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earch strategies lx,,�ed on dynamic programming (1)1') are curn:ntly being used successfully till' 
a large lllllllber of speech recognition tasks, ranging tiYlll1 digit string recognition through 111e­

. diul11-size vocabulary recognition using heavily constrained grammars to large-vocabulary 
continuolls speech rewgnitioll (LVC:SR) with virtually llllwl1strained speech input. 

Several variants of DP search were already knowll in the early days of' automatic speech recogni­
tion 124], [371, [65[, 166 J, 175 [, [761, 1771. Over t he past three decades, these and related I JI' strate­

gies have turned out to be suq)J'i.�illgly sllccessfi.ll ill handling vocabubl'ies of 20k or 11101'e words. 
Nevertheless, lIntil recently, :1l1101lg the experts, it was a highly controversial 
isslle whether high-perplexity LVCSR could be lWldkd by 1)1'. 

The skepticism seems to have lx:en concel'lled 111'1iI11y with the following 
issues, which we will address especially in this article: 

� A 'l'hc cxtl:l1sion ti"()111 a IO-digit V()Cablllarjr tC) a 20k-w()rd vocabulary \v()utd OJ -g blow IIp the search space dramatically. Could this huge search space be han­e[ � died hy UP ill an eUlcient way> 
� A In particular, each variant of UP s!:arch in speech recogn ition is more or ...J © less "notorious" for its operations at the lO-ms frame lev!:!. How could this 
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low-level acollstic search illteraCl eilicientiy with the 
high"levd knowledge sources ill the recognition system 
sllch as the prollullciationIexicon and tbe language model 
(LM) 1 In addition, in order to narrow dowll the search, 
an early integration of these knowledge sources might be 
lnandatory. 
..to. D1' typically computes only the single best sentence. 
But in many recognition systems, it is desirable fi)r vari­
OllS reasons to produce alterllative sentences or a word 
graph. Could the conventional D1' strategy be extended 
to generate a word graph rather thall only tbe single best 
selltencd 

Where do we stand in speech recognition in compari­
son with 20 years agor At that time, widely held opinions 
were quite d ifkrent, with respect to hoth aCllLlS­
tic-phonetic 1llodding and to search. A number orexperts 
predicted that considerable progress could be made by 
getting rid of "primitive techniques" like statistical p,1t­
tern rccognition and beam search. However, the experi" 
ence gained over the last two decades has show I) that the 
judgel11Cllt passed by Klatt on the principles of the 
DRAGON and HARPY systems developed in 1976 is 
now more true than ever hd(Jl'e [26, pp. 2MI: 

" ... the application of simple structured models 
to spcech recognition. It might seem to someone 
versed in the intricacies of phonology and the 
acoustic-phonetic characteristics of speech th,1t a 
search ol'a graph of expected acollstic segments is a 
11ai've and iiJolish tecl1l1iqm: to usc to decode a se11-
tence. Tn bet, sl1ch a graph and search strategy (and 
probably a number of other simpll: models) can be 
constructed and made to work very well indeed if 
thc proper acoL1stic-11honetic details arc embodied 
in the structLLre." 
By l:xte11ding Klatt's statement to include thc language 

model, we obtain the 1'opic of this article. Table 1 summa­
rizes the definitions ofsoll1e tlu]l1cmly lIsed terms ill the 
COlll'cxt of thc scarch process in s]lcech recognition. In 
this article, we will attcmpt to give a 1ll1ifying view of the 
dynamic programming approach to the search problem. 
HOI' a discussion of other search strategies alld related top­
ics, sec a companion article appearillg in this isslle 1161. 

The organization of the article is as t(Jllows. Tn "System 
Architecture," we will review the search problem' 

f\'OIll 
the statistical p()illt-of�view and show how the scarch 
space results from thl: acotlsric and language l110dels re" 
quired by the statistical approach. "One"1'ass 1W Search 
Using a Lincar Lexicon" presents ,I baseline algorithm 
that will then be extended to handle a prefix tree organiza­
tion (lfthe prollunciation lexicon in "Onc-Pass j) P Search 
Using a Tree Lexicon." In "Rdinel1lellts and ltnplemen­
ration Issues," we will discllss the practical implementa­
tion of the search strategy and rdated isslies s1]ch as the 
details of tile pruning 0lxratiol1s and the language modd 
loolhlhead. [11 "Ol1e"I\lss D1' Search fi)[- Word Graph 
COllstruction," we will extend the one-pass stratcgy ti'Oll1 
the single best sentence to a word graph in ordert o geneI'" 

Table 1. Definitions arid I;xplanationsof . 
frequently Used Terms. 

Decoder: III an analogy with the terminology ()f fi­
nite-state methods for decoding 120.1 in information the" 
ory, the search algorithm in speedl recognition is often 
rdcrn:d to as a decoding algorithm . 

Integrated scat'eh: We call a search strategy imegratl:d if 
all available knowledge sources, e.g., aCOllstic-phonetic 
models, the constl';lints of the pronunciarioll lexicon, and 
the languagc l11od<.::l, are exploited in the search process at 
the same time; typically this concept is implemented in a 
one-pass strategy. 

Time-synchronolls: A search strategy is callee 
timc-synchwllollS if the search hypotheses arc tlJ\'llled in ., 
time-synchronous tashioll ovcr the sequcnce of awustic 
vectors. Typically, the time-synchronous conccpt goes 
lland-in-hand with the one-p'lSs search strat<;g)'. A' .search 
or stack decoding is an example of a search strategy that is 
not necessarily rime"synchwn()us. 

Onc"pass vs. multi-pass: We call a search �l olle-pass strat­
egy if then; is one single pass OWl' the inpur SelltellCe, as 
opposed to a Illulti-pass or lllulti-level concept. The 
one-pass search strategy is virwally always based on dy­
namic programming . 

r---�-�----------------------j 
Word-conditioned vs. time-conditioned: These terms 
rell;r to the way in which the search space, especially in the 
context or dynamic programming, is strtlctured . [n a 
word-conditiollcd search, each search hypotilc"is is condi­
tiolled on the predecessor word. Tllis implies that the opti­
mi;cation ovcr the llnknown end time of the predecessor 
word, i.e., the word boundary between the predecessor 
word and the word under cO!lSideratioIl, is alreadv carried 
ont in an e'\1'ly phase of tile sc,ll'ch. Therefore, this method 
is dii1erellt hom a timc-nlltditioned search, where, j()r 
each search hypothesis, the dcpemlcnce on the end time of 
the predecessor word is explicitly retaincd '\!lel the optimi" 
zatioll over the unknown word boulldaries is performed as 
a final step of the search. 

Single best VB. word graph: The attribute "single best" is 
lIsed to denote a search concept that determines the single 
most likely word sequence. The alternatives are, among 
others, n-best conccpts and word graph methods. The idea 
of a word gmph here is to organize the high-ranking sell­
lUKe hypotheses ill the form of a graph whose cdges rep" 
resellt the hypothesi;ced single words. Sometimes, the term 
"word lattice" is used SY1101l)'lllOusly. However, ill this arti­
cle, by tile term "word graph," we imply thaI gaps or over" 
laps bcrwecn word hypotheses arc not allowed. 

Linear VB. tree lexicon: For a small-vocabulary task, it is 
suftlcient to have a separate representation of each vocab" 
ulary word in terllls of phollemes or HMM states (I-IMM 
= h idden Markov Jllodel). Inllearly all cases, this is just a 
Iincar sequence of phonemes or HMM sUtes. Therefore, 
this 'lpproach is referred to as linear lexicon. For" large 
vocabulary, however, it is typically very Llseful to organize 
the prollullci,ltion lexicon as a trec, whose arcs arc the 
phonemes. 
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ate sentence alternatives. l�inally, we will present e xperi­
mental results for t ile search algor ithms Oil a 641c-word 
speech recognition task. 

System Architecture 

Why Is CSR Hard? 
The ultimate long-term goal of automatic speech recog­
nition is to build a system or machine that can "bear" in 
the sense that, tCll' a spoken utterance, it converts the 
acoustic signal into the sequence ofwriuen words. The 
major problems fCll' unrestricted, continuous speech rec­
ognition can be sUlllmarized as ldlows: 
A In the acoustic signal, there is no clear indication or JlO 
indication at all of the boundaries hetween words 01' pho­
l1e111es. Thus, not only the spoken words, but also the ph()­
llell1e boundaries and the word boundaries arc unknown. 
A There is a large variat ion in the speaking rates in contin­
uous speech. 
AI.. The words and especially the word endings arc pro-
1l0l1lleed less carctlJlly in fluent speech than in an iwLucd 
speaki ng mode. 
A There is a great deal of inter- as well as intra-speakcr 
variabilitjr, caused by a llumber of f�lCtors �Uc ll as sex, 
physiological, and psychological cOllditions. 
A The quality of the speech signal may be "Hected by en­
vironmental noise or the transfer tlllKtion of the trans­
mission system, e.g., microphone and telephonc. 
it.. For unrestrictcd natural-language speech input, the 
task-inherent syntactic-semantic constraints of the lan­
guage should be exploited by the recognition system, in a 
way similar to human-tel-human communication. 

