& l'here 15 no maximum for the number ot ourgoing
word edges; this effect is due ro the fact tha, even for the
same predecessor word, a word can have dilterent
end-time hypothescs.

"There are rwo refinements of the word graph method
which suggest themselves:

4 Torshort words like articles and prepositions, the qual-
ity of the word pair approximation might be question-
able, and word triples or higher word az-ruples might be
used insecad in these cases.

A Long words with identical ending portions may waste
scarch cffort and could be merged when forming word
pairs in the word graph algorithm.

In both cases, the obvious remedy is to make the word
copics dependent on a suitably defined history using the
phoncetic script of the predecessor words.

Another refinement is concerned with the way in which
the word graph is pruncd. Whar we have used so far could
be called forward only pruning as opposed to for-
ward-backward pruning, whichis alitele bir better, but docs
notallow strict onlinc operation [32 ], |5 L pp. 811 ],[68).

For the sake of clarity, we have not included the case of
intraphrase silence in the presentation ot the algorithm.
"T'he algorithm can be extended for this case.

Experimental Results

The search concepts presented in this article are used in a
large number of systems. Of course, the technical details
of the implementation may vary trom case to case |1
121,131, 141, 6} [16], |18} [19]. [21], |36, |39], [49],
[507, [52], (69], [81]. The exact implementation of this
article was used in a number of experiments |5, 48],
55], , 571, [58

Here, we will review only some of these experiments.
Al recognition experiments were carried out on the
ARPA North American Business (NAB94) FLT develop-
ment corpus [29]. The test set comprised 10 female and
10 male speakers resulting in 310 sentences with 7,387
spoken words. Therecognition vocabulary used in the ex-
periments comprised 64,000 words with an
out-of-vocabulary rate of 0. '3”1 on the test data. The
training of the emission probability diseributions was per-
formed on WSJ 0 and WSJ 1 training corpora. In this
task, 4,058 context dependent phoneme models were
used, sharing 4,699 emission probability distributions
[18]. For these experiments, we used a rotal of 270,000
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Taplacian mixture densitics with a single pooled vector of

absolute deviations for cach gender | 43].

Search Space

In the first serics of experiments, we studied the size ofthe
scarch space in the beam scarch strategy. "The language
modecl was cither a bigram or a trigram T.M. The scarch

effort was measured in terms of the average number of

tree and state hypotheses after recombination and prun-
ing. "U'he acoustic pruning threshold was varied, wherceas
both the LM pruning threshokd and the maximum num-
ber of state hypotheses were kept fixed.

The resules are shown in "Table 6. "T'hese tests were car-
ricd our using a unigram LM look-ahcad. Looking at the
scarch ctfort, we can see that the results are comparable

for the bigram LM and the trigram LM, For both types of

1.M, there is asaturarion cftect for the word error rate; be-
yond 30,000 stare hypotheses, the word crror rate ve-
mains virtually constant, When replacing a trigram I.M
by a bigram LM, the average numbers of tree and state
hypotheses are aftected i different ways, Whereas the
number of state hypotheses renmains more or less un-
changed, the number of tree hypotheses goes up, but only
by a tactor of' two or less. Despite the porential maximum
of W7 =64,000° = 4.1-10” possible tree hypotheses tor
the trigram [.M; the average number i only 200 or less.

LM Look-Ahead

The second series of recognition experiments is con-

cerned with the effect of the .M look-ahead on the size of

the search space and the word error rate, Table 7 shows
the results of several recognition tests. As before, the table
shows the size of the search space in terms of the average
number of state and tree hypotheses and the word error
rate. In an initial experiment, we performed three tests
without any LM look-ahcad, using three different values
of the acoustic pruning threshold. For the recognition
scores, as opposed to the LM look-ahead scores, we used
a bigram LM 1 these tests. To achieve a word error rare
ot 13.9%, an average of 168,000 state hypotheses per
time frame are needed. By using the unigram 1M

Table 6. Search Space and Word Error Rate V(WER):..f;

64k-word NAB Task (Unigram LM Look-Ahead). -

1M Type Search Effort _ WER
Trees Steutes %

Bigram 15 5,600 22.1

(PP=2237) 24 10,800 16.0

37 20,200 14.5

51 33,700 13.9

65 50,100 13.9

99 116,500 i 13.8

Trigram 17 1,800 17.1

(PP=172) 29 3,900 14.0

48 §,200 2.8

73 15,800 12.1

100 27.600 119

125 42,800 119

L 145 59,600 11.9

I 2()??7‘_ B 133,600 : 11.9

look-ahead, we reduce the search space by a factor of three
without any loss in recognition accuracy. Finally, by us-
ing the bigram .M look-ahead, the scarch effortis further
reduced by a factor of six without a loss in recognition ac-
curacy. Although the overhead caused by the bigram LM
look-ahcad is 20% and thus, not negligible, icpays offin
terms of overall speed-up of the scarch process. As a re-
sult, we obtain for the final size of the active scarch space
7,900 state hypotheses on average, which should be com-
pared with the total scarch-space size (see “Refinements
and Implementation Issues™):

64k trees-300k arcs/ tree-6 HMM states [/ are =
1.2-10"" TIMM states,

Fora 20k-word vocabulary, the T.M lool-ahead overhead
is much smaller, namely about 3% rather than 20%.

