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ABSTRACT

In this work, an acoustic feature set based on a Gammatone fi
terbank is introduced for large vocabulary speech recmmitThe
Gammatone features presented here lead to competitivisresu
the EPPS English task, and considerable improvements were o
tained by subsequent combination to a number of standamksaco
tic features, i.e. MFCC, PLP, MF-PLP, and VTLN plus voiceste
Best results were obtained when combining Gammatone featar
all other features using weighted ROVER, resulting in atiedam-
provement of about 12% in word error rate compared to theddest
gle feature system. We also found that ROVER gives betteiltees
for feature combination than both log-linear model comboraand
LDA.

Index Terms— feature extraction, auditory systems, gamma-
tone filterbank, acoustic feature combination, speechgrtion

1. INTRODUCTION

The starting point of this work was a cooperation betweerCibe-
puter Science and the Biology Dept. of RWTH Aachen Univegrsit
The aim was to use biologically inspired acoustic featuoespeech
recognition. In the course of this work a number of biologican-
spired features were tested. This included features dormgisf au-
ditory filterbanks optionally supplemented by models of imeer
hair cells as well as inner hair cell — auditory synapse ssiog
stages. With specific focus being on robustness, a large euofb
experiments were carried out on the AURORA 2 (and 4) tasks.

In the course of this work, Gammatone (GT) features espgcial
resulted both in improvements for noisy data, and even dayely
better results on clean data. At this point we started thek\goe-
sented here. A Gammatone-based feature extraction fibntes
integrated into the signal-processing framework of the RINdrge
vocabulary speech recognition system, and Gammatonerdsatu
were tested on a large vocabulary speech recognition tas&,the
European Parliament Plenary Sessions (EPPS) Englishrtasklie
TC-STAR project [12]. Since the results were competitivgs-s
tematic experiments for combination of Gammatone featwids
a number of other, state-of-the-art acoustic features perfermed,
leading relative improvements in word error rate of abo@hIdm-
pared to the best performing single feature system.

In Sec. 2 the extraction of the Gammatone features used $iere
described. Sec. 3 introduces the set of acoustic featuee&#m-
matone features were combined to and discusses the comhinat
approaches used here. Finally, in Sec. 4 results for spesdy+
nition experiments with Gammatone features are preseatgdter
with a systematic comparison of explicit and implicit fegtuwom-

bination approaches, followed by the conclusions and aloakibn

1|‘urther work in Sec. 5.

2. GAMMATONE FEATURES

In this section we present an acoustic feature extractisacdan an
auditory filterbank realized by Gammatone filters. The Gatoma
filter was introduced in [1]. In [2], Gammatone filters weredgor
characterizing data obtained by reverse correlation froeasure-
ments of auditory nerve responses of cats. The filter is difmthe
time domain by the following impulse response:

h(t) =k- tn71 exp(—27r - B- t) . 003(271— . fc St + d))

Here,k defines the output gaif} defines the duration of the impulse
response and thus the bandwidthis the order of the filter and de-

termines the slope at the edggsis the filter's center frequency, and
¢ the phase. For filter orders aof= 3, ..., 5, the Gammatone filter

is reported to give a good approximation of the human auglfttier.

In this work, 4th order Gammatone filters were used, impleetn

as infinite impulse response filters according to [9] and.[11]

For a sampling rate of 16kHz, the center frequencies of 68-Gam
matone filters were distributed over the frequency rangerdaty
to the Greenwood function with human parameters [5]. TheeGre
wood function is defined as follows:

pgw(z) =A- (10" — k) Hz
For human data, suitable parameters dre= 165.4 (to yield fre-
quency in Hz),a = 2.1 if x is expressed as a proportion of basilar
membrane length and= 1 (for adjusting the lower frequency limit
of the human ear).

