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Abstract. Classification problems are traditionally focused on uniclass
samples, that is, each sample of the training and test sets has one unique
label, which is the target of the classification. In many real life applica-
tions, however, this is only a rough simplification and one must consider
some techniques for the more general multiclass classification problem,
where each sample can have more than one label, as it happens in our
task. In the understanding module of a domain-specific dialogue system
for answering telephone queries about train information in Spanish which
we are developing, a user turn can belong to more than one type of frame.
In this paper, we discuss general approaches to the multiclass classifi-
cation problem and show how these techniques can be applied by using
connectionist classifiers. Experimentation with the data of the dialogue
system shows the inherent difficulty of the problem and the effectiveness
of the different methods are compared.

1 Introduction

In many real pattern recognition tasks, it is convenient to perform a previous
classification of the objects in order to treat them in a specific way. For instance,
if language models can be learnt for specific sub-domains of a task, better per-
formance can be achieved in an automatic speech recognition/understanding
system. The aim of this work is to propose some classification techniques in
order to improve the understanding process of a dialogue system.

The task of our dialogue system consists of answering telephone queries about
train timetables, prices and services for long distance trains in Spanish. The
understanding module gets the output of the speech recognizer (sequences of
words) as input and supplies its output to the dialogue manager. The semantic
representation is strongly related to the dialogue management. In our approach,
the dialogue behavior is represented by means of a stochastic network of dialogue
acts. Each dialogue act has three levels of information: the first level represents
the general purpose of the turn, the second level represents the type of semantic
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message (the frame or frames), and the third level takes into account the data
supplied in the turn.

We focus our attention on the process of classification the user turn in terms
of the second level of the dialogue act, that is, the identification of the frame
or frames. This classification will help us to determine the data supplied in the
sentence in a later process, where depending on the output of the classifier, one
or more specific understanding models are applied. Our previous work on this
same topic can be found in [1, 2].

Dealing with this frame detection problem, we encountered the problem of
the multiclass classification as a natural issue in our system. A user can ask in the
same utterance about timetables and prices of a train, for example, and these
are two of the categories we have defined. This poses an interesting problem,
as most of the classification problems and solutions up to now have focused
exclusively on the uniclass classification problem, and few have dealt with this
kind of generalization.

2 The Uniclass Classification Problem

Uniclass classification problems involve finding a definition for an unknown func-
tion k⋆(x) whose range is a discrete set containing |C| values (i.e., |C| “classes”
of the set of classes C = {c(1), c(2), . . . , c(|C|)}). The definition is acquired by
studying collections of training samples of the form

{(xn, cn)}N
n=1 , cn ∈ C , (1)

where xn is the n-th sample and cn is its corresponding class label.
For example, in handwritten digit recognition, the function k⋆ maps each

handwritten digit to one of |C| = 10 classes. The Bayes decision rule for mini-
mizing the probability of error is to assign the class with maximum a posteriori
probability to the sample x:

k⋆(x) = argmax
k∈C

Pr(k|x) . (2)

Uniclass Classification using Neural Networks Multilayer perceptrons
(MLPs) are the most common artificial neural networks used for classification.
For this purpose, the number of output units is defined as the number of classes,
|C|, and the input layer must hold the input samples. Each unit in the (first)
hidden layer forms a hyperplane in the pattern space; boundaries between classes
can be approximated by hyperplanes. If a sigmoid activation function is used,
MLPs can form smooth decision boundaries which are suitable to perform clas-
sification tasks [3].

For uniclass samples, the activation level of an output unit can be interpreted
as an approximation of the a posteriori probability that the input sample be-
longs to the corresponding class. Therefore, given an input sample x, the trained
MLP computes gk(x, ω) (the k-th output of the MLP with parameters ω given
the input sample x) which is an approximation of the a posteriori probability



Pr(k|x). Thus, for MLP classifiers we can use the uniclass classification rule as
in equation (2):

k⋆(x) = argmax
k∈C

Pr(k|x) ≈ argmax
k∈C

gk(x, ω) . (3)

3 The Multiclass Classification Problem

In contrast to the uniclass classification problem, in other real-world learning
tasks the unknown function k⋆ can take more than one value from the set of
classes C. For example, in many important document classification tasks, docu-
ments may each be associated with multiple class labels [4, 5]. A similar example
is found in our classification problem of dialogue acts: a user turn can be labeled
with more than one frame label. In this case, the training set is composed of
pairs of the form3

{(xn, Cn)}N
n=1 , Cn ⊆ C . (4)

There are two common approaches to this problem of classification of objects
associated with multiple class labels.4 The first is to use specialized solutions like
the accumulated posterior probability approach described in the next section.
The second is to build a binary classifier for each class as explained afterwards.

