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Abstract

In this work we show that Gaussian HMMs (GHMMs) are
equivalentto GHMM-like Hidden Conditional Random Fields
(HCRFs). Hence, improvements of HCRFs over GHMMs
found in literature are not due to a refined acoustic moddlirtg
rather come from the more robust formulation of the undadyi
optimization problem or spurious local optima. Convendion
GHMMs are usually estimated with a criterion on segmentlleve
whereas hybrid approaches are based on a formulation of the
criterion on frame level. In contrast to CRFs, these appresac

do not provide scores or do not support more than two classes
in a natural way. In this work we analyze these two classes
of criteria and propose a refined frame based criterion, kvhic
is shown to be an approximation of the associated criterion o
segment level. Experimental results concerning thesessste
reported for the German digit string recognition task 8iatid

the large vocabulary English European Parliament Plenasy S
sions (EPPS) task.

Index Terms: speech recognition, parameter estimation, maxi-
mum entropy methods
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There is growing interest in non-GHMM-like modeling tech-
nigues in Automatic Speech Recognition (ASR) like (H)CRFs,
or hybrid approaches using Neural Networks (NNs) or Support
Vector Machines (SVMs). All these approaches are discrimi-
native in nature. Discriminative methods have been estadxi

in ASR and are an important technique in almost all state-of-
the-art systems. The conventional approach in ASR consfists
modeling the posterior of a word sequeneg = (w1, wo, ... )
given feature vectors:? (z1,x2,...) by decomposing
the problem into language modg{wi’) and acoustic model
p(af [wl)
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findings and conclusions or recommendations expressedsinrite-
rial are those of the author(s) and do not necessarily refiectiews of
the DARPA.

The acoustic model uses hidden HMM statesThe state se-
quences? obey the Markov property

plai|w’) = > []p@ils)p(sisi-1)

s?\w{v t=1

wherep(x|s) denotes the emission probability apts:|s:—1)

the transition probability. Usually the emission probipils
represented by Gaussian mixtures. Direct models like (HFCR
try to model the state or word sequence posteriors withait th
implication of emission probabilities. They have a logetim
functional structure motivated by the Maximum Entropy (ME)
principle. Hybrid approaches transform the emission podba
ities into HMM state posteriorg(s|x) by Bayes’ rule and es-
timate these quantities. In recognition, the state prigsg are
required to determine the emission probabilities.

It is well-known in literature that GHMMs and other Gaus-
sian based models can be represented as (H)CRES [1, 2, 3].
However, it is believed that in general the opposite dicects
not possible[[2.13] due to the parameter constraints of Gass
models, e.g. the normalization of mixture weights or theipos
tivity of variances. In this work we show that these consitisi
do not restrict the flexibility of log-linear models, i.anylog-
linear model can be transformed into an equivalent GHMM.

The parameter estimation of these models requires a train-
ing criterion. Here we focus on the Maximum Mutual Infor-
mation (MMI) criterion both on segment and frame level. Ex-
amples for frame based approaches can be found in different
flavors. Frame discrimination (FD) based on generative mod-
els was proposed by[4],[][5] uses a criterion on state level to
estimate Maximum Entropy Markov Models (MEMM) that are
similar to the more general CRFES$ [6], and hybrid approadfes [
use NNs or SVMs to model the HMM state posteriors. These
approaches assume that tinee state sequence is known. In
practice a time alignment is used. A very attractive prgpeft
CRFs (but not HCRFs) is that the associated objective fancti
in parameter estimation has a single global maximum as long
as the alignment is kept fixed. An open question is how the cri-
teria on segment and frame level are related, i.e., is them@ya
to work on frame level without loosing any context informa-
tion provided by other state-of-the-art criteria? In thisrlvwe
show that this is possible using tiraed state dependent priors,
instead of using only state dependent priors.

Recent publications imply that the robust reestimation of
the parameters may be an issue in discriminative trainimg. |
particular for systems using density specific variancesag h
been shown that recognition performance depends on theechoi
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of optimization technique:[818]. As a by-product this worop
vides some results on this issue.

The structure of the remaining paper is as follows. In Bec. 2
GHMMs and GHMM-like HCRFs are proven to be equiva-
lent. Sec[B provides the formulation of training criterised
in this work and an analysis of these criteria, leading tonfa
based MMI with so-calledontext priors Finally, Sec[# gives
comparative experimental results to validate our findingar
choice of feature functions allows for a direct comparisen b
tween GHMMs and GHMM:-like HCRFs, cf. Sdd. 2.