The absolute values of the Gammatone filter outputs were tem-
porally integrated using a 25 ms wide Hanning window widtia 1
ms frame shift [6]. A spectral integration with a 9-channéhdow
and a 4-channel shift followed. Then, (ﬁ@oot or log) compres-
sion was performed, followed by cepstral decorrelationltea®y in
16 cepstral coefficients. After cepstral decorrelationmnmadization
methods were applied, including mean and, optionallyavene nor-
malization.

3. COMBINATION OF MULTIPLE ACOUSTIC FEATURES

i

In this work, Gammatone features were combined to othersditou
feature sets using explicit and implicit combination mekho Ex-
plicit combination was done using Linear Discriminant Arsa
(LDA). For LDA, specific attention was directed to shortcogs
w.r.t. combination of strongly correlated features, asregal in [10].



Table 1. Corpus statistics for the EPPS English task of the 200

TC-STAR Evaluation Campaign.

[ corpus | recording period| speech [h]] # run. words]

Train06 || May'05-Jan’06 87.5 1,600,000
Dev06 Jun’05 3.2 28,000
Eval06 Sept'05 3.2 30,000

Although these shortcomings could be reduced in this war ré-

sults obtained using LDA for feature combination still aresatis-
factory, as discussed in Sec. 4.4. Implicit feature contmnasubse-
quently was performed using log-linear model combinat@mondm-

bine acoustic models trained on individual acoustic feagats, as
well as using ROVER to combine systems built using individea-

ture sets.

The individual feature sets used for combination experisien

with the Gammatone features presented here comprise Mel-Fr

quency Cepstral Coefficients (MFCC), Perceptual Lineadietien

(PLP) features, Mel-Frequency PLP (MF-PLP) features, dkage
MFCC-based Vocal Tract Length Normalization based featphas
a voicing feature (VTLN-VOI). Details on the implementatiof

these features used here are given in [13].

4. RESULTS USING MULTIPLE FEATURES

In this section, results for using Gammatone features in ASdRfor
combination of Gammatone features with state-of-the-eoustic
features are presented.

4.1. EPPS English Corpus

For all the experiments presented here, the European ipariisPle-

were estimated afterwards. In the next step, single Gaussiasi-

Fﬁes were estimated and split 8 times. The LDA transfornmati@s

applied to 9 consecutive time frames, and an output dimansio
45 was used. The third iteration was done in the same way as the
second. The initial alignment was created using the modet the
previous iteration.

A 4-gram language model with modified Kneser-Ney discount-
ing was used for recognition. The language model scalingfacas
optimized on the development set.

4.3. Baseline Results: Single Feature Systems

An MFCC frontend with logarithmic compression and mean redfrm
ization was taken as baseline. Additionally, systems witth Xoot
compression and variance normalization were trained tqeoethe
effects of different postprocessing on the MFCC and Gamneato
based features.

The Gammatone feature extraction presented here was cedthpar
with the performance of the standard feature extraction
methods MFCC, PLP and MF-PLP, the results are shown in Table 2
The best result with Gammatone-based features was 17.9%eon t
development and 14.5% on the evaluation corpus using 1@th ro
compression and mean & variance normalization. Thesetsestd
similar to the error rates obtained with the standard methdte er-
ror rate of the Gammatone features on the development digitidys
worse than the result of PLP and MFCC. On the evaluation Iset, t
Gammatone features perform as good as the MFCCs.

It should be noted that variance normalization for both MFCC
and GT features with 10 root compression gave improvements,
whereas degradations were observed using log compresHios.
also interesting to notice that the results fof"1@ot compression
are better than using log compression for both MFCC and GT fea
tures, cf. Table 2.

nary Sessions (EPPS) English corpus as defined for the 2006 TC ) ) )
STAR Evaluation Campaign was used [8] was used. The EPPS cofable 2. Baseline results for single acoustic feature systems en th

pora were built within the European projd@etchnology and Corpora
for Speech to Speech TranslatibhC-STAR) [4, 12]. The corpus
statistics are given in Table 1. The acoustic training watopmed
on theTrain06 corpus. TheDev0O6corpus was used for parameter
optimization, e.g. of the language model scaling factore pti-
mized system was then evaluated onEwal06corpus.

