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ABSTRACT

We study the use of specific stochastic models for the
understanding process in a spoken dialogue system. A pre-
vious classification of the user turns in terms of dialogue
acts is accomplished by connectionist models to guide the
understanding process. Some specific issues are explored,
like the multiclass classification problem, the smoothing of
models, and the generation of the frames which constitute
the input of the dialogue manager. Some experiments using
the correct transcription of the user turns and the output of
the speech recognizer are presented.

1. INTRODUCTION

Dialogue act (DA) classification is an important issue in the
framework of the development of interactive speech sys-
tems such as dialogue or language translation systems. Many
advantages can be achieved if we can detect and model the
user and the machine sentences in terms of DAs. For exam-
ple, stochastic models can be learnt to describe a dialogue
behavior, to give predictions about the next user utterance,
and so to focus the process of recognition or understanding,
by means of specific rules or models [1, 2]. DA classifica-
tion can also be useful in the domain of machine transla-
tion [3].

An important decision when a DA modelization is per-
formed is the definition of the set of DAs [4]. If the number
of DAs is small, each DA represents a general intention.
If the number of labels is increased, each DA represents
much more specific information, but many more training
samples are needed. OurBASURDE speech dialogue sys-
tem is a system for information retrieval by telephone for
Spanish nation wide trains. We have defined a set of three-
level DAs [5]. The first level tries to represent general ac-
tions of dialogues, such asOpening, Closing, Answer, . . . The
second level is related to the semantic of the task and the
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third level takes into account the values supplied in the utter-
ances. With this type of DAs we can construct general mod-
els of the dialogue behavior, by using only the first level of
DAs or more detailed models, by using more specific char-
acterization of the utterances, that is, by using the second
and third level.

In this work we present an approach to DA classifica-
tion to help the understanding process of a dialogue system.
Due to the inherent difficulty of the recognition and the un-
derstanding process of spontaneous speech in a mixed ini-
tiative dialogue system, the use of different analysis or clas-
sification of the user utterance should help obtaining better
results. One of the specific characteristics, which makes the
classification of a utterance in terms of DAs harder, is that
an utterance can be composed by more than one DA. That
is, if we try to adapt pattern classification techniques we
encounter a problem of multiclass classification. We have
explored the use of neural networks expecting that it capa-
bility of discriminative learning gives good results.

On the other hand, in this paper we also present the
stochastic approach to the understanding process of the di-
alogue system. The process is based on the use of Hid-
den Markov Models (HMMs) to represent the available se-
quences of concepts (or semantic units), and the composi-
tion of this semantic units in terms of sequences of words [6–
8]. The collaboration between the classification process and
the understanding process is done by means of the defini-
tion of specific semantic models for each DA. That is, we
first classify the user utterance as one or more DAs and then
we apply the specific model to extract the semantic informa-
tion, which is made by means of frames. Then the extrac-
tion of the frame (or frames) associated to one utterance is
made in two phases. In the first one, a sentence (sequences
of words) is transduced in terms of a sequence of seman-
tic units, and its corresponding segmentation. In the second
one, this intermediate representation is used to obtain the
frames and attributes by using a set of few rules.



2. THE DIALOGUE TASK

TheBASURDE task consists of information retrieval by tele-
phone for Spanish nation-wide trains. Queries are restricted
to timetables, prices and services for long distance trains.
Several other dialogue projects [9, 10] selected similar tasks.

Four types of scenarios were defined (departure/arrival
time for a one-way trip, departure/arrival time for a two-way
trip, prices and services, and one free scenario). After that a
total of 215 dialogues were acquired using the Wizard of Oz
technique. From these dialogues, a total of 1 440 user turns
(14 923 words with a lexicon of 637 words) were obtained.
The average length of a user turn is 10.27 words. Figure 1
shows a fragment of a dialogue of the task.

2.1. Labeling the Turns of the Dialogues

The definition of DAs is an important issue because they
represent the successive states of the dialogue. The main
feature of the proposed labeling is the division of DAs into
three levels [5]. The first level, calledspeech act, is gen-
eral for all the possible tasks and it comprises the following
labels:Opening, Closing, Question, Consult, Acceptance, Rejec-

tion, Confirmation, Answer, Undefined, Not Understood, Waiting.
An example of the first level labeling of a fragment of a
dialogue is shown in Figure 1.