A 14, Example of a word graph (three-word vocabulary: AB,C).
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Table 7. Effect of LM Look-Ahead on
: _S_garch Effort and Word Error Rate (WER) for

Table 8. Comparison: Word Graph vs. Integrated
Search for 64k-word NAB Tas (Umgram LM

Having optimized the scarch strategy in such a way,
we rypically find that 70% or more of the total recogni-
tion cttort is now spent on computing the log-likclihoods
of the emission probability distributions in the HMMs
[58]. To speed up these computations, several methods
have been proposed [117], [12], [58].

Word Graph Method

In a third scries of experiments, we compared the inte-
grated search with the word graph method i conjunc-
tion with LM rescoring. The goal here was to
experimentally cheek the validity of the word pair approx-
imation and to show that there is virtually no loss in per-
formance by using a word graph scarch rather than an
integrated scarch. The results are shown in Table 8. For
the word graph merhod, a word graph was generated us-
ing a bigram .M for cach test sentence. Using the bigram
1L.M, the single-best sentence word error rate was 13.9%.
To be on the safe side, for cach sentence, the word graph
was generated using a conservarively large beam, namely
113 trechypotheses and 39,100 state hypotheses on aver-
age. By rescoring cach word graph with a trigram LM,
the word error rate went down to 12.1%.

For the integrated scarch strategy using the trigram
.M, Table 8 shows three recognition experiments that
were selected from ‘Table 6. These experiments result in
scarch eftorts £ 8,200, 15,800, and 27,000 state hypoth-
eses, and word error rates of 12.8%, 12.1%, and 11.9%,
respectively. Also from Fig. 6, we know that even by in-
creasing the beam size to 133,60 state hypotheses, there
is no improvement in word error rate over 11.9%. Com-
paring this best word error rate with the word crror rate
of 12.1% tor the word graph method, we can draw the
important conclusion that the word pair approximation
used tor the word graph gencration does not virtually de-
teriorate recognitiont accuracy. Agaim, we would like to
cmphasize that the experiments reported in Table 8 do
not allow a comparison in terms of scarch cffort since the
word graphs generated were conscrvatively large.
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64k-word NAB Tas k (Bigram LM).. Look-Ahead).

LM Look-Ahcad Search Effort WER Mtthd LM type | Search hftort WER
Type Overbead | Trees Startes % Lrees | Stotes %
ho ) 42 167,800 139 Z\Zf:lflﬁt)‘l}:h 1?2%31[;37) 113 | 39,100 | 139

- 33 138,200 14.0 T IM Trigram

. 25 105,300 14.4 rescoring (1rr=172) - - 12.1
Unigram Integrated Trigram
(PP=1257) . 65 50,100 | 139 search (PP=172) | 48 | 8200 | 128
Bigram 73 | 15800 | 12.1
(PP=237) 20% 28 7,900 13.9 100 27,000 119

In summary, we can say that these and more system-
atic experiments have shown [56] that the word pair ap-
proximation gencerates high-quality word graphs. In
conjunction with LM rescoring, it is competitive with
integrated search,

Extensions and Modifications

T'here arc a number offissues that have not been addressed
in rhis article:
4 The look-ahead strategy can be extended to the acous-
tic vectors and is then referred to as phoneme look-ahead
1221, |54].
A Thereis a type of recombination that has not been con-
sidered so far, namely the so-called subtree dominance
[1],12], 1583]. This concept results in a sort of minimax
criterion and allows whole subtrees of hypotheses to be
praned during search under certain conditions.
A The scarch method can be extended to handle
across-word phoneme models [50]. This modification af-
feets the LM and acoustic recombinations in the first arc
generation of the lexical tree.
A The scarch concept presented is based on what is called
word-conditioned structure of the scarch space. An alter-
native is to consider 2 time-conditioned structure, for
hich the cxpcrimcnts have S‘huwn ont nly e]ighrly infcri()r

sm(l( dcu)dulg (8 ]j |()0J, [ 1], [63].

A'T'he eree-based scarch can be used in a for-
ward-backward concept, where a simplified lexicon tree
produces forward scores at a small computational cffort.
A sccond pass, the backward pass, then preduces the de-
tailed scores and the final word sequence or word lattice
[49]. By adding additional passes, we obtain the
multi-pass approach [16].

A 'I'hescarch straregy presented here has been designed for
bigram and trigram language models, for which, all
m-gram language models are of the finite-state type. For
other types of language models such as context-free gram-
mars, the scarch strategy must be suitably modificd [44.
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Summary

In this article, we have attempted to present a unifying
view of the dynamic programming approachto the scarch
problem i continuous-speech recognition,  Starting
from rthe bascline one-pass algorithm using a lincar orga-
nization of the pronunciation lexicon, we have extended
the bascline algorithm toward various dimensions. T'o
handle a large vocabulary, we have shown how the search
space can be structured in combination with a lexical pre-
fix tree organization of the pronunciation lexicon. In ad-
dition, we have shown how rhis structure of the scarch
space can be combined with a time-synchronous beam
scarch concept and how the scarch space can be con-
structed dynamically during the recognition process. In
particular, to increase the efficiency of the beam scarch
concept, we have integrated the language model
loolk-ahead into the pruning operation. To produce sen-
rence alternatives rather than only the single best sen-
tenee, we have extended the scarch strategy to generate a
word graph. Finally, we have reported experimental re-
sults on a 64k-word task that demonstrate the efficiency
of the various scarch concepts presented.
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