Bayes Decision Rule 
Every approach to automatic speech recognitioll is EKed 
with the problem of making decisions in thc presence of 
ambiguity and context and of modeling the interdepen-

�----- ----- ----,-------

Speech Input 

Global Search: 
Maximize 

Pr(w, ... wJ· Pr(x, ... xT'w, .. . wJ 

Recognized 
Word Sequence 

Phoneme Inventory 

Pronunciation Lexicon 

Language Model 

A 1. Bayes decision rule for speech recognition 

dence of these decisions at variolls levels. [fit were possi ble 
to recognize pllOneme� or words with a vcr)' high reli�lbil­
ity, it would not be Ilecessary to rely heavily 011 delayed de­
cisioll techn iques, error correcting techniqlles, and 
statistical methods. C:onsidering the experience gained 
ovcrthe last 30 years, we do not expectthattllis problem or 
reliable and virtually crror�il'ce pholleme or word recogni­
tion without using high- level knowledge will be possible, 
especially fiX LVCSK. As a consequence, the recognition 
system has to deal with a large 11 L11l1 bel' oChypotheses about 
phollemes, words and sentences, and ideally has to take 
into account the "high-level constraints" as given by syn� 
tax, ,semantics amI pragmatics. Given this ,state of atElirs, 
statistical decisioll theory tells LIS how to minimize the 
probability of recognition errors f71: 

Maximil'£ the posterior probability l'r(wl .. . IlJN Ix] ... x{), 
i.e. determine tlle seqllence of words IFI".Il'"".JIJ" of lln­
known lcngtlt N, which has most probably caused the ob­
served sequence of acollstic vectors x I ,.,x t ... x'}' over time 
t = LT, which arc derived fi'()lll the speech signal in the 
preprocessing step of aeollstic analysis. 
A B)' applying Bayes theorem Oil conditional probabili­
ties, the problem can he writtcn in the followil1g fcmn: 
Determine the sequence of words JlII, .. ll'u"'IP", which 
max1l11izes 

This s()�callcd Bayes decision rule is illustrated in rig. ]. It 
requires two types of prob�lhility distributiolls, which we 
rder to as stochastic knowledge sources, a loll),'; with a 
search strategy: 
A Thclangu�lge11l()dcl,i.e.,/)r(JJJI"'ll''I)' is iudependelltof 
the acoustic observations and is meant to incorporate 
(probabilistic) restrictiom on how to concatellate words of 
the vocabulary to form whole sentences, These restrictions 
result hom the syntactic, semamic, and pragmatic Con­
str,lims of the recognition task, and may be modeled hy 
prohalistic or llollprobalistic (yes/ilo) methods. fn large-vo­
cabulary recognition tasks, the language 1110del probabilities 
arc typically approximated by higral ll or trigram models: 

Pr(w "I WI .. .  Il' Ii-I ) = p(1l? iI I Will) 
I'r (IV JII WI ... w}J' I ) = p( W "lIP 11-2 J 1)7 11- I ) . 

.... The acoLlstic-pholletic lllodel, i.c., I'r(xi ".X/ , IWI ... IV.\!), 
is  the conditional probabil ity of observing the acollstic 
vectors XI",xcl when the speaker utters the words 
lIJI ... w", . Like the language model probabilities, these 
probabilities arc estimated during the training phase of 
the recognition system. For a large-vocabulary system, 
typically, there is a set of basic recognition units that arc 
smaller than whole words. Hxamples of these s(l-cllled 
sllbword units arc phonemes, demis),llables, or syllab les. 
The word models arc then obtained by cOllcatcnating the 
sllhwonl models according to the phonetic transcription 
of the words in a pronunciation lexicon or dict ionary. in 
most systems, thesc subword units arc modeled by hid-
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dell Markov models (HMIVb). I-IMMs arc stochastic fi­
Ilite-state alltomata (or stochastic regular grammars) that 
consist or a Markov chain of acoustic states, modeling the 
te111por,11 structure of speech, alld a probabilistic function 
1(>1' e,lCh ofrhe states, modeling the emission ,md observa­
t ioll ofaUlustic vectors l71, 191, 1251, 13::;'1, 1621, Tn the 
experiments reported in this article, the phoneme models 
h ave a structure th:1t is depicted in Pig. 2 along with the 
resulting search space . The phoneme X consists ofthree 
parts (X I ,X 2 ,X:» , resulti ng ill a linear arrangement of 
six states. Words ,liT obtained by cOllcatenating the 
HMM phoneme units according to the baseline phonetic 
transcription as it can he found ill a pronunciation dictio­
nary. Usually, ti)J' a given state s' in a word lllodell)J, we 
have a transition prob abilitv p(.\'ls', II') for going to states, 
and an emission probability (density) p(x,ls',IP)for ob­
serving vector x,. Forthe fill1owing, it is suHlcientto con� 
sider only the product of the emission and transitio1l 
probabilities: 

which is the conditio\l,!1 prohabilit)' that, givel1the state ,1" 
il1 word IF, the acoustic vector x, is obscrved and the slate 
J is reached. 

Specification of the Search Problem 
The decisio\l on the spoken words must be made by an 
optimi7,ation procedme that combines illii)\'mation ti'Ol11 
several knowledge sources: the language model, the 
:lCOlIstic-phol1ctic models of single phoncmes, and the 
pronunciation lexicon. The optimi;r,ation procedure is 
llS U ally referred to as search in ,\ state space defined by the 
knowledge sources. 

[Jor a hYI)()ti1esized word scquellce 11';'1 oc IPI ",WN' we 
inugine a super IIMM that is obtained by concatenating 
the corresponding phollcme I I MMs lIsing a pronuncia­
tion lexicon (sec Fig. 2). Note th,l! by tbis process, we end 
up with a large 1111ll1bl.T or copics for each pllOllellle and 
th,lt tbese copies must be kept scparate during the search 
process to s,Hid)l the c()llstraims of the pronullciatioillex­
icoll. At pholleme and wmd bOllncbries, we must .lllow 
I'm trallsitions that link the terminal states of allY prede­
cessor HMM to the in it ial states of any slIccessor IIMM. 
In such a way, we can cOlllpute the joint probability oCob­
scrving the selluellce x/ oc XI".X1 of aeollstic input vec­
tors alit! the state sCqUCllce s i oc S I , .. s 1 th rollgh this s\tper 
HMM: 

r 
I'r(,'x;/,sl'lllJi"')ocil P(x"s,lst.I'IP;"), 

I- I 
'/' 

cc nip( '-I I S I_ I ' liJ j' ) . p( x I 1·\, ) I, 
I I 

where p(x, ,s, 1.1'1-1 , ,,, ;" ) denotes the product of the tran­
sition alld emissioll pmbabilities {-()l'l'he super I IMM Ill:" . 
The decomposit ioll h'ls beel\ formulated in such a way 

Instead of summing over ;alII 
paths, we consider only the most 
probable path. 

that we can d istinguish between two components of the 
approach: 
A Tbe reference models with the el11issioll probability 
distributions P(XI Is) iilr the acotlstie state s, e,g., after ty­
ing thc emissiol1 distri Imtions Llsing decisioll trees 180'1 or 
some other method . Note that, for the emission probabil­
ity p(x tis), we stretch the notatioll a litt le hit and do not 
necessarily distinguish between the state,\' 111 a pholleme 
or word model and its associated generic emission proba­
bility distributioll. 
A Thc trallsition probabilities /i(.I',I'\·,_I' 11':") depending 
on a word sequence hypothesis w:" ; this implies a huge fi­
nite network of states (super HMM) that lllllst be consid­
ered tilr e ach word sequence hypothesis wt . 

Del10ting the language model (LM) probab ility by 
J'r(lIJr'), the Bayes decision rule results in the iilliowing 
optimiz atioll problem: 

t'i)tJ oc argmax: J')r(1l';'1). I, J'r(xi ,J i 111';") Ir 
II"> 1 .1' i 

ocarg nlax { Pr(w:Y ) 'max Pr(x �I ,s i 111':" ) }. W,(" ' 
s 'f 

llere, we have made lise ofthc so-called maximum ap­
proximation, which is also referred to as Vitcrbi appl'Oxi­
mation 1251. Instead of SLImming over all paths, we 
consider only tlte l1lost probable path. N()tl� that for the 
maximum approximation to work, we need only the as­
Slll11ption that the resulting optimal word sequellces arc 
the same, not necessarily that the maxinlllll1 provides a 
good approximation to the slim. 

In this maximulll approximation, the se,ll'Ch space call 
be described as a hugc lletwork through which the bcst 

x 
>< X <ll OJ E ><N '0 
<ll E c � 0 .c 0.. 

X 

Time Index 

Ji. 2. Structure of a phoneme model and search space. 

SEPTEMBER 1999 IEEE SIGNAL PROCESSING MAGAZINE 67 



"-'I--�-1. ���I 1- I I. 11 IF 1 '2 12 1F2 13 13 1F3 I, 
Time 1 I Word Poslion n 

A. 3. illustration of the search problem for a three-word vocabu­

lary(A,B,q 

time al igl1l1lent path has to be fi:Jllnd. '1'he search has to be 
'1' 

perfi)[lned at two levels: at the state level (s I ) and at the 
word level (w�). As we will see, as a result of the maxi­
mum approximation, it will be possib le to recombine hy­
potheses efficiently at both levels by D1'. Thus, the 
combinatorial explosion of thc number ofseardl hypoth­
eses can be limited , which is onc of the most important 
characteristics of DP. At the same timc, tbe scarch hy­
pothescs an: constructcd and cvaluatcd in a strictly 
left-to-right time-synchronous fashion. This characteris­

tic property allows an eHicient pruning strategy to elimi­
natc lllllikcly search hypotheses, which is usually rcferrcd 
to as beam search. 

One-Pass DP Search Using a Linear Lexicon 

Definition of the search Space 
In this section, for a linear lexicon, we describe the 
one-pass algorithm that f(lflllS the baselinc fill' all search 
strategies described in this article. Originally the 
one-pass a l g or i thm had bcen d c s ign ed for 
small-vocabulary recognition tasks likc digit string ITC­
ognition [13], l41 J, [421, [77]. Over the last 30 years, 
however, these algorithms and their extensions have 
turned out to be surprisingly sllccessful in handling vo­

cabularies of 20,000 or more words. 

S(5) 
1 

S(4) 

8(1) 

Time t 

A 4. Example of a time alignment path. 

\<\1=5 

\<\1=4 

W=3 

w=2 

w=1 

T 

The term "linear lexicon" denotes the fact that the 
words are kcpt strictly separate in the scarch process. lin­
like ,1 tree lexicon, there is no sharing between the words 
as hr as the search hypotheses are concerned . l'or a 
three-word voc,lhuiary, the search space is illustrated ill 
I:<ig. 3. There arc two types of transitions, namely the 
acoustic transitions representing the probabilities of thc 
acollstic word models (A,B,C; in Fig. 3), and the lan­

gllagc transitions reprcsCIltillg the language model prob­
abilities. In Fig. 3, a bigrall1 langwlge model i.) assumed. 
For each possible word higram (v, w), there is a] ,M transi­
tion that is assigned the conditional bigram I,M probabil­
ity f!( wip), and that links the end of predecessor p to the 
heginning of word tV. For recognition, as shown in liig. 3, 
wc un1()ld the finite-state machine along the time axis of 
the spoken utterance. For the sake of simplicity, Fig. 3 
docs not covcr the clet"ails of the acollstic models and 
shows the language model transitions at times t 2 and t 3' 
only. Both tht: acoustic transitions (as shoWIl in I:<ig. 2) 
and the language transitions must be considered every 
IO-llls time frame. As a result, there is a huge nnmber of 
possible statt: scquenct:s, and all combinations of state and 
time tl1ust be considered systematically for rccognition. 