3.1 Accumulated Posterior Probability

In a traditional (uniclass) classification system, given an estimation of the a
posteriori probabilities Pr(k|x), we can think of a classification as “better esti-
mated” if the probability of the destination class is above some threshold (i.e.,
the classification of a sample x as belonging to class k is better estimated if
Pr(k|x) = 0.9 than if it is only 0.4). A generalization of this principle can be
applied to the multiclass approximation problem.

We can consider that we have correctly classified a sample only if the sum

of the a posteriori probabilities of the assigned classes is above some thresh-
old T . Let us define this concept more formally. Suppose we have an ordering
(permutation) (k(1), k(2), . . . , k(|C|) of the set C for a sample x, such that

Pr(k(i)|x) ≥ Pr(k(i+1)|x) ∀1 ≤ i < |C| . (5)

We define the “accumulated posterior probability” for the sample x as

Prx(j) =

j
∑

i=1

Pr(k(i)|x) 1 ≤ j ≤ |C| . (6)

3 The uniclass classification problem is a special case in which |Cn| = 1 for all samples.
4 In certain practical situations, the amount of possible multiclass labels is limited due

to the nature of the task. For instance, if we know that the only possible appearing
multiple labels can be {c(i), c(j)} and {c(i), c(k)} we do not need to consider all the
possible combinations of the initial labels. In such situations we can handle this task
as an uniclass classification problem with the extended set of labels Ĉ defined as a
subset of P(C).



Using the above equation, we classify the sample x in n classes, being n the
smallest number such that

Prx(n) ≥ T , (7)

where the threshold T must also be learnt automatically in the training process.
The set of classification labels for the sample x is simply

K⋆(x) = {k(1), . . . , k(n)} . (8)

Accumulated Probability using MLPs We can apply this approach using
neural networks by modifying slightly equation (7). As the output of the output
layer is an approximation of the a posteriori probabilities, it is possible that the
sum exceeds the value of 1, so a more suitable estimation would be5

|1 − Prx(n)| ≤ S , (9)

where the accumulated posterior probabilities Prx(j) are computed as in equa-
tion (6) by approximating the posterior probabilities with an MLP of |C| outputs

Prx(j) =

j
∑

i=1

Pr(k(i)|x) ≈

j
∑

i=1

gi(x, ω) 1 ≤ j ≤ |C| . (10)

The outputs gi(x, ω) of the trained MLP are also ordered according (5). During
the training phase, the desired outputs for the sample x are the “true” posterior
probabilities of each class.6

3.2 Binary Classifiers

Another possibility is to treat each class as a separate binary classification prob-
lem (as in [6–8]). Each such problem answers the question, whether a sample
should be assigned to a particular class or not.

For C ⊆ C, let us define C[c] for c ∈ C to be:

C[c] =

{

true, if c ∈ C ;

false, if c /∈ C .
(11)

A natural reduction of the multiclass classification problem is to map each
multiclass sample (x, C) to |C| binary-labeled samples of the form (〈x, c〉, C[c])
for all c ∈ C; that is, each sample is formally a pair, 〈x, c〉, and the associated
binary label, C[c]. In other words, we can think of each observed class set C as
specifying |C| binary labels (depending on whether a class c is or not included
in C), and we can then apply uniclass classification to this new problem. For

5 Note the different interpretation of the threshold value in equations (7) and (9).
In the first one, T represents the probability mass that we must have for correctly
classifying a sample, whereas in the second one S is a measure of the distance to the
“ideal” classification with a posteriori probability value of 1.

