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ABSTRACT

In this paper we present theMinimum Exact Word Error(ex-
actMWE) training criterion to optimise the parameters of large
scale speech recognition systems. The exactMWE criterion is sim-
ilar to theMinimum Word Error(MWE) criterion but uses theexact
word error instead of an approximation based on time alignments
as used in the MWE criterion. It is shown that the exact word
error for all word sequence hypotheses can be represented on a
word lattice. This can be accomplished using transducer-based
methods. The result is a word lattice of slightly refined topology.
The accumulated weights of each path through such a lattice then
represent the exact number of word errors for the corresponding
word sequence hypothesis. Using this compressed representation
of the word error of all word sequences represented in the orig-
inal lattice, exactMWE can be performed using the same lattice-
based re-estimation process as for MWE training. First experi-
ments on theWall Street Journaldictation task do not show signif-
icant differences in recognition performance between exactMWE
and MWE at comparable computational complexity and conver-
gence behaviour of the training.

1. INTRODUCTION

Due to improved optimisation procedures and increased compu-
tational power, discriminative methods have become an impor-
tant means of estimating the parameters ofHidden Markov Mod-
els (HMM) in many state-of-the-art speech recognition systems.
Since the first successful application of theMaximum Mutual In-
formation(MMI) criterion to large scale speech recognition tasks
[1], there has been a growing interest in a class of error minimis-
ing discriminative training criteria, like for example theMinimum
Word Error (MWE) and theMinimum Phone Error(MPE) crite-
rion [2, 3]. In contrast to the MMI criterion, which directly max-
imises the posterior probability of the training utterances, MWE
and MPE aim at minimising the (expected) word and phoneme
error on the training data. The MWE and MPE criterion were
shown to significantly outperform the MMI criterion on many
tasks [2, 3, 4].

As the standard evaluation measure of most speech recogni-
tion systems is the word error rate (WER), one would ideally like
to minimise theempirical word error in training. However, the
implementation is not easy for several reasons. First, the objec-
tive function is a discrete valued function and therefore has to be
approximated by a smoothed objective function to allow an effi-
cient optimisation. In this work, the objective function will be
theexpectedword error, on which both MWE and exactMWE are
based. Clearly, [3] introduced a misnomer but we have used this

terminology to emphasise the similarity of our proposed algorithm
with MWE. Second, the key quantity of the expected word error
is the word error. The calculation of the exact word errors re-
quires an alignment, which so far has been solved only on N-best
lists. Finally, the discriminative statistics need to be accumulated
efficiently. Typically this comprises a summation over the word
sequences.

In the literature, different approximations are proposed to
tackle the minimisation of the expected word error. In [5], N-
best lists are used in conjuction with the exact word error, whereas
in [6] the word error is approximated by consensus lattices which
are expanded to lists for accumulation. In contrast, [3] and [4] use
an approximation of the word error, which allows to work on lat-
tices in all stages of the training. [4] also describes a more refined
approximation of the word error, which is misleadingly termed
’exact MWE’. It is, however, not clear how much recognition per-
formance is lost by these approximations.

In this paper, we propose an algorithm toexactlysolve the
minimisation of the expected word error on word lattices in all
stages of the training. This enables quality assessments of the
various approximations of the word error and comparisons of N-
best lists with lattices. The algorithm might be also useful in
other applications where, for instance, no time alignment is avail-
able, which is needed for some approximations of the word error
(e.g. [3]).

The calculation of word errors on lattices is based on weighted
transducers. In the literature, similar problems have been dis-
cussed.

• The edit-distance of two unweighted automata may be cal-
culated with a transducer-based approach [7].

• [7] also described an algorithm to calculate the edit-
distance of two weighted automata, which may be used for
re-scoring according to the Bayes risk with the exact word
error in speech recognition. However, the feasibility of this
algorithm has not been demonstrated yet.

2. TRANSDUCER-BASED CALCULATION OF
EDIT-DISTANCES

The minimisation of the expected word error requires a summation
over the word sequences and, thus, is usually performed on word
lattices since this is a compact way to store many word sequences.
As a consequence the word error of any sentence in the word lattice
and the spoken sentence has to be calculated. For this purpose,
word lattices here are considered unweighted automata where each
path of the automaton represents a word sequence. To calculate



the word errors efficiently, we will take advantage of the compact
transducer representation.