In the maximum approximation, thc search problem 
can be specified as follows. We wish to assign each acous­
tic vector observed at time t to a (statt:,worci) indcx pair. 
This mapping can be viewed as a time alignmellt path, 
which is a segut:1lce of ( state,word ) illdex pairs (stretch­
ing 1lotation): 

An example of sllch a time alignmcllt path ill COI1-
nected word recognition is depicted ill Fig. 4. l'or sHch 
path s, rhelT arc obvious continuity cOllstraints or transi­
tion rules as shown ill hg. 5. Since the word models are 
obtained by concatenatillg phonemc models, the transi­

tion l'llles in the word interior (Hig. S, lOp) arc those of 
the used I-IMMs as shown ill l'ig. 2. At word boundaries 
(Fig. 5, bottom), we have to allow for transitions that link 
tltc tl:r111inal state S" of any predecessor word p to the be­
ginning states .I' = I and .l' = 2 or any word w. The dynamic 
programming search to be presented will allow us to 
compute the probabilities (stretching notation) 

in a left-to-right fashioll over time t and to carr y out the 
opti mization over the unknowll word scquencc at the 
samt: time, Note that the unknowll word sequl:l1ct: and 
thc unknown state scquencc arc dctt:rmincd simulta­
ncously. Within the framework of the maximum ap­

p ro xi m ati on or Viterbi criterion, th e dynam ic 
programming algorithm pt'est:nts a c1osed-(()r11l solu­
tiolt tor handling the interdependcnce oi'nonlillear time 
alignmelit, word [,olllldarydetection, and wo rd identifi­
cation in continuoLls speech recognition fI 3'1, 1341, 
1371,140],1421, 16SI, 1771· 
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A 5. Path recombinations. 

DP Recursion 
The key concept of thc dynamic pl'Ogramming strat<.:gy is 
based on the following two quantities: 

QU ,s ; IF) : = score of the best path lip to ti inC t that ends 

ill state s of word lll. 

and 

8(t ,.I'; w) : = start time of the hest path lip to time t 

that ends in state s of word JP. 

I .(Joking at dlC 1ll,1i11 melllOl'Y sizes availahle today, we 
should add that the back pointer U(t,s;w) is llot ahso­
lutely needed f(lr slll,lll-voeabulary tasb /ike digit string 
recognition. !Jill' voclhularies of 20,000 or Illore words, 
however, it is csscntial to reduce the storage req uirel11eiltS 
as 11111eh as po;;si hie. 

As shown in hg. 4, there arc two types of' transition 
rules for the path, n,11llely rules in the word interior and at 
word boundaries. The concept ofdyn<l1l1ie programming 

is to usc these rules to decompose the path into two 1)"'l1'tS 
and iiH'll1l1late I'CCLI1TeI1Ce relations that can he solved by 
1illing in tables, which, ill this case, is the table Q(t ,.I'; 11'). 
In ,1 more gelleral setting of optimization problems, this 
concept is often ret'crred to as J5cUrnrm's principle I!f' 
optimality I I () I . In the word interior, we h,lVe the recur­
rence eq uarioll: 

Q(t,s;w)o= m,:x1p(x1 ,sls';w), (J(t -1,,1";11')) 
" 

15(1" ,.I'; 11') 0= n(t - 1,.I'm." (t ,.I'; lli); JP), 

where .1" Ill." (t ,.I'; w) is the optimum predecessor state tin­
the hypothesis (t,S;Jl'). The back pointers /i(t,s;w) are 
propagated simply according to the D1' decisio1l as 
shown in Fig. 6 and report the start time t<lr each word 
end hypothesis. When encountering a p()tential word 
boundary, we lllUSt pertill'lll the recombinatioll over the 
predeccssor words and, therci(lre dc!llle: 

H(JJ!;t)::OOlllax1 p(wl pl· (J(t,S,. ;v)}, 
I' 

where p(1V1 JI) is the conditi()11al I,M probability of word 
bigram (JI, w). The symbol 8" dellotes the terminal state of 
word v. To allow fur successor words to be statted, we in­
troduce a special state s 0= 0 and pass (1I1 both the score and 
the time index: 

Q(t - I  ,.I' O=()jlJi)"" H(w;t - I )  

ll(t-l,sO=();lv)=t-l. 

This equat-ioll aSSllllles that lirst the llormal sl-ates 
,I' 0= 1, .. . ,S IJ' arc evaluated tilr each word II' hd(lre the 
st<ll't-up states .I' =() are evaluated. The same rillle index t 
is used imenrionally, because the lal1guag�' lllodel docs 
not "absorb" an acoustic vcctor. :-.Iote th�\t the score.s 
Q(t,.I'; 11') captllre both the acoustic observation depend ­

ent probabilities resulting ti'Olll the HMM and the lan­
guage Illodel probabilities. 

The operations to he perrclI'111Cli are sllllltllarized in Ta­
ble 2. The sequetlce of acoustic vectors extT'H.ted ri-om the 
input speech signal is pl'OC(;ssed strict'ly !-i-mil Iefi' to right. 
According to the DI' equations, two lewis arc distin­
guished ill Tahle 2: the acoustic level at which the word in­
tel'llal recombinatiotls arc pertcll'llled and tile word pair 
level at which the bigram LM recombinations are per­
formed. The search procedur e works with a 
r--------� --------�---------

" Sew) 
TI 
� 
a '" 
I/) <lJ 
]i I.J) 1 -

1 Time T 

S(w) o 

Time T 
'-----------------------------

A 6. Illustration of back pointers. 
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Predecessor ArraYf1fF4l==�1 
StartTime Array . 

-

o TI�t T 

A 7. J!/ustration of traceback arrays. 

time-synchronous breadth-tirst strategy, i.e., all hypothe­
ses f()l' word sequenccs arc extcnded ill parallel Ji:lr each in­
coming acoustic vector. To reducc thc storagc 
requiremcnts, it is suitable to introducc a traceback ,uTay in 
addition to the back pointers. �or cach timc framc, the 
traceback <ltTay is used to record dIe decisioll about the best 
word end hypothesis and its start time. Using the traceback 
array, the recogn ized word seqnellce (an Lx: recovered cffl­
(icntly by a few table loolHlpS into the traceback arrays at 
the end of the utterance as showll ill Fig. 7. 

Beam Search 
Since, for a fixed timc fi'ame, all (word,state)-hypotheses 
cover the same portion ofthe input, their scores call be cii­
rectly compared. This enables the system to avoid an ex­
haustive search , and to perform a data-driven search 
instead, i.e., to focus the searcll 011 those hypotheses that 
are most likely to result in the best state sequence )37J. 
1 :,very 10-l11s fi'a11le, the score of the best hypothesis is de­
termined, then all hypotheses ",(hose scores fall short of 
this optimal score by more than a fixed factor arc prulled, 
i.e., are removed from further considcratioll. The expcri­
mental tests indicate that tIll' this type of beam search, de­
pending on the acoustic input and the language model 
constraims, onlv a sm all fraction oCthe overall 111ll11ber of 
possible (word,state)-hypotheses have to be processed 
for every 10 l1lS of the input speech, while at the same 

.. � 

Table 2; One-Pass DP Algorithm 
Using a Linear Lexicon. 

Proceed over time t from left to right 

Acoustic Level: Process (worJ,state)-hypothcses 
� 

" Initialization: Q(t-I ,s =0; 11') =H(w;t-l) 
lI(t-l, s =O;lP)=t-l 

- Time 'lligml1em: Q(t, s; TV) using D1' 
- Propagate back pointers ll(t,s; w) 

- Prune ulllikely hypotheses 
- Purge b()okkeeping lists 

Word Pair I,evel: ['roeess word end hypotheses 

I:<or each word )lJ do 

H(w;t) =clrgmClx{p(wlv) Q(t,S,,;w)} 
l'1l(w;t) =argmax {p(wll') Q(t,Sw; w)} 

I' 

- Store best predecessor 1'0:= )'0 (1V;t) 
- Store best boundar\' 1:11:= H(t,SI',,; "0) 

time, the number ofrecogl1ition errors is virtually not in­
creased. This beam search strategy will be considered ill 
full detai l later in the context or a tree organizatioll of the 
pronunciation lexicon. In addition, to fully exploit thc 
complltatioml advan tages of this beam search strategy, a 
dynamic collstnLcrion ofthe ,lCtive se,lrch space is suitable 
as we will also discLlss later. This one-pass dynamic pro­
gramm ing algorithm in com bi nation with beam search 
forms the t(lllndation of the search com ponent ill many 
successful systems for both slllall-v()calm lary and 
large-vocabulary speech recognition r 1],1 51, 1141, [17], 
[21],1231, l301, r33], [341, [391, r 461, [551, r72[, 1791. 

One-Pass DP Search Using a Tree lexicon 

Definition of the Search Space 
Whe n  apply in g  t h e  a lgorithm p r e s e nt ed to 
large-vocabulary recognition, say a 20,OOO-word task, it 
seems natural and vcr\, desirable, ti:lr etticiency reasons, to 
organize the pronullciation lexicon in the D:mll ofa prdix 
tree, in which each arc represellts a phoneme model, be it 
context dependent or illdependent [22],1461, [551. A 
part of sllch a lexical prollullciation tree i., shown ill 1 'ig. 8. 
This idea of llsing a tree representation was already sug­
gested in thc '70s in the CASPERS system 121l [ and in the 
lexical access fi'om spectra (1,/\1'5) system r2TI. How­
ever, whellusing sllch a lexi cal tree in the framework ofa 
language model, e.g., a bigral1ll11odel, and dynamic pro­
gramming, there arc DP-spccific technical details that 
mllst he taken into account and require a suitable struc� 
wring ofthe scarch space r22], [46[ .l\'ext we will present 
the search algorithm fix such a context in fu ll detail .  