6 Nevertheless, a simplification is assumed: as the true posterior probabilities usually
cannot be known, we consider all the classes of a training sample equally probable.



instance, if a given training pair (x, C) is labeled with the classes c(i) and c(j),
(x, {c(i), c(j)}), then |C| binary-labeled samples are defined as (〈x, c(i)〉, true),
(〈x, c(j)〉, true) and (〈x, c〉, false) for the rest of classes c ∈ C.

Then a set of binary classifiers is trained, one for each class. The ith classifier
is trained to discriminate between the ith class and the rest of the classes and
the resulting classification rule is

K⋆(x) = {k ∈ C | Pr(k|x) ≥ T } , (12)

being T a threshold which must also be learnt.

Binary Classification Using MLPs Let (ω1, . . . , ω|C|) be the MLP classifiers
trained as in the uniclass case. Furthermore, let g(x, ωi) be the output of the
ith MLP classifier when given an input sample x. New samples are classified by
setting the predicted class or classes to be the index of the classifiers attaining
the highest posterior probability,

K⋆(x) = {k ∈ C | Pr(k|x) ≥ T } ≈ {k ∈ C | g(x, ωk) ≥ T } . (13)

An alternative approach is to assign a binary string of length |C| to each class
c ∈ C or set of classes C ⊆ C. During training for a pattern from classes c(i) and
c(j), for example, the desired outputs of these binary functions are specified by
the corresponding units for classes i and j. With MLPs, these binary functions
can be implemented by the |C| output units of a single network.

In this case, the multiclass classification rule is redefined as: an input sample
x can be classified in the classes K⋆(x) with a posteriori probability above a
threshold T :

K⋆(x) = {k ∈ C | Pr(k|x) ≥ T } ≈ {k ∈ C | gk(x, ω) ≥ T } , (14)

being gk(x, ω) the k-th output of an MLP classifier with parameters ω given the
input sample x.

4 The Dialogue Task

The final objective of our dialogue system is to build a prototype for information
retrieval by telephone for Spanish nation-wide trains [9]. Queries are restricted to
timetables, prices and services for long distance trains. A total of 215 dialogues
were acquired using the Wizard of Oz technique. From these dialogues, a total
of 1 440 user turns (14 923 words with a lexicon of 637 words) were obtained.
The average length of a user turn is 10.27 words. All the utterances we used for
our experiments were transcribed by humans from the actual spoken responses.

The turns of the dialogue were labelled in terms of three levels [10]. An
example is given in Figure 1. We focus our attention on the most frequent sec-
ond level labels, which are Affirmation, Departure time, New data, Price, Closing, Re-

turn departure time, Rejection, Arrival time, Train type, Confirmation. Note that each
user turn can be labeled with more than one frame label7 (as in the example).

7 In related works of dialogue act classification [11], a hand-segmentation of the user
turns was needed in order to have sentence-level units (utterances) which corre-



Original sentence Hello, good morning. I would like to know the price and
timetables of a train from Barcelona to La Coruña for the
22nd of December, please.

1st level (speech act) Question

2nd level (frames) Price, Departure time

3rd level (cases) Price (Origin: barcelona, Destination: la coruña, Depar-

ture time: 12/22/2003)
Departure time (Origin: barcelona, Destination: la coruña, De-

parture time: 12/22/2003)

Fig. 1. Example of the three-level labeling for a multiclass user turn. Only the English
translation of the original sentence is given.

For classification and understanding purposes, we are concerned with the
semantics of the words present in the user turn of a dialogue, but not with the
morphological forms of the words themselves. Thus, in order to reduce the size
of the input lexicon, we decided to use categories and lemmas. In this way, we
reduced the size of the lexicon from 637 to 311 words. Then, we discarded those
words with a frequency lower than five, obtaining a lexicon of 120 words.

We think that for this task the sequential structure of the sentence is not
fundamental to classifying the type of frame.8 For that reason, the words of the
preprocessed sentence were all encoded with a local coding: a 120-dimensional
bit-vector, one position for each word of the lexicon. When the word appears in
the sentence, its corresponding unit is set to 1, otherwise, its unit is set to 0.

4.1 Codification of the Frame Classes

For the uniclass problem we used the usual “1-of-|C|” coding, the desired output
for each training sample is set to 1 for the one frame class that is correct and
0 for the remainder. The codification in the multiclass problem is different for
each approach:

Binary classification with |C| MLPs The target of the training sample is 1
if the sample belongs to the class of the MLP classifier, and 0 if not.