2.1. Edit-Distance

LetΣ be a finite alphabet of distinct symbols, and letΣ? denote the
set of all possible strings givenΣ. The set of local edit operations
is defined as the setE = Σ × Σ ∪ Σ × {ε} ∪ {ε} × Σ and each
local edit operation is assigned costsc : E → R+. Furthermore,
an elementw ∈ E? is called analignmentof the stringsx and
y if h(w) = (x, y) for the corresponding morphismh : E? →
Σ? × Σ?. Then, the edit-distance of these two strings is

d(x, y) := min
w∈E?:h(w)=(x,y)

X
i

c(wi),

wherewi are the local edit operations ofw. The classical edit-
distance is obtained if the costs are set to 1 except for matches
which have zero costs [8]. The edit-distance of two strings is effi-
ciently solved by dynamic programming.

2.2. Transducer Representation

The alignments including the costs may be represented as trans-
ducers in a natural way. To build the alignments, it is convenient
to introduce theedit-distance transduceras illustrated in Fig. 1.
The arcs are labelled with the triple “input:output/weight”, each
describing a local edit operation with the corresponding costs (e.g.
“ε : a/1” represents an insertion).ε denotes the empty symbol.

Fig. 1. Edit-Distance transducer for the alphabet{a,b}.

Given two unweighted automata,A1 and A2, and the edit-
distance transducerL, the weighted automaton

A1 ◦ L ◦A2

(◦: composition) contains all alignments of any string inA1 and
any string inA2 [7]. The edit-distance ofA1 andA2

1, for exam-
ple, is efficiently calculated by means of a single-source shortest-
path algorithm such asbest from FSA [9] in combination with the
tropical semiringT , i.e.,

bestT (A1 ◦ L ◦A2) (1)

returns the alignment with the lowest costs [7]. In the case of
speech recognition,A1 represents the spoken sentence. IfA2 con-
tains only the recognised sentence, then Eq. (1) produces the word

1d(A1, A2) := min
x∈A1,y∈A2

d(x, y)

error of these two sentences. IfA2 is set to the word lattice, Eq. (1)
can be used to calculate the graph error rate (GER).

Note that this concept is general: any weighted transducer
without cycles with negative weight might be substituted for the
edit-distance transducer. As a variant of the classical edit-distance,
for example, the weights of the edit-distance transducer can be set
to the values, which have been estimated from a stochastic model
for edit-distance [10].

2.3. Algorithm

A similar problem involves finding the edit-distances for all strings
in A2 (e.g. word sequences in a word lattice) given the reference(s)
in A1 (e.g. correct word sequence). More formally: given two
unweighted automata,A1 andA2, find a weighted automaton with
arc weigthsw[a] such that the weight of any pathπ ∈ A2 with
stringx satisfies the constraint

w[π] = d(A1, x),

i.e., the arc weights are distributed over the automaton so that the
accumulated weights provide the edit-distance for each string of
A2 given the reference(s) inA1. The weight of pathπ is ob-
tained by summing up the corresponding arc weights. A solution
to this problem is to use standard weighted transducer algorithms.
An overview of the relevant transducer algorithms is found in Ta-
ble 1 [9].

Proposition If A2 is acyclic, the weighted automaton

detT (rmεT (proj2(A1 ◦ L ◦A2)))

is well-defined and satisfiesw[π] = d(A1, π), ∀π ∈ A2.
Proof. First,A1 ◦L◦A2 is acyclic sinceA2 is acyclic by assump-
tion. According to [11] any acyclic weighted automaton has the
twins property and, thus is determinisable, i.e., the weighted au-
tomaton is well-defined. Second, the determinisation produces a
deterministic weighted automaton which is equivalent to the input
automaton under the given, say, tropical semiring. A deterministic
automaton has the properties [12]:

• unique initial state;

• no two transitions leaving any state share the same input
label.

This definition implies that any string in the deterministic automa-
ton is unique. From these observations, the correctness of the al-
gorithm follows.�

The edit-distance transducer has a single state, but, it has|Σ|2
arcs if |Σ| is the alphabet size. In speech recognition with large
vocabularies this is prohibitive. For this reason the vocabulary is
reduced to the words occuring inA1, and an “out-of-vocabulary”
word is introduced onto which all words ofA2 which do not ap-
pear inA1 are mapped. Thereby, different word sequences may
be mapped onto the same word sequence. For training, however,
all word sequences of the word lattice are required. So, the word
sequences of the word lattice are recovered afterwards with an al-
gorithm, which performs similarly to composition.

To estimate the complexity of this algorithm, it is assumed
that the automata are connected, i.e.,|Q| ≤ |E| where|Q| and
|E| are the number of states and arcs. The transducerA1 ◦L ◦A2

hasO(|E1||E2|) arcs. In the straighforward approach, this trans-
ducer might be calculated inO(|E1|2(|E1| + |E2|)). The edit-
distance transducer might be factorised so that this step takes only



Table 1. Weigthed transducer algorithms from the transducer
toolkit FSA [9]. Complexities are given for connected automata.

algorithm description complexity
◦ composition O(|E1||E2|)
proj2 discard input labels O(|E|)
rmε ε-removal O(|V ||E|)
det produce equivalent O(|E| log |E|)

deterministic automaton (acyclic)

O(|E1||E2|) [7]. As will be shown, this reduction has no impact
on the overall complexity. Using the complexities of the individual
algorithms from Table 1 then leads to the overall complexity

O(|E1|2|E2|2 log |E1||E2|).