Whell using a higram J ,M in cOllnectioll with such a tree 
representation of the pronullciat ion lexicoll, we facc the 
problem that the ident itl' or the hypothesized word IJ! is 
know n only when a leafofthe tree has been reached. Therc­
ti)['e, the langllage model probabilities c an only bc tillly in� 
corporated after reaching the termil1<11 sfate of the second 
w ord ofthe bigram. As a result, we can apply the language 
model probability on ly at rhe end ob tree. To make the a[J­
plication of the dynamic programl11ing principles possible, 
we stlTlcture the search space as Idlows. }m each predeces­
sorword Ii, weilltroduce a separate cO]Jyofthe IexiGll tn:e so 
that during the search process we will always know thc pre­
decessor word J! w hen a w ord end hypothesis w is hypothe­
sized. Fig. 9 illustrates this concept t<lr a three-word 
vocabulary (A,R,C), where the lexical tree is depicted ill a 
simplified schematic i<)rln. To avoid any potenti;;i1 miscon­
ceptions, we would like to stTess that Fig. 9 S[lOWS the con­
ceptual search space, which is too big to be constructed as a 
whole. Instead, as wc will shovv bter, we will construct the 
active portions oftbis search space dynamically ill combina­
tion w ith beam searcb.In thc set-LIp of Fig. 9, w e  apply the 
bigram [,M probability p(lvlJ!) whell the final state of word 
IlJ with predecessorJ! has been reached, and usc the resulting 
overall score to start up the corresponding lexical tree, i.e., 
the tree that has word w as predecessor. 
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I n  the reeognition process, in addition to the spoken 
words, we must account f(H· possible pauses between the 
spoken words . To handle these so·called i ntrapht'ase 
pauses , \ve have a special HMM silence model and add a 
separate copy of this model (Sif) to each tree. Further· 
more, for the possible pause at the sentence beginning, 
we have a separate copy of the lexical tree tc)r the first 
word in the sentellce; this tree copy is given silcnce as its 
p redeces�or word . As a result ofthis approach, the silence 
model copies do not require a special treatment, 11m can 
be processed like regular words of the vocabulary . How­
evcr, there is one exception : at word boundaries, there is 
no language model probability fC)r the silence models.  As 
shown in Fig. 9, there are two types of path extensions 
and recombinations, namely in the interior of the words 
or lexical trees and at word boundaries. In the word i nte­
rior, we have the bold lines representing the transitions in 
the HMMs. At word boundaries, we have the thin and the 
d a s h e d  lines,  w h i c h  rep res e n t  t h e  b i gram LM 
recombinations . Like the acoustic recombinations, they, 
too, arc pert(mned every 1 0-ms time framc. The dasbed 
lines are related to recombinations fin· i ntraphrase s i lence 
copies. To start Llp a new word hypothesis, we mllst in­
corporate the bigram probability into the score and deter­
mine the best predecessor word. Th is best score is tben 

propagated into the root or the associated lexical tree, 
which is represented by the sYlllbol lJ .  The symbol 0 de­
notes a word end. 

DP Recursion 
l'or a guantitative specification of the search procedure, 
we aSSUlile that each arc of the lexical tree is represented 
by a HMM . We will usc the state i ndex s  directly and as­
SLlme that the lexical structure is captured by the transi­
tion probabilities of the HMM .  To formu l ate the 
dynamic programming approach, we introduce the tc)l­
lowing two quantities [45 1 :  

0" (t ,s)  : = score of the best partial path that ends ani me f; 
in state s of the lexical tree for predecessor v. 

Ill' (t , s) : = start time ofthe best partial path that ends at 
time t i l1 state s of the lexical tfee for 
predecessor p. 

In other words, B,. (t' , s) is the back pointer that poi nts 
back to the start time of the lexical tree copy for predeces­
sor word v. This back pointer is needed because the defi­
nition of the score 0,. (t , s )  impl ies that the optimization 
over the unknown start t ime of the lexical tree copy for 
predecessor word J! has been carried out. Both q uantities 

arc evaluated llsing tbe dynamic programming recursion 
for Q,. (t' , s):  

U,.  (t , 5 ) '" m<lx{ p(x, , 51 .1" ') ' Q,. (t - 1, 5 ' ) }  ,. ' 
BJ, (t , s) '" 11" (t - I ,s :."'lX (t , s» 

Say k � Speak ey 

p ee eh 
s 

eh 
�

"wspeech 

k Talk �"-. Spell 
aw 

ell 
)----_Tell 

A 8. Tree-organized pronunciation lexicoll. 

Acoustic 
Model I 

Language 
Model 

Symbols: word end hypothesis A. B. C; 

Acoustic 
Model 

I : :  root of a tree copy for history A. B. C; 
bold line: acoustic model recombination within a tree copy; 
thin line: bigram language model recombination; 
dashed line: word boundary recombination for silence hypothesis. 

.. 9. Bigram LM recombination and intraphrase silence (5il) hand­
ling for a tree lexicon (three-word vocabulary: A,il,C) . 
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where .1" ,',"'" (I, .1') is the optimum predecessor state (i,r the hy·· 
pothesis (t 1 J) and predecessor word v. As bdclre, the hack 
pointers H" (t , .r )  are propagated according to the dynamic 
programming decision. Unlike the predecessor word I', the 
index IV for the W( lrd under consideration is only needed and 
kl lOWll when a path hypothesis reaches an end node of the 
lexical tree : each end node of the lexical tree is labeled with 
the corresponding word of the vocabulary. 

Using a suitable initia l itcatioll fOl' S =0, this eq uation 
includes the opti mization over the u nknown word 
boundaries. At word boundaries, we have to find the best 
predecessor word IJ tlW each word )li. As in the case of a 
l inear lexicoll, we define : 

lI(1V ; t) : =  Illax{ jJ( wi v) · Q" (t '.)II' ) }' 
I' 

where the state ,)", denotes the terminal state of word IV in 
the lexical tree. To propagate the path hypothesis i nto the 
lexical tree hypotheses or to start them up in case they do 
l10t exist yet, we pass Oll the score and the time index br:� 

fOre process ing the hypotheses tell' time ti'anlC t :  

Q,, (t - l,s = O) = H ( v ;t - I ) 

){" (t - 1, s = 0) = t - 1 .  

The details of  the algorithm are sllmmarized i n  Table 3 . 

Extension to Trigram Language Models 
So br, we have considered the ol1e�pass search approach 
only in the cont"ext of a bigram language model. To ex� 
rend the tree search method from a bigram to a trigram 
LM, we take i nro accoll nt that f(lr a trigram , the lallguage 
model probabi lities are conditioned 011 the previolls two 
words rather than 011 one predecessor word in the case of 
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Table 3. One·Pass DP Algorithm 
Using a Tree Lexicon. 

l'roceed over time t li'olll  left to right 
-� 

Acoustic Level :  Process (trce,state ) �hyp()theses 

� [llitiali>-:atioll :  Q,, (t- L , s  =0) = H ( J! ;t - I )  

Il" (t - I , S = 0) = t - 1 -
-

---.-�-
-
-�-

-�- �
-�-----�---- - �----� TimC' '11igmnent: Q,, (t ,  s) \lsi l1g 1)1' 

� Propagate hack poimel's l�,, (t , s )  
-� 

� PrUlle u n l ikely hypothese,s 
� Purge bookkeeping li sts 

Word 1';lir r .evel: Process word end hypotheses 

For each word do 
H ( JI';t) =,lrg max {p( )1' I J') .Q" ( t , S,,, ) }  

I' 

Po ( 1I'; t) =arg 1l1,�1X { p( 11'1 1') Q,. (t, S", ) }  

� Store best predecessor Po : =  vo( w;t) 
� Store hest· boundary '0: = n" 11 ( t ,Sw )  

a bigram LM 1 45 1 , 1 50 1 ,  1 57 1 .  'lhCl"eflll"e, the i t lcorpora­
tion ora trigram r ,M into the tree search method requ ires 
a restructuring of the search space organi7,atioll. l!ig, 10 
i l l ustrates the search space using a trigram modeL For 
each two�word history (u, JI), we introdllce a separate 
copy of the lexical tree ; in Fig. 1 0, the rool of «leI! tree 
copy is labeled with its two-word history. As in the case of 
a bigram LM , the stmcture of tbe search space is defi1led 
in such a way that, ill the search network, the probabi lities 
or costs of each edge depmd only OIl the edge itself (along 
with its start and end ,'eltex) <1111l nothing else. This pmp� 
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Symbols: , word end hypothesis A B, C: 
: root of a tree copy lor Ilistory AA, BA, CA, AB, oold line; aCQustic model recombination within a tree cOPY. 

thin line; trigrmn language modet rocombin8lion; 

ii .. 1 0. Trigram LM recombination for a tree lexicon (three-word 

vocabularv: A,B,C)}. 
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elty of the seareh l 1etwork allows LIS to directly apply the 
principle ofdYll<1mic programming. Note that i n  compar­
ison with a higralll I )vl organi zed search space, the s ize of 
the potential scarch SP,lCC is  increased drastically by all ad ­
ditional bctOl', which is the vocaL1ltlary size. Bence, i ll or­
der to keep the search cfl(Jrt managLlblc, ,m dliciem 
pruning strateg), as described bd<Jre is evell more crucial 
for the case of a trigram language modcl . 

For simplicit y, we h;1'/e omitted the siicllce copics in 
hg. 1 0. ' ro al low for intraphrase silence, we use the same 
concept as fiJI' the bigram language 1110del 1 22 1 , 1 461 . For 
the trigram language model rccombi nation, we need the 
identity of the two non-si lence predecessor words, ',md 
thcrcfelfe, .\ separate copy of the s i lence model is reCjuired 
fllr each pai r of nOIl-si lencc predecessor words.  

Refinements and Implementation Issues 

To obtain all esti mate of the overall ilu mber of stat'e hy­
pothescs, we consider a typ ical task such as the 20k-word 
NAB task 1 291 : 
.II!. 20,OOO-word vocabu bry Witll a 65,OOO-arc tree for tbe 
pronunciation lexicon 
.... B igram language model 
A Six states per [-IMM arc 

For this task, we obtain the i(ll1owing size of the poten­
tial searcb space : 

20k trecs · 6Sk arcs/tree · 6 liMM statcs/arc =7.8 · 1  oy I IMM 
states . 

. J 'hercfore, in Jill I DP search, tbere arc rhis many f-TMM 
stat�s tell' which the Dl' r�cLlrsioLls have to be evaluated 
every l O-ll1s time framc of the i n put signa l . [ 1 1  contrast' 
with this astronomic n u mber, the experiments wi ll show 
that, without loss in recognition accuracy, it is suffIcient 
to evaluate ouly  1 0,000 and fewer state hypotheses on av­
erage per l O-llls time fj·anlC. 

