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Abstract

This paper presents a phrase-based statis-
tical machine translation method, based
on non-contiguous phrases, i.e. phrases
with gaps A method for producing such
phrases from a word-aligned corpora is
proposed. A statistical translation model
is also presented that deals such phrases,
as well as a training method based on the
maximization of translation accuracy, as
measured with the NIST evaluation met-
ric. Translations are produced by means of
a beam-search decoder. Experimental re-
sults are presented, that demonstrate how
the proposed method allows to better gen-
eralize from the training data.
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of contiguous words on both the source and the tar-
get side. We propose here a model designed to deal
with multi-word expressions that need not be con-
tiguous in either or both the source and the target
side.

The rest of this paper is organised as follows. Sec-
tion 2 provides motivations, definition and extrac-
tion procedure for non-contiguous phrases. The log-
linear conditional translation model we adopted is
the object of Section 3; the method used to train
its parameters is described in Section 4. Section 5
briefly describes the decoder. The experiments we
conducted to asses the effectiveness of using non-
contiguous phrases are presented in Section 6.

2 Non-contiguous phrases

Why should it be a good thing to use phrases
composed of possibly non-contiguous sequences of
words? In doing so we expect to improve trans-
lation quality by better accounting for additional

Possibly the most remarkable evolution of recerlinguistic phenomena as well as by extending the
years in statistical machine translation is the stegffect of contextual semantic disambiguation and
from word-based models to phrase-based modetsxample-based translation inherent in phrase-based
(Och et al., 1999; Marcu and Wong, 2002; YamadMT. An example of a phenomenon best described
and Knight, 2002; Tillmann and Xia, 2003). While using non-contiguous units is provided by English
in traditional word-based statistical models (Browrphrasal verbs. Consider the sentence “Mamjtches
et al., 1993) the atomic unit that translation operatdser table lampoff’. Word-based statistical mod-
on is the word, phrase-based methods acknowledgés would be at odds when selecting the appropri-
the significant role played in language by multi-ate translation of the verb. If French were the target
word expressions, thus incorporating in a statisticdhnguage, for instance, corpus evidence would come
framework the insight behind Example-Based Mafrom both examples in which “switch” is translated
chine Translation (Somers, 1999). as “allumer” (to switch on) and aséteindre” (to
However, Phrase-based models proposed so fawitch off). If many-to-one word alignments are not
only deal with multi-word units that are sequencesllowed from English to French, as it is usually the



Pierre ne mange _pas guence of bi-phrasés...bx . When piecing together
the final translation, the target-language portign

of the first bi-phrasé; is first layed down, then each
subsequent;, is positioned on the first “free” posi-
tion in the target language sentence, i.e. either the

Figure 1: An example of a complex alignment assdeftmost gap, or the right end of the sequence. Fig-
ciated with different syntax for negation in Englishure 2 illustrates this process with an example.
and French. To produce translations, our approach therefore
relies on a collection of bi-phrases, what we call a
i i-phrase library Such a library is constructed from
case, then the best thing a wprd-based model cou dcorpus of existing translations, aligned at the word
do in this case would be to align “off” to the emptyIeve

word and hope to select the correct translation from , - strategies come to mind to produce non-

"switch” only, basically a 50-50 bet. V\/“hile han- contiguous bi-phrases for these libraries. The first is
dling inseparable phrasal verbs such as “to run ou) align the words using a “standard” word aligne-

correctly, previously proposed phrase-based mOderlﬁent technique, such as theefined MethocHe-

would be helpless in this case. A comparable behaxé-Cribeol in (Och and Ney, 2003) (the intersection of

ior is displayed by German separable verbs. Mor%\'/vo IBM Viterbi alignments, forward and reverse,

over, hon-contiguous linguistic units are not I|m|tedenriched with alignments from the union) and then

to verbs. Negation is formed, in French, by 'nsertm%enerate bi-phrases by combining together individ-

the words “ne” and “pas” before and after a verb reﬂgl alignments that co-occur in the same pair of sen-

spectively. So, the sentence "Pierre ne mange P38 nces. This is the strategy that is usually adopted in

and its English translation display a complex Wordbther phrase-based MT approaches (Zens and Ney,

level alignment (Figure 1) current models cannot 2%003: Och and Ney, 2004). Here, the difference is

count f.or. o i ) ) . that we are not restricted to combinations that pro-
Flexible idioms, allowing for the insertion of lin- duce strictly contiguous bi-phrases

gt_ustlc materlf';ll, are oth_er phenomena best modeledThe second strategy is to rely on a word-
with non-contiguous units.