Clearly the bottleneck of this algorithm is the determinisation per-
formed byrmε (ε is not a special symbol indet) anddet. Com-
pared with N-best lists, this algorithm is generally more efficient

becauseA2 might represent up toO(B
|E2|

B ) different strings (B:
branching factor ofA2).

A simple optimisation might be to first minimiseA1 andA2

which significantly speeds up the algorithm in the context of dis-
criminative training. Several other optimisations are possible (e.g.
pruning), which, however, do not guarantee the exactness of the
algorithm in general.

3. MINIMISATION OF THE EXPECTED WORD ERROR

Let xT
1 be the feature vector, andvM

1 the correct word sequence.
The acoustic and the language model probability are denoted by
pθ(x

T
1 |vM

1 ) andp(vM
1 ), respectively. The language model prob-

abilities are supposed to be given. Hence, the parameterθ com-
prises the set of all parameters of the acoustic model. The parame-
ter estimation problem then consists of findingθ̂ that optimises the
objective functionFθ(v

M
1 , xT

1 ). In speech recognition, the objec-
tive function ideally equals the empirical word error on the training
corpus. This objective function, however, is not differentiable in
θ, and, thus, has to be approximated by a differentiable function to
allow gradient-based optimisation of the parameters.

3.1. Formulation

The objective function under consideration is the expected word
error

Fθ(v
M
1 , xT

1 ) =
X
wN

1

pθ(w
N
1 |xT

1 )L[vM
1 , wN

1 ],

wherepθ(w
N
1 |xT

1 ) is the sentence posterior probability and can be
rewritten in terms of the acoustic and language model probabil-
ities. L[vM

1 , wN
1 ] denotes the loss between the spoken sentence

vM
1 and a word sequence hypothesiswN

1 of the word lattice, e.g.
the word error. If this function is differentiable w.r.t.θ, the gradi-
ent can be built

∂Fθ(v
M
1 , xT

1 )

∂θ
=

X
wN

1

pθ(w
N
1 |xT

1 )
∂ log pθ(w

N
1 , xT

1 )

∂θ

·
h
L[vM

1 , wN
1 ]−Fθ(v

M
1 , xT

1 )
i

(2)

and theExtended Baum Welch(EBW) algorithm, for instance, may
be used for optimisation. The optimisation can be carried out if (2)

Fig. 2. Accuracy transducer for the alphabet{a,b}.

can be (efficiently) calculated for each parameter ofθ. This in-
cludes the implicit or explicit calculation of allL[vM

1 , wN
1 ].

Note that the smoothness of the objective function inθ can be
controlled by the overall scaling factor of the probabilities. Usu-
ally the value is set so that the acoustic and language model scaling
factors are the inverse of the language model scaling factor from
recognition and 1, respectively. This has proven to be a robust
choice. In the limit of an infinitely large scaling factor, the pos-
terior probability mass concentrates on the word sequence with
maximum a posterior probability, i.e., the objective function coin-
cides with the empirical word error [4].

The next subsection summarises the approximate ap-
proach [3].

3.2. Word Accuracy

In [3], L[vM
1 , wN

1 ] is chosen as the word accuracyA(vM
1 , wN

1 ),
which here is defined as the number of spoken wordsM minus
the number of word errors. From this definition it follows that
the expected word accuracy and the expected word error have the
same local optima. Like the word error, the word accuracy can be
modelled by a weighted transducer with arc weights1, 0 and−1
for matches, substitutions/deletions and insertions, respectively,
cf. Fig. 2.

To simplify and speed up the calculation of the word accura-
cies, the exact arc accuraciesA(q) may be replaced with approxi-
mate accuracies

A(q) = max
z

(
−1 + 2e(q, z) if z = q

−1 + e(q, z) otherwise,
(3)

wheree(q, z) is the relative overlap in time of the hypothesis arc
q w.r.t. to the correct arcz [3]. This approximation is based on
the time alignments of the word sequences. It has the advantage
that no edit-distance alignment is required and that the accuracies
may be written in the original word lattices without changing the
topology. In [3], a recursion formula is presented to calculate the
corresponding gradient (2) on word lattices.