Pruning Refinements 
Evidently, ful l  search is prohibitive.  As a I"CSlJit, we usc the 
time synchronous heam search strategy, where, fiJI' every 
time tl',Ulle, on ly the most promising hypotheses arc re­
tai ned . The pruning "[1proach consists ofth rec steps that 
arc perfcmned eyery l O-l11S time fi-ame 1 73 1 :  
A Acoustic j!l'zmin!T is lIsed to relain only hypotheses witb 
a score c lose to the best state hypothesis ji ll' further con­
s ideration . Denoting the best scoring state hypothesis by 

QIIC (t) : '" max{ g, (t , s ) } , 
( J'J J 

we prune a state hypothes is (t , s ; v) if: 

The so-ca l led bcam width, i ,c . ,  the I lu mber of surviy­
i ng state hypotheses, is control led by the so-cal led acous­
tic pru uing th reshold F'l t : '  

The basic idea of the language 
model look-ahead is to incorporate 
the language model probabilities 
as early as possible into thE� search 
process. 

A ],anguC/;IJe rnodel pruninlf (or word tmd jn'lminlf) is only 
applied to tree start-up hypotheses as fol lows . For word 
end hypotheses, the bigram I ,M probability is incurpo­
rated into the accumu lated score, and the best score tilr 
each predecessor word is lIsed ro start up the correspond­
ing tree hypothesis or is l1ropagated into th is tree hypoth­
esis if it already exists. The scores of these tree start-up 
hypotheses are s ubjected to an add itional Iml lling step : 

Q/M (t) := max{Q" (t , s  0= 0) }, ,. 

where s 0= 0 is the fictitious state of the tree root used for 
i nitialization.  Thus, a tree start-lip hypothesis (t, s 0= 0; v) is 
removed if: 

g, (t ,s ", 0) < I' lvI . () 1 M  (f), 
where fu,[ is the so-cal led h111guage model pruning 
threshold . 
... fliJtqgram prunint/ limits the number ofsmvivillg state hy­
potheses to a maximum Ilumber (Ms/II ) '  T i' Ibe number of 
active states is larger than MStiJ , oll ly the best !V!Sta hypotht> 
ses are retained while the other bYf)( )thescs arc rcmoved . This 
pruning method is called histogram pruning because we lise a 
histogram of the scorc� of the active states 1 73 J .  

Language Model Look-Ahead 
The basic idea ofthe bnguage ll1odel loolhlilead is to in­
corporate the l anguage model probabi l ir ies as ear ly as 
possible into the search process and thus illto the associ­
ated prul l ing process, This is achieved by antici pating dle 
LM probabi l i ties as a function of the nodes of the lex ical 
tree so that c<1(b node corrcsponds to the maximum LM 
probabi l ity over a l l  words that call be reached via this spe­
cifIC node.  Using the bigram [ ,M conditional probabil ity 
p( lVl v), the aillicipated LM probabi li t.y 1l: ,, (s) fClr state .f 
and predecessor word JI is ddined as : 

n ,, (s) : o=  max p(wl v), lPC W( .I ) 
where W (J) is the set of words that can be reached from 
tree state .l'. 'strictly speaking, we shou ld l ise the tree nodes 
(or arcs) rather than the states of the HMMs that arc asso­

ciated with each arc. H owever, each initial state of a pho­
neme arc can be identified with its associated tree node. 
The concept ofamicipating the 1 ,M probabil ities lilr each 
node of the lexical tree is i llustrated in rig. 1 1 .  
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To I<eep the computational 
(ost dowh I" this forward� 
recombination schemey it is 
important to have direct access to 
each new successor hypothesiis. 

To i ncorporarc the antic ipated LM probabilities into 
the three prun ing operations of the search, we combine 
the anticipated LM probabilities with the score of the hy­
pothesis (t , .I' ;  v) and define a mod ified score 12" (t , 5) :  

c\, (t , 5 ) ; =  1t,.  (s) · 0" (t , s). 

lior the acoustic pru ning, we compute the mod itied 
score of the best state hypothesis : 

(5 lC (t) := max{ O,, (t , .r ) } ,  --...,-" , ( I', j' ) '--'" 

and prulle a hypothesis (t , s ; v) if 

The sallle modified score is used for the histogram 
pruning . As the recogn ition experiments wil l  show, the 
!lumber of state hypotheses can be significantly reduced 
by this look-ahead. 

When computing all entries oC the table n,. (s) bdem> 
hand, we have to keep a hugc table in main memory. In the 
task under consideration, about 20,000 . 65,000 antici­
pated LM probabil ities would h ave to be stored. Since the 
size ofthis table is prohibitive, we compute the anticipated 
LM probabilities few the tree copies on de11l,1I1d and cache 
these anticipated probabilities in a look�lIp table t()1' a maxi� 
mum of� say, 300 [ ,M I()ok�abead trees . So, before com­
puting the anticipated LM probabilities, we first check 
whether or not the probabi lities of the required tree copy 
already exist ill the look-up table. I t l  add ition, it is often 
Sllfficient to compme the anticipated LM probabilities 
only fc)r the first, say folll', arc generations ofthe lexical tree 
[57] .  This LM look-ahead 01' si m i lar variants arc now used 
in many systems lix large-vocabulary speech recognition 
l2 1 ,  1 3 1 ,  15 1 , 1 6 1 , r491, 1 50[, 154 1 , 1 63[ ,  l731-

Implementation 
Although a full  description of the implementation is  out· 
of the scope of this article, we will present some conccpts 
and detai Is. 

Dynamic Search Space Construction 
I n  this paragraph, a dynamic construction ofthe search is 
derived fi'om the time-synchronous DP beam search by 

i ntrodllcing a set representation of the active hypodleses . 
Tile basic dillicli ity with the search implementation is to 
periCll'll1 the recombination of path hypotheses dliciently 
without exp l icitly constructing the overal l search space. 
The nav'Ie implementation oCthe D1' equations would re­
quire that each state hypothesis be processed or at least 
checked whether it is sti ll  active. Thus, there would be a 
computational overhead that i� proportional to the nUIll­
her of state hypotheses in the overall search space. 

Por search using a l inear lexicon, the dynamic con­
struction of the scarch space W,lS dcscribed in detail in 
1 471 .  To arrive at all efficient implementation till' tree 
search, we usc the fol lowing concepts : 
k Set rejm:5entation of actiFe hypotheses: For each time 
fiame t, we maintain sets of active hypotheses. For effi­
ciency reasons, these active hypotheses arc stored in static 
arrays whose maximulll sizes are specified bef(lrehand. 
These hypotheses arc organized in a three-level hierarchy: 

... At the h ighest level ,  we have the set of activc trees or 
predecessor words ]1 • 

... For each tree, there is the set ofactive pholleme arcs . 
Due to our notational scheme, the arc dependcnce is 
not explicitly captured in the DP equations . 
... For each tree V and t()J' each arc, we have the set of active 
1 1MM states. Each state hypothesis consists of three parts, 
namely state index J, score Q" (t , 5 ), and back pointer 
B,, (t , s). 

A Forward ])P recombin.ation. :  DP recombination occurs 
at three levels : word boundaries, phoneme boundaries 
and llMM states . To conti ne the computational eHclrt to 
the active search space, we COllvert the l) I' recursions 
fiulll the usual backward direction (as expressed by the 
equations) into ajorward d irection ; us i ng the active hy­
potheses, we construct dynamically the set ofrucceJ�mr hy­
potheses. To keep the computat ional cost down in tI;is 
((lI'\vard-recol11binatioll scheme, it is important to have 
direct access to each new successor hypotheses. 

This is achieved by all array-based representation of sets 
in combinatiol l  with a stade of ind irected pointers 1 3H, pp. 
2gl)-290x], [47], r7g, pp. 1 2 1 - 1 23] . ln this way, there is 
no need to search through l ists to find a hypothesis . This 
forward recombination is of varying importance at the 

, ...... . . . . . . . .. y-- W(s) 

v 

A I I. Anticipated LM probabifities for LM look .. ahead. 
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three levels. )-lor the I IMM state level, there is 110 real prob ­
lem because within a phoneme arc of the tree, there is a 
maXiml1l11 numher of six states . At the arc level, i .e., i i lr re­
combination across pholleme boundaries, this is much 
more important because, illr a fixed tree, there might be up 
to 65,000 active arc hypotheses. 

There is one condition fCll" which we eal1not usc the di­
reel access approach, namely the 1 ,N[ recombination fill" a 
trigram r ,M. '1 'he problem is that there might be up to W' 
predecessor histories telr a vocabu lary of W words. '[ 'here­
f(lre, we repl ace the direct access method by a hashing ,tp­
proach [59 1 .  The index tCll" the hash table is compLlted by 
hashing a bijective li.l11ction of the word pair index (u, v), 
e.g., flu, v) = w ·  U + F. 

Traceback and Garbage Collection 
l"or large-vocabulary recogll ition, it is essential to keep the 
storage costs as low ,1S possible. To this p1lrpose, i l l  addi­
tiol l to back pointers, we usc a special traceback array 
whose entries keep trade of word ellll hypotheses. ' ['he con­
cept of this traceback army is based on an extension of the 
traceback method presemed in .I:'ig. 7. For each word el lll 
hypotbesis, we store the fol lowing pieces of int(Jrlnarion: 
word il ldex, end time ofthe predecessor word, score, and 
back poi nter, i .e., a poi l1ter i nto the array itself for finding 
the predecessor word end hypothesis . The md time ofthe 
predecessor word is not rea l ly needed, btlt llsciill telr diag­
nostic purposes . During the recognitioll process, many oC 
the hypotllesis entries ill the traceback arrays will  become 
obsolete because their path extensions die out over time 
dlle to both the recom binatiol1 and the pruning ofhypoth­
eses. 1 11 order to remove these obsolete hypothesis entries 
from the traceback arrays, we app ly a garbage collection or 
purging method as f(ll lows . Each entry of the traceback ar­
ray is extended by an add itional component called the 
"til11e stamp," as suggested by Stcinb iss i7 1 J .  Using the 
back poi nters n,. (t , s) ofrbe state hypotheses, we pericJrll1 a 
traceback tClr each hypothesis and mark the tracehaek ell­
tries reached with the current time frame as time stamps, 
Hence, all traceback entries that llave a time stamp dit1cr-
,.....- -. - -��-.-- - --'- . . .���". - ........ ---�� . 