4.2. Experimental Setup

All experiments were performed using a common training @roc
dure, for the sake of comparability of the results resulfirogn the
variety of acoustic features. The training was not done fsoratch.
Instead, an initial alignment created by the MFCC baselingeh
was used to generate the models in the first iterations. Tbegtic
decision tree for the first iterations was also taken fromNteCC
baseline. It consisted of 4,500 generalized triphone stales one
for silence. Each state was modeled with a Gaussian mixiane-d
bution with a global pooled covariance matrix.

Altogether three iterations of maximum likelihood traigiwere
performed. In the first iteration, the features were augetemtith
derivatives and no LDA matrix was trained. Single Gaussien-d
sities were estimated using the initial alignment, and &splere
performed, resulting in a total number of about 900k desesiti

EPPS 2006 English development and evaluation corpora. Mean
malization was applied in all experiments.

. variance | WER [%)]
feature compression

norm. | dev | eval
log no | 175] 14.9
yes 179 | 15.0
MFCC 10N root no 17.7 | 15.0
roo yes | 17.5| 14.4
o no | 183 | 14.6
oT 9 yes | 18.9| 15.8
10" root no | 19.2 | 154
roo yes | 17.9| 145
PLP 2 oot no | 176 | 14.7
MF-PLP roo no | 184|155

4.4. Feature Combination: Linear Discriminant Analysis (LDA)

As discussed in previous work [10], using LDA for feature ¢mna-
tion can lead to considerable degradations when combininggly
correlated or even dependent features. The same we obsenesd
combining Gammatone features with 10th root compressiah an

In the second iteration, an alignment was generated usig thmean & variance normalization with MFCC features with logneo

model from the first iteration. Then, a phonetic decisior tnas
built, based on the new alignment, followed by the estinmatiban

pression and mean normalization. The results are giveneitfittst
row of Table 3. Since both features contain an energy coefficin

LDA matrix. A second phonetic decision tree and a second LDAthe next step we tried to use only one of the energy coeffigidrie



Table 3. Results for LDA-based feature combination of MFCC
(log compression and mean normalization) with Gammatoae fe
tures (10th root compression with mean & variance normgdina

LDA output | cepstral energy WER [%)]
dimension from dev | eval
45 GT&MFCC | 18.0 | 14.7
MFCConly | 17.7| 14.3
60 GT &MFCC | 17.7 | 14.0
MFCConly | 17.0| 14.0

energy coefficients can be assumed to be dependent, andiéepgn
was shown to be a problem for LDA estimation in [10]. As shown i
the second row of Table 3, this step leads to an improvemetiieon
evaluation set, but on the development set results arevstiie than
the better of the two single features (cf. Table 2 for thelsiriga-
ture results). Assuming that the LDA-estimation is prolkdgimfor
this case, another idea was that the information extracted® is
spread upon more output dimension than in the well-estithzase.
Therefore, the LDA output dimension was increased from 460to
As shown in Table 3, this step leads to improvements for bogh t
dev and the eval set, provided the energy coefficient is téken
one feature set only. When repeating the original comhinagkper-
iment for combination of MFCC (with log compression), MFPL
and PLP features as reported in [10], the latter observataid not

be confirmed when using an LDA output dimension of 60. Table 4

shows, that even in the case of using only one of the energfi-coe
cients of all three features, the LDA combination resuliilsworse
than the result of at least the best individual feature bagstem.

Table 4. Results for LDA-based feature combination of MFCC (with
log-compression), PLP, MF-PLP (all with mean normalizaYjand
Gammatone features (10th root compression, mean & varizoce
malization). The LDA output dimension was 60.

cepstral energy WER [%]
from dev | eval

all features | 18.3 | 155

MFCConly | 17.6| 15.1

4.5. Model Combination: Log-Linear

Due to the shortcomings of LDA for the case of acoustic featur

combination, in the next step we investigated log-lineasuatic
model combination for the combination of the MFCC (with |ame
pression and mean normalization) and the Gammatone fesgtire

(with 10™ root compression and mean & variance normalization).