2. Log-Linear Models

Introductions to (H)CRFs can be found [d [1[2[8[5, 6]. Log-
linear models always have linear decision boundaries. whet
feature functions. Non-linearities in the original fea&apace
are obtained either by introducing hidden variablés [3]yab
suitable choice of the feature functions [[1, 5]. Here, thteta
approach is pursued and non-linearities are modeled by poly
nomials of degree, i.e., the feature functions areth order
features (e.g. full second order features) which are bigsica
monomials of degree for a given time and state. For zeroth
and first order features, for instance, the state posteaeaics

D
exp (Z As,aa + ocs)
d=1

pa(slz) 5
Zs/ exXp <Z A‘s’,clxd + Oés/>
d=1

whereA describes the log-linear parameters. Higher order fea-
tures can be added similarly. The state ppifr) is incorporated

into «s for training. For recognitionys needs to be corrected
because the emission probability is the state posteridrowtt
prior. Zeroth order features correspond to the terms of the e
ponential function that do not depend ore.g. priors. The first
order features correspond to the means. In case of a globally
pooled covariance matrix the quadratic termisSa: do not de-
pend ons and thus, cancel. To represent Gaussians with density
specific covariance matrices, second order features aesnec
sary.

2.1. Equivalence of GHMMsand GHMM-like HCRFs

As already mentioned the determination of log-linear param
eters from Gaussian parameters is straightforward and well
known [1,[3]. For the back transformation the equations can
be solved for the Gaussian parameters, which define a proper

Gaussian model as long as the constraints are satisfied. Here

we show how to impose the constraints on log-linear models by
means of invariance transformations.

The model parameters of the Gaussian model are uniquely
defined in the Maximum Likelihood (ML) framework. This is
no longer valid for log-linear models which are ambiguous in
the sense that there are distincand A’ such that the resulting
discriminative models are identical, i.e., all posteriare the
same. It can be shown that two log-linear models are iddntica
if and only if (A, — Xs)Tz is independent of for all z. In all
non-degenerate cases invariance is impliedMoe \; + A),
for any AX € RP. Below, we will use the invariance trans-
formationsa, — as + Aa (Aa € R) to normalize proba-
bilities like priorsp(s) andA; — As + AA (AA € RP*P)
to impose the positivity constraint on the variances. These
variances lead to rather strange and counterintuitive\behaf
Gaussian based posterior$ [9]. The invariance associathd w
first order features, for example, implies that the meansbean
localized anywhere in space.

Table 1: Transformation of log-linear model parameters int
(proper) GHMM parameters\; € R, a, € R, & € RP*P
b))

1. = any symmetric, positive-definite matrix

2. ns = B

3. p(s) = exg(() s+ 2pl2 s + Llog [27%))
p(s

4. p8) = s

Next, these invariance transformations of the model are ap-
plied to write log-linear models in Gaussian form. For sim-
plicity, we start with log-linear models with zeroth and fics-
der features only (globally pooled variances) and simpiergr
instead of transition probabilities. First, can be set to any
symmetric and positive definite matrix because the second or
der terms inz do not have any impact on the posteriors. Set-
ting the means does not cause any conceptual problems. Next,
the pseudo-probabilities(s) are initialized froma, including
corrections like the state independent normalization tzons
|27X]. These (non-negative) pseudo- probabilities can be nor-
malized because the normalization consfait j(s’) does not
depend or. If the feature dimension is larger than the number
of classes, all priors can be set to one, cf. the invarianokesl/
by first order features. The transformation rules are summa-
rized in Tab[L. In the case of density specific variancedirtste
step in Tab[ll is more intricate because is not guaranteed
to be symmetric or negative-definite. Firdt, is replaced with

As +A* to make it symmetric, which is always possible due to
the symmetry of the second order features. Subtracting @mat
with sufficiently large eigenvalues leads to a (strictlygyative-
definite matrix. By definition the resulting matrix is reguénd
thus, > = ——A is well defined. Remember that only in-
variance transformations were applied in the differenpsteo
we have constructed GHMMs from log-linear modelghout
loosing any flexibility in the model.

In conclusion, GHMMs and GHMM-like (H)CRFs are
equivalent and thus, differences in performance come from n
merical instabilities or from different local optima due dd-
ferent optimization schemeBI[L] 3]. The same strategies can
be applied to other HMM-like feature functions, e.g. tréiosi
or language probabilities (conditional probabilities dezived
from the respective joint probabilities using basic pralistic
rules), and on segment level as well. The result also holds fo
other posterior based criteria, e.g. MCE or MPH [10].