. ,Table 4. �ical Memory Requirements for the DP 
Tree Sean: (lO,OOO,WOi'd Task, Bigram Langullge 
Model, Single Best Sentence) Without Storage for 

'------..:._ Acoustic and Language Model. 

Entry 
Type of Array K Entries Strncturt.: 

(bytes) 
TlU: hypotheses 20 3 4 

Arc" hypotheses 20() 2 · 4  

Srate llypotilcses GOO 3 · 4  

Auxiliary arc 
hypotheses 6S 4 · 4  

'fraccback array 200 S · 4  

Total amOUllr ] ,OH5 

Kbytt.:s 

240 

1 ,600 

7,200 
-� 

1 ,040 

4,000 

] 3,820 

The basic idea is to represent al l  
these word sequences by a word 
graph in which each edge rE�pre­
sents a word hypothesis. 

ent [i'om tIle current time li'<1me can be re-used to store new 
hypotheses. Note that this garbage collectioil  process is 
controlled llsing only the .,tMc h)'l)()these.1' al/d reachahle 
traccbac/, entries so that the number of dead IT<tceback e\1-
tries docs not matter. [n principle, this garbage col lection 
process call be pC1'I'cJrl11ed every time tt'anlC, but to reduce 
the overhead, it is suiliciellt to perfcml1 it i l l  regular time in­
tervals, say every 50�th time fi'ame. 

Memory Requirements 
By llsing the above methods, we obtain typical memory 
costs as shown in Table 4. \io]' each 0(-" the various arrays 
used, we simply report the I lumber of bytes req u ired 
without going i l lto al l teeh lliGl l details. 'fhe three arrays 
of tree, arc, and state hypotheses store the corresponding 
hypotheses per ti me fi'ame, and thus, we have a maximum 
of 20,000 tree hypotheses, 200,000 arc hype l\ heses (over 
all  tree hypotheses) ,  and a tota l of600,OOO stelte hypothe­
ses (over a l l tree and arc hypotheses) . \;or the recombina­
tion at the arc level,  al\ aux i l iary array i s  included in Table 
4. As a I"cS11 ft,  the total storag� cost tClr thc 20,OOO-word 
task is about [ 4  Mbytes fCl!' the search procedure . 

One-Pass DP Search for 
Word Graph Construction 

The mai l \  idea oC a word graph is to come up with word 
alternatives in regions ohhe speech s igna l , whcre the am­
biguity about the actua l ly spoken words is high. The ex­
pected advalltage is  that the acoustic recognition process 
is dccoupled fl'Ol11 the application or a complex lallguage 
model and that th is language model call be appl ied in a 
subsequent postprocessing step. Examples of long-span 
language models arc cacbe�bascd language l 110dels [ 3 11,  
trigger-based langu age models 1 74 1  and IOllg"rangc 
trigram language models 1 1  SI that can he viewed as sto" 
chastic lexicali;r.ed contcxt-f i'ee grammars. The !lumber of 
word alternatives should he adapted to the level of ambi­
gu ity in the acoustic recognition. 

Word Graph Specification 
In this section, we wi l l f{ ll"lllally spec ify the word graph 
generation problem and pave the way 1" )1' the word graph 
algorithm . We start with the fllndamclltal problem of 
word graph generat ion : 

H ypothesii',ing a word IV and its end time t, 
how call we filld a l imited number of "most 
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likely" pn:decessor words? This task is dirliclllt 
since the start time of word l)J may very well de­
pend on the predecessor word under consi der­

ation, which results ill all interdependence of 
start times and predecessor words. 

In view of the 1110st successful one-pass beam search 
strategy, what we want to achieve conceptually is to keep 
track ofworci sequence hypotheses whose scores arc very 
close to the locally optimal hypotbesis, but that do not 
snrvive due to the recombination process .  

The basic idea is to represent al l  these word Se(lllCl1CeS 
by a word graph in which each edge rcprest.:nts a word hy­
potht.:sis. Each word seq uellCt.: contained in the word gl"aph 
should be close ( in terms of scoring) to tht.: s ingle hest sell­
tence product.:d by the ollt.:-pass algorithm. I I1 tbe one-pass 
a lgoritbm {ClI· computing the singlc-ht.:st sentence, we have 
cOll1plltt.:d the hypotheses i ll a time-synchronolls bsbioll 
and p ropagatt.:d tht.: hypotheses tt·om left to right over the 
time axis. We wil l  use the same principle of time synchrony 
t(lr the word graph generation. To this  purpose, we intro­
duce the tClllowing ddinit ions: 

h( W;l, t): = nlax 1'1" (X� 1 1 ' < ' I I iJJ) " 1 1 1  

= Conditiona1 probabi l ity that word w 
produces the acoustic vectors x�,  I 

= J oi nr probabi lity ()fobserving the acoustic 
vectors x : a nd a word se(l llence wi' w ith t.:lld 
time t. 

Using these ddinitions, we can isolatt.: the probabi lity 
contributions of a particular word hypothesis with respect 
to both the language modd and the acollstic model (see 
L,'ig. 1 2 ) .  This dccompositioll call be visualized as ieJllows : 

X
I
· · · ,· · · , Xt x H J · ·  · , xl X I + 1  , . · · ,x ,!" 

'-----.r------- '---------y----'-----.r-------C( wit - I ; <) II( WII ; 1 ,1 )  

l,'rom th is decomposition, it is dear that the score 
G ( w (' ; t) can be computed £i"om tht.: scores (" (W�'-J ;1) and 
!J( w ;  1, t) by optimizing over the unknown word boundary 1:: 

G(JP J" ;t) = max{l)r ( JI) " I Jl!�' 1 ) . G (W{'-I ;1) · h(w "  ;1, 1") } 1: 
= Pr( w " I IP{,-1 ) . m<1x{C; (w(,-1 ; l) · h (w " ;1, t ) } ,  1: 

w here we h a v e  lIs e d  the  conditional p r o ba b i l i ty 
Pr ( tv "  l IP;' J ) ofthe languagt.: model .  To construct a word 
graph , we i nrroduce a [(mna1 ddi nition of the word 
bou ndary 1( W (' ;t) bt.:twecn the word hypothesis w" ending 
at time t and the predecessor sequence hypotht.:sis W(,- I : 

1:(t ;w (, ) := arg max{G( IP {' I ; l) · h(w " ; 1:, t ) }, T 

It shou l d  be emphasizcd that the language model 
probabi l ity docs not atYect the optimal word boundary 

SC 
Qi u o ::;: 
2l 
c i1' 
'* 0: e-------------f---� .. -

.

. 
1 

w;, 

A 12. Illustration of path decomposition. 
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A 13. Illustration of the word pair approximation for two cases. 
Top, good example: the predecessor word u",. , : �  v of word 

li", : � w is sufficiently long. Bottom, bad example: the predeces­

sor word u'" - 1 := v of word u", : = w is too short. 

ami is, tilerdiJlT, omitted in the definition of thc word 
boundary fll nctioIl 1( W {' ;t) .  Tllll� Cll· we have considered 
the most genera l case in two aspt.:cts : h rst, the word 
boundary fi.l11ction has not been constra ined in  any way. 
Second , the languagc l110dd has not been constrained i ll 
any way. Wc will  first narrow down the language 1llode l 
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to the widely llsed m�gram language models and come 
hack to the word boundary fUllctioll later. 

Exploiti ng an m�grall1 
'
language model p(u IlI l u :1I ' ), 

we Gll1 recombine word sequence hypotheses at the 
ph rase level if they do [lOt ditkr in their linal (m � I )  
words . TllercilllT, i t  is slltliciem to d istingu ish partial 
word sequence hypotheses 11' :1 ollly by their fin,\1 words 
U ;II : = JI! ;:- 111 1 2 '  The corresponding score is denoted by 
H(ti�' ;t), and is defined as t"lle joi nt probabil ity of gCl\er� 
ating the acoustic vcctors x , , ,  ,XI ,md a word sell Liellce 
with ending seqllC11ce 11 ;1 and cndil1lf time t :  

H (U;I ;t) :  =' ma x { /'1' ( IV  t )  · l'r(x � I lJ!;1 ) : 11' ;; Jil l 2 '""' U;' } ,  IJ'j' 
where, as expressed by the notation, the linal portioll U �' of 
the word sequCl1ce IV;' is not subjected to the maxill1iza� 
tion oper,\tiol1 . Using the ahove definitioll, wc C,\ I[  write 
the dynamic programming equation at the word level :  

H (14;" ;t) = max II (It (" ; t )  
" I  

with iI (1J "I · t) · � /}(U IU IlI-I ) I I (u "l-l · t(t · lt ill ) )  ,\ 1 ) , - " ' til ' [  I ') , ' l 

l Ien.:, we havc lIsed the fUllction t(t ; u {" )  to denote the 
word boundary betwecll U iii-I and Vi !ll [i ll' the word se� 
'luellce with fi na l portion 14{" and end time t . Note that 
we have inc l uded the language model to achieve a better 
prul1il1g strategy. !:-lor the word bou l1dary itseli� we have 
to llse the quantity H (14;1 ;t) rather than G( w� ; t) :  
t(t ;u :'1 ) : =..c ilrg max{ H (14 :11 1 ; t) lJ(u ill ; t, t ) } .  " 