. ~N
Pierre doés not eat

alignment method that naturally produces many-to-
many alignments between non-contiguous words,
such as the method described in (Goutte et al.,
We define ai-phraseas a pair comprising source 2004). By means of a matrix factorization, this
phraseand atarget phrase b = (3,7). Each of the method produces a parallel partition of the two texts,
source and target phrases is a sequence of words aagn as sets of word tokens. Each token therefore
gaps (indicated by the symbo); each gap acts as belongs to one, and only one, subset within this par-
a placeholder for exactly one unspecified word. Fatition, and corresponding subsets in the source and
examplew = wiwows oo wy is a phrase of length target make up what are calledpts For example,
7, made up of two contiguous words, andws, a in Figure 1, these cepts are represented by the circles
first gap, a third wordus, two consecutive gaps andnumbered 1, 2 and 3; each cept thus connects word
a final wordw,. To avoid redundancy, phrases maytokens in the source and the target, regardless of po-
not begin or end with a gap. If a phrase does nddition or contiguity. These cepts naturally constitute
contain any gaps, we say ité®ntiguousotherwise bi-phrases, and can be used directly to produce a bi-
it is non-contiguousLikewise, a bi-phrase is said to phrase library.
be contiguousf both its phrases are contiguous. Obviously, the two strategies can be combined,
The translation of a source senterde produced and it is always possible to produce increasingly
by combining together bi-phrases so as to cover tHarge and complex bi-phrases by combining together
source sentence, and produce a well-formed targete-occurring bi-phrases, contiguous or not. One
language sentence (i.e. without gaps). A completgroblem with this approach, however, is that the re-
translation fors can be described as an ordered sesulting libraries can become very large. With con-

2.1 Definition and library construction
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Figure 2: Combining bi-phrases to produce a translation.

tiguous phrases, the number of bi-phrases that cased for machine translation (Tillmann and Xia,
be extracted from a single pair of sentences typicallg003; Zens and Ney, 20083)

grows quadratically with the size of the sentences; Additional variables can be introduced in such a
with non-contiguous phrases, however, this growtimodel, so as to account for hidden characteristics,
is exponential. As it turns out, the number of availand the feature functions can be extended accord-
able bi-phrases for the translation of a sentence hagly. For example, our model must take into ac-
a direct impact on the time required to compute theount the actual set of bi-phrases that was used to
translation; we will therefore typically rely on vari- produce this translation:
ous filtering techniques, aimed at keeping only those v
bi-phrases that are more likely to be useful. For eXPr(t{, b{(|3{) _ e exp <Z )\mhm(t{, 8117 b{())
ample, we may retain only the most frequently ob- s{

served bi-phrases, or impose limits on the number
cepts, the size of gaps, etc.

m=1

%ur model currently relies on seven feature func-
tions, which we describe here.

3 The Model e The bi-phrase feature functionh,: it rep-

o _ _ _ resents the probability of producing using
In statistical machine translation, we are given a  gome set of bi-phrases, under the assump-
source language inpu = si...s;, and seek the tion that each source phrase produces a target

target-language sentente= t;...t; that is its most phrase independently of the others:
likely translation:

K
hop(th, 57,08) = > log Pr(tlsy)  (2)

i = argmax, Pr(t]|s]) ®
Our approach is based on a direct approximation ~ Individual bi-phrase probabilitiesPr (Zy|3y)
of the posterior probability’r(t!|s?), using a log- are estimated based on occurrence counts in the
linear model: word-aligned training corpus.
. M e The compositional bi-phrasdeature function
Pr(tls]) = 7 P (Z Amhm(t{,s’f)> heomp: this is introduced to compensate for
s m=1 T

!Recent work from Chiang (Chiang, 2005) addresses simi-
o lar concerns to those motivating our work by introducing a Syn-
In such a model, the contribution of eaékature chronous CFG for bi-phrases. If on one hand SCFGs allow to

function h,,, is determined by the correspondingpetter control the order of the material inserted in the gaps, on

del teh.: 7, d t lizati the other gap size does not seem to be taken into account, and
model parametei,,, Z,s denotes a normalizalilon ,nrase dovetailing such as the one involving “deant” and

constant. This type of model is now quite widely“not oooanymore” in Fig. 2 is disallowed.