The second and third level, calledframesandcases, re-
spectively, are specific to the task and give the semantic rep-
resentation. The frames determine the type of communica-
tion of the user turn. Table 1 shows the 15 frame classes,
along with their frequencies. Each frame has a set of at-
tributes (cases) which have to be filled to make a query or
which are filled by the retrieved data after the query. Ex-
amples of cases for this task are:Origin, Destination, Depar-

ture time, Train type, Price. . .
An example of the three-level labeling for some user

turns is given in Figure 2. Note that each user turn can be
labeled with more than one frame label (as in the second
example of Figure 2), which allows a better specification
of the meaning of the user turn, but it makes the classifica-
tion and understanding processes harder (see Sections 3.1
and 4).

2.2. Lexicon of the User Turns

For classification and understanding purposes, we are con-
cerned with the semantics of the words present in the user
turn of a dialogue, but not with the morphological forms
of the words themselves. Thus, in order to reduce the size
of the input lexicon, we decided to use (general and task-
specific) categories and lemmas. In this way, we reduced
the size of the lexicon from 637 to 311 words.

Table 1. The 15 frame classes and their frequencies given as
percentages of the total number of user turns in the overall corpus
(1 440 user turns).

Frame class %
Affirmation 26.75
Departure time 18.27
New data 13.16
Price 12.29
Closing 10.07
Return departure time 5.30
Rejection 4.34
Arrival time 3.57
Train type 3.37
Confirmation 1.73
. . . . . . . . . . . . . . . . . . . . . . . . . . . .
Not understood 0.63
Trip length 0.24
Return price 0.19
Return train type 0.05
Return arrival time 0.05

Table 2. Partition of the dataset for the experiment. For each type
of experiment, the dataset was split into a training set (80% of the
data) and a test set (20% of the data).

Experiment Total Uniclass (UC) Multiclass (MC)
Training 1 071 692 (65%) 379 (35%)
Test 268 175 (65%) 93 (35%)

2.3. TheBASURDE dataset

The dataset is composed of 1 338 user turns after discarding
the sentences labeled with the less-frequent frame classes,
which comprised the 10 first frame classes of Table 1. The
dataset was randomly split (but we guarantee that each frame
class is represented in the training and test set) so that about
80% of the user turns are used for training and the rest for
testing. The partition of the data, along with the relative
frequency of uniclass and multiclass samples, are shown in
Table 2.

3. CONNECTIONIST DIALOGUE ACT
DETECTION

Multilayer Perceptrons (MLPs) are the most common arti-
ficial neural networks used for classification. For this pur-
pose, the number of output units is defined as the number
of classes,|C|, and the input layer must hold the input sam-
ples. Each unit in the (first) hidden layer forms a hyperplane
in the pattern space; boundaries between classes can be ap-
proximated by hyperplanes. If a sigmoid activation function
is used, MLPs can form smooth decision boundaries which
are suitable to perform classification tasks [11].

For uniclass samples, the activation level of an output



Speaker Sentence Speech act
M Bienvenido al sistema automático de informacíon de

trenes regionales y de largo recorrido, ¿qué desea?
Welcome to the information system for nation-wide
train, what information would you like?

Opening

U Queŕıa saber los horarios del Euromed Barcelona-
Valencia.

I would like to know the timetables of the Euromed train
from Barcelona to Valencia.

Question

M ¿Quiere ir de Barcelona a Valencia? Do you wish to travel from Barcelona to Valencia? Confirmation
U Śı. Yes. Affirmation
M ¿Para viajar hoy mismo? Do you wish to travel today? Confirmation
U No, el pŕoximo jueves. No, next Thursday. Answer
M Le consulto los horarios de Barcelona a Valencia para

el d́ıa 15 de julio. Un momento, por favor.
I am looking timetables form Barcelona to Valencia for
the 15th of July. One moment, please.

Waiting

Fig. 1. A fragment of a labeled dialogue of the task. The first column indicates the speaker: Machine (M) or User turn (U); the second
column the original sentence and its English translation; and the last column the first level label (speech act).

Original sentence Queŕıa saber los horarios del Euromed Barcelona–Valencia.
I would like to know the timetables of the Euromed train from Barcelona to Valencia.