Binary classification with one MLP The target of the training sample is
coded with a |C|-dimensional vector: the desired outputs for each training
sample (xn, Cn) are set to 1 for those (one or more) frame classes that are
correct and 0 for the remainder.

Accumulated posterior probability The target of the training sample is
coded with a |C|-dimensional vector: the desired outputs for each training
sample (xn, Cn) are set to 1/|Cn| for those (one or more) frame classes that
are correct and 0 for the remainder.

sponded to a unique dialogue act. The relation between user turns and utterances
was also not one-to-one: a single user turn can contain multiple utterances, and ut-
ternaces can span more than one turn. After the hand-segmentation process, each
utterance unit was identified with a single dialogue act label.

8 Nevertheless, the sequential structure of the sentence is essential in order to segment
the user turn into slots to have a real understanding of it.



5 Experiments

The dataset is composed of 1 338 user turns after discarding the sentences labeled
with the less-frequent frame classes. We have decided to split the corpus in two
datasets, the first one containing only the uniclass turns (867 samples) and the
complete one, which comprises uniclass and multiclass turns (1 338 samples). For
each type of experiment, the dataset was randomly split (but we guarantee that
each frame class is represented in the training and test set) so that about 80%
of the user turns are used for training and the rest for testing.

5.1 Training the Neural Networks

With any neural network algorithm, several parameters must be chosen by the
user. For the MLPs, we must select the network topology and their initialization,
the training algorithm and their parameters and the stopping criteria [3, 12, 13].
We selected all the parameters to optimize performance on a validation set: the
training set is subdivided into a subtraining set and a validation set (20% of the
training data). While training on the subtraining set, we observed generaliza-
tion performance on the validation set (measured as the mean square error) to
determine the optimal setting of configuration and the best point at which to
stop training. The thresholds S and T of the different multiclass classification
rules were also learnt in the training process: we performed classification with
the optimal configuration of MLP on the patterns of the validation set, proving
several values of the thresholds and keeping the best one.

5.2 UC and MC Experiments

Table 1 shows the selected topology and the classification rate for each of the ex-
periments. For the UC experiment, we used only the uniclass user turns (867 sam-
ples). For the MC experiments, we consider a sample as correctly classified if the
set of the original frame classes is detected. That is, if a user turn is labeled with
two frame classes, only and exactly those classes should be detected.

In the Accumulated Probability case, when applying classification rule (9)
with a threshold S close to 0, that is, when the accumulated probability is close
to 1, the error rate was very poor, misclassifying (nearly) all the multiclass
samples. By analyzing the MLP outputs, we observed that when one or more
classes are detected, each of the corresponding output values are close to one.
Therefore, the MLP with a sigmoid activation function is unable to learn the
true probability distribution across the whole set of classes. Due to this fact, we
decided to apply the classification rule given in equation (14).

6 Discussion and Conclusions

This work is an attempt to show the differences between uniclass and multiclass
classification problems applied to detecting dialogue acts in a dialogue system.
We experimentally compare three connectionist approaches to this end: using
accumulated posterior probability, binary multiple classifiers and one extended



Table 1. Classification error rates for the UC and MC experiments.

Experiment Topology Total Uniclass Multiclass

UC experiment 120-64-64-10 9.14 9.14 —
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
MC experiments

Binary classifiers with |C| MLPs 120-8-1 17.91 13.71 25.80
Binary classifiers with 1 MLP 120-32-32-10 11.19 7.43 18.28
Accumulated Probability 120-32-16-10 14.55 8.57 25.81

binary classifier. The results clearly shows that: firstly, multiclass classification
is much harder than uniclass classification and, secondly, the best performance
is obtained using one extended binary classifier.

On the other hand, the results obtained for classifying dialogue acts also
show that using a connectionist approach is effective for classifying the user turn
according to the type of frames. This automatic process will be helpful to the
understanding module of the dialogue system: firstly, the user turn, in terms of
natural language, is classified into a frame class or several frame classes; secondly,
a specific understanding model for each type of frame is used to segment and fill
the cases of each frame.
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