Word Pair Approximation 
So 61' this has been just ,1 1lotatiollal scheme iC lI' the word 
bOllildary function t(l' ;u.{IJ ). The crucial assumption now is 
that the depelldence of the word boundary t(t ;u :" )  can be 
confined to the {'lnal WOl"d pair tt ;;; I ' The j ustification is 
thatthe other words have virtually 1 10 dICct 011 the position 
of the word b()li lllbry between words U 'II I and u ill [67 [ .  
Thi, s()�cal led word pair ,lpproximarioll is  i l lustrated i n  
hg. 1 3. l:'or ,] word hypothesis lJ! and a l l  end time hypothe� 
sis t, this figure s hows the time alignment path ill!' the 
word II' "" zt 11/ itself and its predecessor words 14 ;;;=� to i1 llls� 
H'ate the ddinitio!l of the word bOl]t1cbry 'I(l ;U {I' ). In gen� 
eral, tbis boundary, i .e., the start time of word JlI as givcn by 
time alignment, will depClld Oil the immediate predecessor 
word tt III- I '  The questioll of whether this  dependence 
reaches beyond the imillediate predecessor word is illl1s� 
trated by showing a goml (l lig . 1 3, lOp) and a bad ( Iiig. 1 3, 
bottom) example. !:-lor simplification, we have assumed 
that the rderence models of the predecessor words 
u 111-1 =c a and 14 III 1 =' b have the same length. From this fig� 
me, it is obvious that the assumption of the word pair ap� 
proxil1lati o l l  is satisiied if the predecessor word 14 111 . 1  is 
sufficiently long. All time alignment paths then are reeOI11� 
bined bet( )l'e they reach the final state of the predeces,,01' 

word. I n  tl)['[ml iae, we express the word pair <111proxima­
tion by the equation : 

i . e . ,  the word boundary flll1ction does not depend Oil 
'kt t! 2 .  AsslIming the word pair approximatiOlI, we have 
the fol lowing a lgorithm flll' word graph gel1eration: 
AI.. At every time frame t, we consider al l word pairs 
14 ;;;- 1 =, (v ,  w). Using a beam search strategy, we will li mit 
ourselves to the most probable word pairs. 
A For each trip Ie (t ; )J ,  w), we have to keep tr<1Ck of: 

A the word boundary t(/ ; V ,  IV) 
.. the word score h(J1!;t(t ; v ,  w),t) 

A At the end ofthe speech signal, tbe word graph is COl[­
s tl'llcted by tracing back through the bookkeeping lists. 

As long as only a bigram l anguage model is used, the 
word pa i r approximatioll is stil l  exact (assumi ng a eonser� 
vatively l arge pruning threshold) .  All evell [lllther simpli"  
(Ication i s  the single word approximation llsed in [70 [ to 
producc a l i st of lt�best sentences. 

Word Graph Generation Algorithm 
The com pu tatioll of the word boundary fu nction 
t(t ; 1', 11') has not been specified yet. Tn principle, it can be 
computed by using either thc so�cal1ed two- level a lgo� 

rithm 1 65 J or the oIle�pass a lgorithm descrihed before, 
both of which cOI11I.Jllte only the hest s ing le word se� 
quellce. However, to apply beam search, it is Illore conve­
nient to usc the one�pass algorithm prese1lted in the 
precedillg sectioll. Using the tree organization of the pro� 
l1uIlciatioll lexicon, the hypotheses have been distin� 
guished by the predecessor word anyway. 

To extend the otle�pass word algorithm from Sill� 
gle�best sentence computation to word graph generation, 
we only have to combine the two equations I( lt" calculat� 
ing the word bou ndary fUllction t(t ; v, w) and the word 
score h(w ;t,t) .  The word boundaries are obtained using 
the b,lCk pointers at the word ends : 

'I(t ; J!, IF) =c nil (t ,S ", ) .  

For each predecessor word v along with word boulld� 
ary t =  'I(t ;  v, w), the word scores arc recovered using the 
equatiol1 : 

h (w " t  t) := O'l (t ,S", ) , , H(v;t) , 

where we obtain l1 ( w ; t )  as usual : 

H ( JI) ; t )  = max{jJ(wl v) ·  QJI (t ,S ", ) } .  
I' 

The details of the a lgorithm are summarized in Table 
5. The operatiOlls arc organized in two levels : the acoustic 
level and the wmd pair level .  At the end of the utterance, 
t he word graph is constructed by tracing back through 
the bookkeeping l i sts. A third level, the phLl:,e level, has 
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been included f(x the final recogn ition. Depending 011 
whether the phrase-level recognition is carried out in a 
time-synchronous fashion or not, we can d istinguish the 
fi:lllowing two strategies by lIsing a trigram or h igher 
m-gram language model : 
.40. r:xtended one-pass approach : The word pair approx i ma­
tiOll serves only as a s implitication in the olle -pass strategy 
in order to avoid the large number of copi es of the lexical 
tree as required by the language l1lodel. 
A Two-puss upprouch : l�irst, a word graph is constructed . 
Then, at the phrase level, the best sentence is compllted 
lIsing a more complex language mode\. An example of a 
language model that is diHicult to 11am1le ill integrated 
search is a cache-based language model [ 3  I ] .  
From the concepts dcvclopcd so Eu', it shou l d  be obvious 
that there i s  only a gradual diHerence between thesc two 
strategies. 

What has to be added to the single-best one-pass strat­
egy, is the bookkeeping �lt the word level : rather than just 
the best surviving hypothesis, tile algorithm must memo­
rize all the word sequence hypotheses that arc recom­
bined into j Llst one h ypothesis to start up the next lexical 
tree (or word models) . I n  the single-best method, only 
the s urviving hypothesis ( p o , to ) has to be kept trade or. 

�-�- - �-�---."- -

Table s. Extension of the One�Pas5 l>P Algorithm 
, from Single Best Sentence 

to Word Graph'Genenitiqn. 

Proceed over time from left to right 

Acoustic Level: Process (tree,statc) -hypotheses 

- Initialization: Q,, (t - l , s  =O) = di(F ;t-l)  

n" (t- I , J' ""O) = t - l  

- Time alignment: Q,, (t, s)  using DI' 
- Propclgatc belek pointers B,,(t, J')  

- Prune lllllikcly hypotheses 
- i'l1l'ge bookkeeping l ists 

--

Word Pair Level :  Process word end hypotheses 

"single best": fiJI' each word w do 

H( w;t) =arg m,�x {p(w I J» Q" (t, S, ,, ) }  
Fo ( IP;t) = argmax {p(w lp) Q" (t , S ,,, )} 

j> 

- Store best predecessor 1'0 : =  l'o ( w; t) 
- Store best bOl111li<11'}' 1:0: = lJ" " (t,S", )  

._-

"Word graph" : i()r each word pair ( p ,  ll') store 

- Word boundary ,It; P, IV) : =  B"(t, S,,, ) 
- Word score h(w;1:, t) : =  Q" (t, S,,, ) /  H ( )) ;.) 

-Phrase Level Search (optional) 

An example of a word graph i()r a three -word vocabu ­
lary A ,f1, C (including si lence at the sentence begi n ning 
and end ) is shown in Fig. 1 4 , The edges stand for word 
hypotheses, where the circles along with the word J1;1 ll1e 
denote the word end. Note the tc)l lowing princi pal prop­
erties , which arc a result  of the word graph algorithm :  
A There i s  a maximu lll ti:lI' the numher of i ncoming word 
edges in any node, name ly  the vocabu lary size , which is 
the maximum number or possible predecessor words . 
A There is no maximum ii:lr the number of outgoing 
word edges; this effect is due to the Elct that, even fiJI' the 
5.11ne predecessor word, a word call have d i l'tCrent 
end-time hypotheses. 

There arc two rciiuelllellts of the word graph method 
which suggest themselves: 
A l:or short words l i ke articles and prepositions, the qual­
i ty of the word pair approximation might be question­
able, and word triples or h igher word tn-wples might be 
llsed i nstead in tllese elses . 
... Long words witll identical ending portions may waste 
search effi.Jr[ and could be merged wIlen t( )rming word 
pairs in the word graph algori thm. 
I11 both cases, the obvious remedy is to make the word 
copies dependent 011 a s u i tably defined history using the 
pholletic script of the predecessor words.  

Another rdinel1lent is collcel'lled with the way ill \\lhich 
the word graph is pruned. vVhat we have used so Ell' could 
be ca l led jiJrlJlurd onl)' p r u l1 ing as o p posed to jilr­
ward-bucl<wurd pruning, which is .t l inle bit better, bllt docs 
not al low strict online operatioll [32 [, [ 5  L, pp. H I  I j , [G8 ] .  

For the sake orelarity, we have not included the case of 
intraphrase s i lence in the presentatioll of the algorithm. 
The algorithm call be extended till' th is case. 

Experimental Results 

The search cOl1cepts presented in th is article arc used i ll a 
large number of systems. or course, the technica l detai ls  
of the i mpicmellt<ltioll lllay vary b'om casc to case [ 1 [ , 
l2[, [ 3[ ,  [ 4  [ ,  [ 6  [, [ 1 6] ,  [ 1 8 [, [ 1 9 [ , [21[ ,  [ 36 [ ,  [ 39 [ ,  [49[, 
150] ,  [ 52 [, [ 69 [, [8ll The exact illlplemelllatioll oft b i s  
artic le waS llsed i ll a llumber o f  experi ments [ 5 [ , [ 48 [ ,  
[ 54 [ , [ 5 5 1 ,  [ 56[ ,  [ 5 7[ , [5R [ , [ 59 1 . 

I-I ere, we wil l  review on ly MJme ofthese experiments. 
All recognitioll experiments were carried out Oil the 

A R PA North American B usi ness (NAB'94) I I I  develop­
ment corpus [291 . The test set comprised 1 0  lemale and 
1 0  male speakers resu l ti ng i ll 3 LO  sentences with 7,3 R7 
spoken words . The recognition vocabulary used i ll the ex­
per i m e 1 l ts c o m p r i s e d  6 4 , 0 0 0  w o r d s  w i th a n  
ollt-ofvocabulary rate of 0. S ')11 on tile test d ata. The 
training of the emission pl'Ohabil ity distribl11'iolls was per­
tCll'med Oll WSJ () and WSJ 1 train ing corpora. In this 
task, 4,058 context dependellt phoneme models were 
used, shari ng 4,699 emissioll probabi l ity distribmiolls 
[ I  R'[ . For these experi ments, we llsed a total of 270,000 
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T ,aplac ian mixture densities with a s i Ilgle pooled vector of 
absolute deviations for each gellder 1 43 1 .  

Search Space 
I I I  the first series ofexperi1l1ellts, we studied the size ofthe 
search space i ll the beam search strategy. The language 
model ,vas either a bigralll or a trigram I ,M. The search 
effort was measured in terms of the average number of 
tree and state hypotheses after recombination ,1IK\ prun­
i ng. The acoustic pruning threshold was varied, whereas 
both the LM prunil1g threshold and the maximum nUI11-
bel' of state hypotheses were kept Excel. 