1st level (speech act) Question
2nd level (frames) Departure time
3rd level (cases) Departure time (Origin: barcelona,Destination: valencia,Train type: euromed)

Original sentence Hola, buenos d́ıas. Me gustarı́a saber el precio y los horarios que hay para un billete de tren de
Barcelona a La Corũna el 22 de diciembre, por favor.
Hello, good morning. I would like to know the price and timetables of a train from Barcelona
to La Corũna for the 22nd of December, please.

1st level (speech act) Question
2nd level (frames) Price, Departure time
3rd level (cases) Price (Origin: barcelona,Destination: la corũna,Departure time: 12/22/2003)

Departure time (Origin: barcelona,Destination: la corũna,Departure time: 12/22/2003)

Fig. 2. Example of the three-level labeling for two user turns. The Spanish original sentence and its English translation are given.

unit can be interpreted as an approximation of the a poste-
riori probability that the input sample belongs to the corre-
sponding class [12]. Therefore, given an input samplex, the
trained MLP computesgk(x, ω) (thek-th output of the MLP
with parametersω given the input samplex) which is an ap-
proximation of the a posteriori probabilityPr(k|x). Thus,
for MLP classifiers we can use the uniclass classification
rule

k?(x) = argmax
k∈C

Pr(k|x) ≈ argmax
k∈C

gk(x, ω) . (1)

3.1. Uniclass and Multiclass User Turns

In contrast to the well-known uniclass classification prob-
lem, in some real-world learning tasks, a pattern can belong
to more than one class from the set of classesC. For exam-
ple, in many important document classification tasks, doc-
uments may each be associated with multiple class labels.
A similar example is found in our classification problem of
DAs: a user turn can be labeled with more than one frame
label1 (as in the second example of Figure 2). In this case,

1In related works of DA classification [13], a hand-segmentation of the
user turns was needed in order to have sentence-level units (utterances)
which corresponded to a unique DA.

the training set is composed of pairs of the form2

{(xn, Cn)}N
n=1 , Cn ⊆ C . (2)

The multiclass classification problem is much harder to
solve than the uniclass classification problem. In this work,
we have treated each class as a separate binary classifica-
tion problem (as in [14]), assigning a binary string of length
|C| to each classc ∈ C or set of classesC ⊆ C. During
training, for a pattern from classesPrice andDeparture time,
for example, the desired outputs of these binary functions
are specified by the corresponding units for those classes.
With MLPs, these binary functions can be implemented by
the|C| output units of a single network.

In this case, the multiclass classification rule is redefined
as: an input samplex can be classified in the classesK?(x)
with a posteriori probability above a thresholdT

K?(x) = {k ∈ C | Pr(k|x) ≥ T }
≈ {k ∈ C | gk(x, ω) ≥ T } ,

(3)

being gk(x, ω) the k-th output of an MLP classifier with
parametersω given the input samplex.

2The uniclass classification problem is a special case in which|Cn| =
1 for all samples.



3.2. Codification of the User Turns for the MLP

After the processes explained in section 2.2, we discarded
those words with a frequency lower than five, obtaining a
lexicon of 120 words. Note that sentences which contained
those words are not eliminated from the corpus, only those
words from the sentence are deleted. We think that for the
task of DA detection the sequential structure of the sentence
is not fundamental to classifying the type of frame.3 For
that reason, the words of the preprocessed sentence were all
encoded with a local coding: a 120-dimensional bit-vector,
one position for each word of the lexicon. When the word
appears in the sentence, its corresponding unit is set to 1,
otherwise, its unit is set to 0.

3.3. Training the MLP

With any neural network algorithm, several parameters must
be chosen by the user. For the MLPs, we must select the net-
work topology and their initialization, the training algorithm
and their parameters and the stopping criteria [11, 12, 15].
Tests were conducted using different network topologies of
increasing number of weights. In every case, a sigmoid ac-
tivation function was used in all units. Experiments with the
incremental version of the backpropagation algorithm, with
and without momentum term, and the quickprop algorithm
were performed. The influence of their parameters such as
learning rate or momentum term was also studied. We se-
lected all the parameters to optimize performance on a val-
idation set: the training set is subdivided into a subtraining
set and a validation set (20% of the training data was ran-
domly selected for validation). While training on the sub-
training set, we observed generalization performance on the
validation set (measured as the mean square error) to deter-
mine the optimal setting of configuration (network topology
and parameters of the learning algorithm) and the best point
at which to stop training. Random presentation of the train-
ing samples was used in the training process. The threshold
T of the multiclass classification rule (see equation (3)) is
also learnt in the training process: we performed classifica-
tion with the optimal configuration of MLP on the patterns
of the validation set, proving several values of the thresh-
olds and keeping the best one. Finally, we measure network
performance on the test set for the best configuration and
the learnt threshold.