3.3. Exact Solution on Lattices

In the previous section, an algorithm has been presented to cal-
culate the word errors of an unweighted transducer and store the
results in form of a weighted transducer. To allow an efficient ac-
cumulation of the discriminative statistics, the word lattices need



Table 2. Corpus statistics and vocabulary size on the North Amer-
ican Business (NAB) corpus.

corpus NAB-20k / NAB-65k
train dev eval

acoustic data [h] 81:23 0:48 0:53
# speakers 284 20 20
# sentences 37474 310 316
# running words 6420747387 8193

# lexicon words 15013 19978 / 64735

to be modified so that the word errors can be incorporated into
the lattices without losing the information used for the acoustic
rescoring (pronunciations, word start and end times, across word
contexts).

First, the tokens used to evaluate the word errors are not iden-
tical to the pronunciations stored in the word lattice. The corre-
sponding mapping is accomplished by composing the lattices with
a suitable transducer.

Then, the word lattice with the word errors is obtained by
composing the original word lattice and the weighted transducer
containing the word errors. As the composition is based on the
state mapping(q1, q2) and(q′1, q

′
2)→ ((q1, q2), (q

′
1, q

′
2)) the times

etc. may be recovered easily. It is important to avoid sentence hy-
potheses in the resulting word lattice, which have identical word
sequenceand time alignment, since this would affect the poste-
rior probabilities entering the accumulation. To ensure this, the
weighted transducer with the word errors has to be determinised
beforehand. Observe that, in general, the composition may split
states with the result that the resulting word lattices increase. This
effect has been investigated and turned out to be uncritical, cf. next
section. For the accumulation, the same recursion formula as for
the approximate approach, i.e., MWE can be used [3].

4. EXPERIMENTAL RESULTS

Experiments were conducted on two settings of theWall Street
Journal (WSJ) corpora [13]. Table 2 summarizes some corpus
statistics. The settings for the training are basically the same as
in [2].

The Nov. ’94North American Business(NAB) training corpus
consists of the 84 speakers of the WSJ0 corpus plus 200 additional
speakers from the WSJ1 corpus. Tests were performed on the
NAB Nov. ’94Hub-1development and evaluation corpus. Both the
20k and the 65k recognition systems use 7000 decision-tree based
gender independent across-word triphone states plus one state for
silence. The system employs Gaussian mixture distributions with
a total of 412k densities and one globally pooled diagonal variance
matrix. 16 cepstral features together with their first derivatives and
the second derivative of the energy are used. Each three consecu-
tive observation vectors are concatenated and projected onto a 32
dimensional feature vector via an LDA. The ML trained recognizer
obtaines a WER of 11.40% for the 20k system and 9.19% for the
65k system on the combined development and evaluation corpus
(cf. Table 3).

In all discriminative experiments, the ML trained system was
used to generate word-conditioned word lattices. The resulting
word graph densities are shown in Table 4. Note that the graph
error is zero because the hypotheses of the spoken word sequence
are merged into the word lattices. This is done to keep the results

Table 4. Word graph densities for training lattices, “with error”
refers to the lattices after incorporating the word errors into the
“raw” lattices.

corpus WSJ0+WSJ1
raw with error

avg. #arcs per spoken word (WGD) 59 67
avg. #arcs per timeframe 31 35

comparable with those of other training criteria such asMinimum
Classification Error(MCE). On average a lattice contains 6×109

distinct sentence hypotheses (different pronunciation variants and
different alignments of the same word sequence are counted only
once). The calculation of the word errors, including the integration
of the word errors into the raw lattices takes 2-3 real time (2 GHz
pentium machine). The memory requirements for this postpro-
cessing step are a few hundred MB. The lattice density increases
modestly by 13%, see Table 4.

For all iterations of the discriminative training, the hypotheses
encoded in the word lattices were re-aligned within their boundary
times (the Viterbi segmentation points) as determined in the initial
recognition phase. The convergence behaviour of the exact and the
approximate approach is similar. All results reported correspond
to the word error rate obtained after five iterations.

To assess the quality of the approximate accuracy (3) in the
context of expected word error minimisation, the approximate ac-
curacies are replaced with the exact accuracies and the system is
re-trained. The results from this experiment are summarised in
Table 3. In conclusion, the performance of the exact and the ap-
proximate approach on this corpus is the same.

5. CONCLUSIONS

In this paper, we presented a transducer-based algorithm to effi-
ciently calculate the exact word error of all word sequence hy-
potheses represented by a word lattice. This algorithm was then
used to augment the word lattices with theexactword errors. This
allowed us to carry out te minimisation of the expected word er-
ror without approximations and using word lattices in all phases
of the discriminative training. Experiments conducted on the NAB

corpus have shown that the difference in recognition performance
of this exact approach (exactMWE) and the approach using an ap-
proximation of the word errors (MWE) is not significant. How-
ever, tests are planned to verify if the proposed exact solution for
expected word error minimisation improves the recognition per-
formance on more complex corpora.
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