3. Parameter Estimation

According to the ME principle, the optimal parameteysof

the log-linear model are obtained by maximizing the postsri
Depending on the dependence assumptions, the criteriaecan b
defined on different levels, e.g. frame or segment leveintst

tion on segment level is based on the objective function

FMI(A) = log pa(wi'|z])

wherew?’ stands for the spoken word sequence. In contrast,
the formulation on frame level is based on the state sequence
sT representing the spoken word sequence

T
) = logpa(si|zs).
t=1

To compare these two criteria, frame based MMI requires the
extension to time dependent state priors and to allow for-sum
mation over more than a single state in the calculation of the
posteriors in[{IL). The second step can introduce local @ptim

]_—(frame) (A (1)



3.1. Context Priors these algorithms do not find the global optimum in general - at
best they provide a local optimum which is an additional diffi
culty [3]. CRFs have a single (global) maximum and are rather
simple to optimize for this reason.

According to [3/8], the EBW reestimation of GHMMs us-
ing density specific variances might be inferior to otheri-opt
mization techniques. On the one hand, the choice of globally
pooled variances (as used in our system) is expected tosdtev
this problem. On the other hand, EBW sets the iteration con-
stants such that the variances remain posifive [10] althalg
quadratic terms in: cancel in the sentence posterior probability,
and thus, are arbitrary.

In this section we show the relation between MMI on sen-
tence and frame level. The derivation does not make any as-
sumptions on the modefl denotes the parameters to estimate.
The MMI criterion on segment level can be written in terms of
pe..(s, wd |#T \x+) which refers to the forward-backward (FB)
probability used in discriminative trainin@_[l10] includjrthe
language model score and excluding the emission probabilit
of time framet (cf. “27 \z:")

> o (sl \we)po(w:]s)

The FB-like quantity in the denominator is obtained by 4. Experimental Results
marginalization of the FB-like quantity in the numeratoreov

all competing word/state sequences. Assuming single tiessi
and strict maximum approximation, the sum in the numerator
consists of a single summand, and, thus, does not depefd on
Next, we employ the approximation thgg (s|z] \xz:) varies
only slowly in# compared with the other terms, i.e., this quan-
tity can be considered constantdnThis approximation might

be justified by the observation that the denominator term is a
(global) average in contrast to the (local) emission prditgb

For this reason it is expected that this quantity does natireq
recalculation after each iteration. Utilizing this approation

in the above-mentioned identity, we arrive at frame based MM
with time and state dependent priors proportional to thdik®-
quantities. Note that the normalization of the priors does n : . .
affect the criterion and is introduced only for aesthet&sens. marginal, if any at aI_I. For_thls reason th? reported resuiee
Interestingly, the priors contain the complete contexbinfa- produped W"hOPt this additional constraint. )
tion. The essential question is which assumptions on thie-pro First, and diagonal/full second order features are abbrevi
abilistic model are made to determine the priors. In theioaig ated by '1’, 'd2’, and 'f2". Differentn-th order features are
frame based approach the states are assumed to be independencOmbined with '+'. The zeroth order feature is always ineldd
whereas on the segment level acoustic and lexical context is Cf- Tabl2 and.

considered. In case of a single summand in the numeratst, thi In frame based training the priors were set to the relative
criterion has the same structure s (1). In general the mtorer ~ Occurrences in the training corpus. It turned out that tloper
consists of a weighted sum over the correct states. The numbe handling of priors, in particular of silence and noise issegisl.

of iterations without recomputing the priors is calleperiod, MMI on frame level tends to converge slower than the other cri
i.e., MMI corresponds to frame based MMI with context priors ~ teria but convergence is smoother. It looks that mixtursal
and period 1. It can be shown that frame based MMI with con-  for a more selective modeling thanth order features. There
text priors can be considered a weak auxiliary function of MM is ongoing work with other non-linear feature functionsio i

FOM) () ZTZIOg >, pe,z(S,w{V|m1T\xt)pe(mt|8).
t=1

Experiments were performed on the German digit string recog
nition task Sietill and the large vocabulary EPPS Englisb&20
task. The baseline systems are based on GHMMs with globally
pooled variances and HMM states are modeled by single den-
sities. Sietill uses whole-word HMMs and single densities f
each HMM state. The vocabulary comprises the German dig-
its. EPPS English has a vocabulary with about 50,000 entries
and uses CART tied triphone states modeled by mixtures. All
discriminative trainings were initialized with ML modeldn

fact the systems under consideration are not completelyaqu
lent because the GHMM imposes the constraint that the naxtur
weights are normalized. Experiments enforcing this caursty
however, have shown that the improvements by this effect are

at¢’ (identical derivatives af’) for which the FB probabilities prove the current results.
are computed. So the two approaches have the same optimum So far we have not found any evidence supporting the hy-
if the true priors (oracle) are known. pothesis that GHMMs using globally pooled variances and mix

This approximation is faster than MMI on segment level tures are not reliably estimated with EBW. Frame based MMI
once the priors are calculated (comparable with an MMI itera  with context priors with periodo seems to be a reasonable ap-
tion). This fact makes this approximation interesting ia ton- proximation in this setting, too. Details on these experitae
text of algorithms which are hard to parallelize. Furtherejo are beyond the scope of this paper, and are considered for a
the frame based formulation allows for frame based concepts later publication.
which are difficult to define on a coarser, say segment level.