hyp's strong tendency to overestimate the prob- Say we have a set of source-language sentences

ability of rare bi-phrases; it is computed as inS. For a given value ok, we can compute the set of

equation (2), except that bi-phrase probabilitiesorresponding target-language translatidn&iven

are computed based on individual word translaa set ofreference(“gold-standard”) translation

tion probabilities, somewhat as in IBM modelfor S and a functionE (7, R) which measures the

1 (Brown et al., 1993): “error” in T relative toRR, then we can formulate the
parameter estimation problenfas

Pr(ils) = ‘;ﬂHZPr(t!s) A

tel s€3 A = argminy E(T, R)

e Thetarget languagdeature functioniy: this As pointed out by Och, one notable difficulty with
is based on av-gram language model of the this approach is that, because the computatiof of
target language. As such, it ignores the sourds based on an argmax operation (see eq. 1), itis not
language sentence and the decomposition ebntinuous with regard ta, and standard gradient-
the target into bi-phrases, to focus on the actualescent methods cannot be used to solve the opti-
sequence of target-language words producedization. Och proposes two workarounds to this

by the combination of bi-phrases: problem: the first one relies on a direct optimiza-
; tion method derived from Powell’s algorithm; the
ha(t!, 57 bK) = S log Pr(t;|ti! second mtroduce_s a smoothed (contlnuo_us) version
alfi, 51, 01) 2:21 8 Prtiltin) of the error functionZ(T, R) and then relies on a

gradient-based optimization method.

e The word-countand bi-phrase countfeature We have opted for this last approach. Och shows
functionsh.,. andhy,.: these control the length how to implement it when the error function can be
of the translation and the number of bi-phrasesomputed as the sum of errors on individual sen-
used to produce it: tences. Unfortunately, this is not the case for such

widely used MT evaluation metrics as BLEU (Pa-
hwe(t1, 57, 01) = T Tue(t1, 57, 01°) = K pineni et al., 2002) and NIST (Doddington, 2002).

. . We show here how it can be done for NIST; a simi-
e The reordering feature function

I KA. lar derivation is possible for BLEU.
hreord(t, s1,b7%): it measures the amount of . . .

; . The NIST evaluation metric computes a weighted
reordering between bi-phrases of the source

and target sentences n-gram precision betweeld gnd R, multiplied py
' afactorB(S, T, R) that penalizes short translations.
e thegap countfeature functiom,,: It takes as It can be formulated as:
value the total number of gaps (source and tar- N
get) within the bi-phrases @f*, thus allowing B(S,T,R) x M
the model some control over the nature of the w1 2ses Onl(ts)
bi-phrases it uses, in terms of the discontigui
ties they contain.

3)

where N is the largest:-gram considered (usually
N = 4), I,(ts,rs) is a weighted count of common
4 Parameter Estimation n-grams between the target,Y and referencerg)
translations of sentence and C,(¢s) is the total
The values of the\ parameters of the log-linear number ofn-grams int,.
model can be set so as to optimize a given crite- To derive a version of this formula that is a con-
rion. For instance, one can maximize the likelytinuous function of\, we will need multiple trans-
hood of some set of training sentences. Instead, anglionst, 1, ..., t, i for each source sentengeThe

as suggested by Och (2003), we chose to maximizgeneral idea is to weight each of these translations

directly the quality of the translations produced by———— N _ _

the svstem. as measured with a machine translati For the sake of simplicity, we consider a single reference
y J @nslation per source sentence, but the argument can easily be

evaluation metric. extended to multiple references.



by a factorw(A, s, k), proportional to the score translations with those already in the training
mx(tsk|s) that ¢, is assigned by the log-linear set, and go back to step 2.

model for a given:
Steps 2 and 3 can be repeated until the smooothed

m(tsk|s) ] “ NIST score does not increase anyniore

w(A, s, k) = [Zk’ mx(ts i|s)