3.4. Classification Performance of the MLP

We have considered a sample as correctly classified if the
set of the original frame classes is detected. That is, if a
user turn is labeled with two frame classes only and exactly
those classes should be detected. The global classification

3Nevertheless, the sequential structure of the sentence is essential in
order to segment the user turn into slots to have a real understanding of it.

Table 3. Frame type classification error rates of the user turns.

Experiment Test UC MC
Transcribed data 11.19 8.00 17.20
Recognized data 48.13 50.86 43.10

rate was of11.19%, 8.00% for the uniclass set and17.20%
for the multiclass samples. If we test the trained MLPs
with the recognized test data obtained with our automatic
speech recognition system (around20% of word error rate),
the classification error rate rises to a48.13% (see Table 3).

Analyzing the output of the speech recognizer, we real-
ized that many insertion errors of short and relevant words
(e.g. “Śı” [ Yes], “No”) leads to a high classification error.
These errors can be alleviated in some way in the under-
standing process (see Section 5).

4. STOCHASTIC UNDERSTANDING MODELS

Once we have classified the user utterances in one or more
of the above defined frame classes, the next task in the di-
alogue system consists of extracting the relevant informa-
tion in order to fill the cases associated which each user
turn. To achieve this, we perform an additional step, find-
ing an adequate segmentation of the user turn, according to
the semantic function of each word or sequence of words
(see Figure 3). The objective of this analysis phase is to
find a correct segmentation according to this newly defined
units. Having this segmentation, the filling of the corre-
sponding cases can be accomplished with a set of simple
rules. We defined a total of 53 semantic units [7], such as
m origen (“departure mark”), clase billete (“ticket class”) or
fecha actual (“current date”).

The segmentation is achieved using HMMs, where each
state corresponds to a semantic unit. In order to reduce the
size of the vocabulary and trying to avoid the problem of
underestimation of parameters, we used the corpus obtained
after the tokenization and lemmatization (see section 2.2).

We used a set of specific models for each of the 10 most
frequent frame types defined in Table 1. The emission prob-
abilities for each state in the HMMs will be shared between
models, to avoid the problem of underestimation. The dif-
ference among the models will therefore lie in the transi-
tion probabilities between the different states conforming
the model.

Here we must again face the problem of the multiclass
user turns, as we have to combine the output of several
HMMs, that is, we have to find an adequate combination of
several segmentations, each from a different type of frame.
In the training process we replicate the multiclass turns and
use them to train each of the corresponding models. In the
test phase, if the output of the classification provides more
than one frame class, the corresponding HMMs are con-



Original sentence
Necesito saber los horarios de trenes de León a Ćordoba para el tercer domingo de agosto.

I need to know the timetable of the trains from León to Ćordoba for the third Sunday of August.
Segmentation

necesito saber: consulta
los horarios de trenes: <hora s>

de: m origen
León: ciudad origen
a: m destino
Córdoba: ciudad destino
para el tercer: fecha relativa s
domingo: dia semana s
de agosto: mes s

I need to know: question
the timetable of the trains: <time d>
from: departurem
León: departurecity
to: goal m
Córdoba: citygoal
for the third: relativedated
Sunday: weekday d
of August: monthd

Cases
(HORA-SALIDA)

CIUDAD-ORIGEN: León
CIUDAD-DESTINO: Córdoba
FECHA-SALIDA: 19-08-2002

(DEPARTURE-TIME)
DEPARTURE-CITY: León
CITY-GOAL: Córdoba
DATE: 19-08-2002

Fig. 3. An example of the segmentation of an user turn. The Spanish original sentence and its English translation are given.

catenated in every possible order.4 With this strategy we
try to achieve an automatic division of a multiclass sentence
in each of its constituting parts, each belonging to a differ-
ent frame type. This is a natural approach for many turns
(e.g. “Yes, what type of train is it?”) but it is not so clear if
this approach will be adequate for other turns, where such a
clear division between the frames can not be found (e.g. “I
want information about timetable and prices for traveling
form Barcelona to Vigo.”).