The optimal weight exponenkt is determined by grid search on the
development set. The results are given in Table 5. The bssitre
on the development set was obtained with a weight ef 0.6 for
the MFCC model and a weight af— X for the Gammatone model
resulting in a WER of 16.6% on the dev set. The combinationltes
in an absolute improvement of 0.5% on the evaluation conphigh
nevertheless is not better than the corresponding resinlg LHDA
for feature combination, cf. Table 3.

4.6. System Combination: ROVER

Finally, ROVER [3] was investigated for the combination gks
tems based on individual feature sets. Altogether, five sttofea-

Table 5. Results for log-linear model combination.

WER [%]

System dev | eval
MFCC-LOG-MN 17.5| 14.9
GT-10th-MVN 17.9 | 145
MFCC-LOG-MN + GT-10th-MVN | 16.6 | 14.0

systems trained during this work, the output of a system waital
tract length normalization and a voicing feature is inchlde his
system was used as baseline for the RWTH system in the TC-Star
evaluation 2006 [8].

The single features system and ROVER combination resudts ar
summarized in Table 6. In addition to the standard ROVER ap-

Table 6. Results on the EPPS 2006 English corpus using standard
and weighted ROVER. Features used: VTLN-Voicing (VTLN-YOI
MFCC with log compression and mean normalization (MFCC),
PLP with log compression and mean normalization (PLP), NIP-P
with log compression and mean normalization (MF-PLP), Gamm
tone with 10th root compression, mean & variance normatinat
(GT-10th). System combination: standard ROVER with comfige
scores (Standard), and weighted ROVER (Weighted).

Oracle
WER [%]

WER [%]
Standard|| Weighted

GT-10th
MF-PLP
PLP
MFCC

>

(@

S
17.9
18.4
17.6
175
17.0

16.6
16.4
16.4
15.8
15.9
15.7
15.7
15.3
15.3
15.4
15.6
15.2
15.3
14.9
151

>

[}

°
17.9
18.4
17.6
175
17.0

16.5
16.3
16.3
15.7
15.9
15.7
15.7
15.2
151
15.2
155
15.0
151
14.9
14.8

>
(5]
©

eval
eval

VTLN-VOI
eval

X

14.5
155
14.7
14.9
14.0

13.7
13.6
13.6
12.9
13.2
13.3
13.3
12.6
12.6
12.6
13.0
12.5
12.6
12.5
12.5

14.5
155
14.7
14.9
14.0

13.8
13.6
13.7
12.9
13.2
13.3
13.3
12.5
125
12.6
13.0
12.4
12.4
12.4
12.4

134
13.3
131
12.4
11.8
11.7
115
11.0
10.8
10.8
10.8
10.2
10.2
10.0

9.6

11.2
11.2
11.2
10.0
9.9
9.9
9.8
9.0
8.9
9.1
9.1
8.4
8.4
8.3
7.9

x
X X

X
X X X

X
X
X

XX XX XX X X XX XX XXX

XX XX
XX X X[ X
XX X X

X

proach, we also applied weighted ROVER [7], where prior \wtskg
for the individual systems are trained in addition to usimgfe
dences. To get an idea of the system combination potentsd, a
oracle error rates were included which represent the best @mor
rate to be obtained given the ROVER alignment. Here, we tives
gated the effect of combining Gammatone features to all thero
features. For a given number of systems combined, the sesrdt
ordered in descending order with respect to single featysees
performance, and results for lower numbers of systems awenbi

tures/systems were used in the ROVER experiments. Bedides tare given higher up in Table 6. It should be noted that theltesu



obtained by ROVER are fully consistent, i.e. the error rdssease 6. REFERENCES
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