5 Decoder

where o is the smoothing factar Thus, in . .
the smoothed version of the NIST function. the/Ve implemented a version of the beam-search stack

term I,(t,,rs) in equation (3) is replaced by decode_r described _in (Koehn, 2003), extended to
S p w5, k)L (tsx, rs), and the termC,(t,) is COPe with non-contiguous phrase_s._ Each transla-
replaced by, w(), s, k)Ch(tsx). As for the tion is jthe result ofasquencecdrﬁc_lsmnseach of
brevity penalty factorB(S,T,R), it depends on which qulyes the se_lectlon of a bl—ph_rase and of a
the total length of translatiod’, i.e. Y, |ts|. In ta}rget posfuc_)n. The fl_nal _result is obtained by com-
the smoothed version, this term is replaced b§ining decisions, as in Figure ZHypothesescor-
S S w(X, s, k)|ts]. Note that, whem — oo, responding to parfual translations, are organised in a
thenw(), s, k) — 0 for all translations of, except Seduence of priority stacks, one for each number of
the one for which the model gives the highest scor€0Urce words covered. Hypotheses are extended by
and so the smooth and normal NIST functions prof_||||ng the first available uncovered position in the

duce the same value. In practice, we determine sorfd9€t sentence; each extended hypotheses is then
“good” value fora by trial and error (5 works fine). inserted in the stack corresponding to the updated
We thus obtain a scoring function for which wenumber of covered source words. Each hypothesis is

can compute a derivative relativeXpand which can assigned a score which is obtained as a combination

be optimized using gradient-based methods. In praf the ac_tugl feature function valu_es and of admissi-
tice, we use th©PT++ implementation of a quasi- bIe_heu_rlstlcs, adapted to deal with gaps in phrases,
Newton optimization (Meza, 1994). As observed bfstlmatmg the future cost for completing a transla_l-
Och, the smoothed error function is not convex, anHon- Each stack undergoes both threshold and his-
therefore this sort of minimum-error rate training isl09ram pruning. Whenever two hypotheses are in-
quite sensitive to the initialization values for the distinguishable as far as the potential for further ex-

parameters. Our approach is to use a random seti§f'Sion is concemned, they are merged and only the
initializations for the parameters, perform the optilighest-scoring is further extended. Complete trans-

mization for each initialization, and select the modeltions are eventually recovered in the “last” priority
which gives the overall best performance. stack, i.e. the one corresponding to the total num-

Globally, parameter estimation proceeds alonBer of source words: the best translation is the one
these steps: with the highest score, and that does not have any

remaining gaps in the target.
1. Initialize the training set: using random pa-
rameter values.,, for each source sentence of6  Evaluation

some given set of sentencés we compute We h q q ber of . |
multiple translations. (In practice, we use the e have conducted a number of experiments to eval-

M-best translations produced by our decodeHate the potential of our approach. We were par-
see Section 5) ticularly interested in assessing the impact of non-

contiguous bi-phrases on translation quality, as well

2. Optimize the parameters: using the method d&s comparing the different bi-phrase library contruc-
scribed above, we findl that produces the best tion strategies evoked in Section 2.1.

smoothed NIST score on the training set. — , ,

It can be seen that, as the set of possible translations for
. S stabilizes, we eventually reach a point where the procedure
3. lterate: we then re-translate the sentences Ofconverges to a maximum. In practice, however, we can usually

with this new\, combine the resulting multiple stop much earlier.



6.1 Experimental Setting Finally, all libraries were subjected to the same

All our experiments focused exclusively on FrenctiWwo filtering procedures: the first excludes all bi-
to English translation, and were conducted using tHf1rases that occur only once in the training corpus;
Aligned Hansards of the 36th Parliament of Canad&® Second, for any given source-language phrase,
provided by the Natural Language Group of the US¢etains only the 20 most frequent target-language
Information Sciences Institute, and edited by Ulrictfauivalents. While the first of these filters typically
Germann. From this data, we extracted three dig_hmmatesalarge number of entries, the second only
tinct subcorpora, which we refer to as thiephrase- affects the most frequent source .phrases, as most
building set thetraining setand thetest set These Phrases have less than 20 translations.

were extracted from the so-calléthining, test-1 ¢ g Experiments

andtest-2portions of the Aligned Hansard, respec-_l_h fth del imized ind
tively. Because of efficiency issues, we limited our- e parameters of t € model were optimized inde-
ndantly for each bi-phrase library. In all cases,

selves to source-language sentences of 30 words St ; donlv2i . fih .
less. More details on the evaluation data is presentg\ﬁe performed only 2 iterations of the training proce-

in Table 7 dure, then measured the performance of the system
' on the test setin terms of the NIST and BLEU scores
6.2 Bi-phrase Libraries against one reference translation. As a point of com-