The resu lts arc showll ill Table 6. These tests were car­
ried out using a unigram I ,M look-ahe'ld . [ .ooking at the 
search efhll't, we can sec tlMt the resu lts arc comparable 
for the bigram I ,M ,ll1d the trigram I ,M.  For both types of 
[ ,M, there is ,I saturation efleet i{lI' the word error rate; be­
yond 30,000 state hypotheses, the word error rate re­
mains virtually COl1stant. When repbcing a tr igram 1 ,M 
by a b igram LM , the <1Verage numbers of tree and st,lte 
hypotheses arc affected in d itlCrent ways. Whereas the 
number of state hypotheses remaills more or less 1111� 
cbanged, the number of tree hypotheses goes up, but oI lly 
by a bctor oi'two or less. Despite the porential m.axil1lum 
of W 2 = 64,0002 = 4.1 · I ()Y possible tree hypotheses for 
the trigram I ,M, the average number is only 200 or less .  

LM Look-Ahead 
The iiecond series of recog1l1t1oll experiments is con­
cerned with the effect of tile I ,M Jook-ahead Oil the size of 
the search space and the word error r'lte. Table 7 shows 
the results of several reeognitiol1 tests . As bdenT, the tab le 
shows the size of the se,lrch space i l l  terms of the average 
number of stare and tree hyporheses and the word error 
rate . [n all initial experiment, we perf(lnm�d three tests 
without any I ,M look-ahead, lIs ing three d i lkn:nt values 
of the acoustic pl'lln i ng thresho ld . For the recognition 
scores, as opposed to the I ,M I()( )k�ahead scores, we used 
",I bigram I ,M in t hese tests. To ,lchieve a word error rate 
of 1 3 .99·6, all average of 1 6H,O()O state hypotheses per 
ti me frame arc 11eeded . By us ing the u lligram r ,M 

O--s.i4 

.- -�--� ... -�.��--� .--- --_. -���. -. .  . . 
Table 6, Search Space and Word Error Rate (WER) for 

64k�word NAB Task (Unigram LM Look-Ahead) • ... 

Search EtIOl't WER 
LM Type --� - - .-�'- -�"-

'j i'us State.l· % 
Bigram 15 5 ,600 22. 1 

( 1'1' "" 237) 24 LO,KOO 1 6.0 

37 20,200 1 4 .5  

5 1  33,700 1 3 .9 

65 50, 1 00 1 3 .9 
_ .  ..-��.-� 

99 1 1 6,SOO 1 3 . 8  

Trigram 1 7  1 ,800 17. 1 

( 1'1'= 1 72) 29 3,900 1 4.0 

48 g,2()O 12.g 

73 1 5,800 1 2. 1 

100 27,600 1 1 .9 

125 42,800 1 1 .9 
J 45 59,600 1 1 .9 

._--_. �� � 

20S 1 33,600 1 1 .9 �. --�� 

look-ahead, we reduce the search sJMce by a Cletor of three 
wi thout allY loss ill recognition accuracy. Pin<llly, by lIS­
ing the bigram [ ,M look-ahead, the search dl(Jl·t is further 
reduced by a factor oj'six without a loss i ll recogn ition ac­
CLlracy. Although the overhe,ld causcd by the bigralll LM 
look-ahead is 20(J.6 and thus, not negligible, i1 pays oH' in 
terms of overal l  speed-up of the search jll'O,oeSS.  As ;1 re­
sulr, we obrain (ll!' rhe [lnal size ( lC the actiw .... earch space 
7,900 state hypotheses on average, \vhich should be com­
pared with the total search�space s ize (sec " Refineme11ts 
alld Implementation [sslles") : 

64k trees · 300l� arcs/ tree ·6 HMM states / arc = 

1 .2 . 1. 0 1 1  I I M M  states . 

For a 20k-word vocabulary, the I ,M looic-ahe;ld overhead 
is much smaller, na111e ly about 3% rather ti lan 20')11 . 

Time 
--- - -� -----� --- --� .. -----

11 1 4. Example of C/ word graph (three-word vocabulary: A,B,C). 
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Table 7. Effect of LM Look-Ahead on 
. Search Effort and Word Error Rate (WER) for 

64k·word NAB Task (Bigram LM). 

LM Look-Ahead Seal'eh Effort WER 
Type OlJerbead 'l hcJ" States '!1) 
110 42 1 67,800 1 3 .9 

- 33 1 3R,200 1 4.0 

- 25 105,300 1 4.4 

Unigram 
( PP =  1 257) - 65 50, 100 1 3 .9 

Bigram 
( PP = 237) 20'!f, 28 7,900 1 3 .9 

-- --

Having optimized the search strategy i l l  such a way, 
we typically fInd that 70% or more of the total recogni ­

tion cthlrt is !lOW ,�pent on computing the log-likelihoods 
of the emission probability distributions ill the HMMs 
r58 1 .  To speed up these computations, several methods 
have been proposed r I l l , 1 1 2 1 , rSR I . 

Word Graph Method 
I n  a third series of experiments, we compared the inte­
grated search with the word graph mcthod in conjunc­
t i o n  w ith LM rescori ng.  T h e  go,ll here was to 
experimentally eheck the validity of the word pair approx� 
im<ltion and to show that there is virtual ly no loss in per� 
t()J't11ance by us ing a word graph search rather than an 
integrated search. The res u lts are shown in  Table R,  t:or 
the word graph method, a word graph was generated llS­
i ng a bigram I .M tell' each test sentence. Usi ng the bigram 
1 �M, the s ingle-best sentence word error rate was 1 3 .91% . 
To be on the sate side, fill' cach sentencc, the word graph 
was generated usi ng a conservatively large beam, namely 
1 1 3  tree hypotheses and 39,1 00 sl'ate hypotheses on aver­
age. By rescoring eaeh word graph with a trigram LM, 
the word error rate went down to 12 . 1  'Xl . 

1<or the integrated search strategy llsing the trigram 
LM, Table 8 shows three recognition experiments that 
were selected lium Table 6. These experiments resldt in 
search e[[i:llts of8,200, [ 5 ,800, and 27,000 state hypoth­

eses, and word error rates of 1 2 . 8 % ,  12 . 1 % , and 1 1 .9%, 
respectively. Also fi'olll Eg. 6, we know that even by in­
creasing the beam size to 133 ,600 state hypotheses, there 
is no improvement in word error rate over 1 1 .9%. COIll­
paring this best word error rate with the word error rate 
of 12 . 1  % till' the word graph method, we can d raw the 
important conclllSioll that the word pair approximatioll 
used ttlr the word graph general-ion does not virt Llal ly de­
teriorate recognitioll accmacy. Again , we wou ld l i ke to 
emphasize that the experiments reported in Table 8 do 
not al low a comparison in terms of search effort sillce the 
word graphs generated were conscrvatively large . 

---�� �--

Table 8. Complitrison: Word Grarh vs. Integratect 
Search for 64k·word .NAB Tas (Urtigram LM . 

Method 

Word graph 
gcner;l1"joll 

+ LM 
rescoring 

Integrated 
scarcll 

. Look-Ahead). . 

LM type Search Effort 
Trees States 

Bigral11 
(1'1'=, 237) 1 1 3  39,1 00 

Trigram 
(1'1' = 1 72) . -

Trigr�lm 
( 1'1'= 1 72) 4R R,200 

73 1 5,ROO 

laO 27,000 

WER 
% 

13 .9 

1 2. 1  

12 .R  

1 2. 1  

1 1 .9 

In sLlmmary, we can say that these and more system­
atic experiments have shown r 56 1 that the word pair ap� 
proximatioll generates high-guality word graphs . 1 n 
conjunction with LM rescoring, it is competitive wi th 
integrated search. 

Extensions a nd Modifications 

There arc a number ofissues that have not been <lddressed 
in this article: 
A The look-ahead strategy can be extended to the acous� 
tic vectors and is then referred to as phoneme look-ahead 
1 22], 1 54 1 . 
A There is a type ofrecombinatioll that has not been COI1 -

.s idered so far, namely the so-called subtree dominallce 
P ], 1 21,  1 53 ] .  This concept results in a sort of m i n i max 
criterion and allows whole subtrces of hypotheses to be 
pruned d uring search u nder certain condit ions . 

.$. The search method can be extended to handle 
across�word phoneme models [501 . Tb is modification af­
fects tbe LM and acollstic recombinations in the fIrst arc 
generation of the lexical tree. 

it.. The search concept presented io; based on what is called 
word-conditioned structure of the search space. All alter� 
native is to consider a time�c()nditioncd structure, for 
which the experiments have shown only slightly inferior 
results 1 59 I . Such all approach has a larger resemblance to 
staek decoding rR l ,  160J , r61 1 , l63] . 
A The t r e e � b a s e d  s e a r c h  can be u s e d  in a fo r­
ward-backward concept, where a simplified lexicon tree 
produces forward scores at a small computational effort. 
A second pass, the backward pass, then produces the de� 
tailed scores and the final word sequence or word lattice 
r49].  By add i ng additional passes, we obtain the 
multi-pass approach [ l 6l 
A ' [ 'he search strategy presented here has been designed fi)J' 
bigram and trigram language models, ttlr which, al l 
Tn-gram language models are of the finite-state type. for 
other types of language models sllch as context-free gral11� 
mars, the search stratq,,), must be sui tably modified r 44J. 
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Summary 

I n  this article, we have attempted to  present a uni fying 
view ofthe dynamic programming approach to the scarch 
problem in continuous-speech rccognition. Starring 
fium the baseline one-pass algorith m using a l i near orga­
nization of the pronunciation lexicon, we have extended 
the baseline algorithm toward various dimensiolls. To 
handle a large vocabulary, we have showil how the search 
space can be structurcd in combination with a lexical pre­
ii x tree organi;;atioll of the pronunciation lexicon. In ad­
dition, we have shown how rhis structure of the search 
space call be combined with a time-synchronous beam 
search concept and bovv tbe search space can be COl1-
sUTlcted dynamical ly during the recognition process. 1 1 1  
particular, to increase tbe efliciency of the beam search 
COl1Cellt, we have integrated the l an gu age model 
louic-ahead into the pruning operation . To produce sel 1 -
rence alternatives rather than only the single best sen­
tence' we have extended the search strategy to generate a 
word graph. fi nally, we have reponed experimenta l re­
sults on a 64k-word task that demollstrate the efficiency 
of the variolls search concepts presented. 
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