Similar relations can be derived for the MWE and the MPE cri-  4.1. Sietill

terion, too. The recognition system is based on gender-dependent whole-

word HMMs. For each gender 214 distinct states plus one for
silence are used. The vocabulary consists of the 11 Gerrgan di
For GHMMs the Extended Baum Welch (EBW) algorithm is its (including 'zwo’). The observation vectors consist @fcep-
usually employed to optimize the parameters. Unfortugatel  stral features without any derivatives. The gender-inddpat
this algorithm is not suitable for log-linear models be@us  Linear Discriminant Analysis (LDA) is applied to 5 consdeat

3.2. Optimization

they do not have variance-like parameters which are redjtire frames and projects the resulting feature vector to 25 dimen
reach reasonably fast convergence [10]. Generalizediltera sions. The training corpus consists of 11.3h audio dat@542,
Scaling (GIS) is applicable but turned out to be inefficiéijt [ spoken digits with a silence proportion of 55%. The test asrp
General gradient based procedures like RProp, QProp, @ mor has 11.4h audio data, corresponding to 43,086 spoken .digits
sophisticated versions thereof have proven to be effidi&][ The ML baseline system uses single Gaussians with globally

Our choice was a QProp-like optimization scheme. Note that pooled variances and yields 3.8% WER. The MMI system with



Table 2: Word Error Rates (WER) in % for Sietill test corpus,

"Context-2’ denotes context priors with period 2
| Criterion | Model | Feat. | Param.[] WER ]

ML Gauss | 1 2x5k 3.8
MMI Gauss | 1 2x5k 3.0
1 2x90k 19

Log-lin. | 1 2x5k 29

1+2 | 2x75k 2.1

Context-2 | Log-lin. | 1 2x5k 29
Frame Log-lin. | 1 2x5k 3.0
1+d2 | 2x11k 2.8

1+2 | 2x75k 23

16 densities/state hax®0k parameters, compared witlk 25k
parameters for single densities and full second order fflestu

and yields 1.9% WER. The initial alignment was taken from the
baseline. After convergence, a few realignments in tur wit
reestimation were performed. Realignments reduce the WER
by 0.1-0.2%. The results are summarized in Tab. 2. The accu-
mulation of the frame based approach was about 5 times faster

than the segment based approach.

4.2. EPPSEnNglish

This task contains recordings from the European Parliament
Plenary Sessions (EPPS). 87.5h of speech recordings884,8
running words were manually transcribed, which are used for

training of the acoustic models111]. The non-speech prapor

is roughly 30%. The acoustic front end comprises MFCC fea-
tures augmented by a voicing feature. 9 consecutive franees a
concatenated and the resulting vector is projected to 4&mim

sions by means of LDA. The MFCC features are warped using

a fast variant of the Vocal Tract Length Normalization (VTLN
The triphones are clustered using CART, resulting in 4,501 g

eralized triphone states. The acoustic models are trained o
the complete manually transcribed data. The developmeht an
evaluation data from the evaluation campaign 2006 comprise
3.2h/27,029 running words and 3.2h/29,829 running woss, r
spectively. For recognition the vocabulary size is 52,488 a

a 4-gram language model is used. The ML baseline achieves
24.7% WER and the MMI trained GHMM system 21.9% WER
on the evaluation corpus. The number of parameters of the
GHMM with 32 densities per HMM state (6,621k parameters) is

comparable with that of the log-linear system using fulloset

order features with 4,866k parameters (see '1+f2' in Tab. 3)
See Tab[I for further results. The alignment for frame based
training was the same as for the estimation of the ML trained

model and was not changed during training.

5. Conclusions

This work proves equivalence of GHMMs and GHMM-like
HCRFs. This could be substantiated experimentally on|Bieti
and the EPPS English corpus. From this result we conclude
that GHMM parameters can be estimated without numerical

stability problems using standard optimization techngquin

addition we have shown that under certain assumptions MMI
on frame level can be considered an approximation of MMI on

segment level. This considerably speeds up accumulatioa ti
Experiments show that this approximation is valid as lonthas

models do not change too much, say by relative 10% in WER.

Table 3: Word Error Rates (WER) in % for EPPS English

Criterion | Model Feat. | Param. WER
Dev | Eval
ML Gauss 1 207k || 28.9 | 24.7
1 6,621k || 18.9 | 16.1
MMI Gauss 1 207k || 24.7 | 21.9
Frame Log-lin. | 1 207k || 26.1| 22.0
1+d2 410k || 24.9 | 20.5
1+f2 | 4,866k || 20.8 | 16.8
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