4.1. Smoothing

We are working with a closed vocabulary task, as the in-
put from this phase is the output of the speech recognizes,
which has a limited (and known) vocabulary. However, we
can not assure that every word of the vocabulary will be seen
in the training process, so, in order to handle these words in
a proper way when they appear in the test phase, we need to
apply smoothing techniques.

The emission probabilities of a wordw in states is given
by5

p̂sw =
Nsw∑
w′ Nsw′

, (4)

whereNsw gives the frequency of wordw appearing in the
semantic unit (state)s. In this equation we can see clearly
that the emission probability of a word not appearing in the
training set will be set to 0. The first smoothing technique
we have tried is known as Laplace smoothing and consists

4Normally, multiclass user turns are composed of only two or three
frame classes.

5Equation (4) corresponds to the maximum likelihood estimator of a
multinomial, where we must choose only one element of the original pop-
ulation.

simply of adding a pseudocountε to each word, thus equa-
tion (4) becomes

p̂sw =
Nsw + ε∑

w′(Nsw′ + ε)
. (5)

Normallyε = 1 but we consider a more general case where
ε can be any non-negative real number.

The second smoothing technique we have applied is known
as uniform backoff and consists of subtracting some prob-
ability mass from the seen events (words) and adding them
to the unseen ones. The estimated probability becomes

psw =


Nsw − b∑

w′ Nsw′
if Nsw > 0 ;

M
1/|Ω|∑

w′:Nsw′=0

1/|Ω|
if Nsw = 0 ,

(6)

where|Ω| is the size of the vocabulary,b is an smoothing
parameter (b ≥ 0) andM is the gained probability mass
given by

M =
b · |{w′ : Nsw′ = 0}|∑

w′ Nsw′
. (7)

5. EXPERIMENTS

The smoothing technique and its parameters were deter-
mined by using the same validation set defined for the con-
nectionist classification experiments (20% of the training
set), but the training of the models for the test phase was
carried out using the whole training corpus (see Table 2).

As a measure of the correctness of the understanding
process we use two figures: the “Frame Error Rate” (FER)



Table 4. FER and CER of the filled cases with the different mod-
els. First, the results with transcribed data are shown and, sec-
ondly, with the recognized data.

MLP Test Test UC MC
Model err. rate FER CER CER CER
Global − 28.73 20.97 23.01 19.11
Specific 0.00 19.78 13.42 13.16 13.72
Specific 11.19 25.37 16.99 17.39 16.71

Global − 47.38 32.54 34.58 30.02
Specific 0.00 40.30 25.97 25.53 26.06
Specific 48.13 42.91 28.68 29.77 27.29

and the “Cases Error rate” (CER). For the FER measure, a
frame is considered correct when the type of frame and its
associated cases are exactly the same as the reference. The
CER is defined as the word error rate between the output
frame slots (type of frame and cases) and the correct ones.

A global model was also trained with all the user turns
in order to compare its performance with the specific mod-
els. Several experiments were carried out, comparing the
performance of the global and the specific models. In every
case, the HMMs were trained using the correct transcription
of the user utterance (transcribed data), not the output of
the speech recognizer (recognized data). Table 4 shows that
the use of specific models clearly outperforms the global
one, both with transcribed and recognized data. The best
results are obtained using thecorrect classification of each
user turn. The use of the output of the classifier degrades the
performance, as expected, but it is still better than the global
model performance. It is worth noting that the understand-
ing process is able to recover from some classification errors
when using the recognized data.

6. CONCLUSIONS

We have shown that connectionist classification is a suc-
cessful approach for classifying a user turn given in natu-
ral language into a specific class or classes of frames. It
can also be noted that stochastic models are also a good ap-
proach for the understanding task.

It must be taken into account that in some frame classes
very few training samples are available, so the models are
underestimated. We hope to improve the performance of the
system by a combination of specific and global models: If
the user turn is classified with a high level of confidence, we
could use the specific understanding model and if it is not,
we choose the global one. Similarly we can also measure
the confidence of the output of the specific HMMs.

We also expect to improve our system by retraining the
MLPs with the recognized data in order to reduce the classi-
fication error. Lastly, more dialogues are being acquired for
having more samples for a better estimation of the models.
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