From the bi-phrase-building set, we built a numbeparison, we also trained an IBM-4 translation model
of libraries. A first family of libraries was based on"Vith theGIZA++ toolkit (Och and Ney, 2000), using

a word alignment A”, produced using th&efined the combinechi-phrase buildi_ngandtrai_ning Sets,
methoddescribed in (Och and Ney, 2003) (com-and translated the test set using Re\Writedecoder

bination of two IBM-Viterbi alignments): we call (Germann et aI.,_200§.) . I
these thed libraries. A second family of libraries Table 2 describes the various libraries that were

was built using alignmentsB” produced with the used for our experiments, and the results obtained
method in (Goutte et al., 2004): these are thé- ©" €.

braries. The most notable difference between theseSystem/library bi-phrases NIST BLEU
two alignments is thatB contains “native” non- ReWrite 6.6838 0.3324
contiguous bi-phrases, whilé doesn't. Al 238 K 6.6695 0.3310
Some libraries were built by simply extracting the  42.g0 642 K | 6.7675 0.3363
cepts from the alignments of the bi-phrase-building A%-g3 41 M 6.7068 0.3283
corpus: these are thé' and B' libraries, and vari- ~pT.g0 193K | 6.7898 0.3369
ants. Other libraries were obtained by combining p! 267 K 6.9172 0.3407
cepts that co-occur within the same pair of sen- B2-g0 499K | 6.7290 0.3391
tences, to produce “composite” bi-phrases. For in- p2.g3 33M | 6.9707 0.3552
stance, the4? libraries contain combinations of 1 Bl-g1l 206 K | 6.8979 0.3441
or 2 cepts from alignmend; B3 contains combina- Bl-g2 213K | 6.9406 0.3454
tions of 1, 2 or 3 cepts, etc. B'-g3 218K | 6.9546 0.3518
Some libraries were built using a “gap-size” filter. Bl-ga 222 K | 6.9527 0.3423
For instance libraryl?-g3 contains those bi-phrases
obtained by combining 1 or 2 cepts from alignment Table 2: Bi-phrase libraries and results

A, and in which neither the source nor the target
phrase contains more than 3 gaps. In particular, li- The top part of the table presents the results for

brary B'-g0 does not contain any non-contiguoudhe A libraries. As can be seen, library! achieves
bi-phrases. approximately the same score as the baseline sys-
_ tem; this is expected, since this library is essentially
4 . . . .
Preliminary experiments on different data sets allowedus_—_
to establish that 800 sentences constituted an acceptable size>Both theReWriteand our own system relied on a trigram
for estimating model parameters. With such a corpus, the estanguage model trained on the English half of the bi-phrase
mation procedure converges after just 2 or 3 iterations. building set.



Subset sentences source words target words

bi-phrase-building set 931,000 17.2M 15.2M
training set 800 11,667 10,601
test set 500 6726 6041

Table 1: Data sets.

made up of one-to-one alignments computed using Visual examination of theB! library reveals
IBM-4 translation models. Adding contiguous bi-that many non-contiguous bi-phrases contain long-
phrases obtained by combining pairs of alignmentspanning phrases (i.e. phrases containing long se-
does gain us some mileage (+0.1 NI&®gain, this quences of gaps). To verify whether or not these
is consistent with results observed with other syswere really useful, we tested a seriesidf libraries
tems (Tillmann and Xia, 2003). However, the addiwith different gap-size filters. It must be noted that,
tion of non-contiguous bi-phrased-g3) does not because of the final histogram filtering we apply on
seem to help. libraries (retain only the 20 most frequent transla-
The middle part of Table 2 presents analogous réions of any source phrase), librafy*-g1l is not
sults for the corresponding libraries, plus theB!-  a strict subset of3!-g2. Therefore, filtering on
g0 library, which contains only those cepts from thgap-size usually represents a tradeoff between more
B alignment that are contiguous. Interestingly, irfrequent long-spanning bi-phrases and less frequent
the experiments reported in (Goutte et al., 2004xhort-spanning ones.
alignment method® did not compare favorably td The results of these experiments appear in the
under the widely usedlignment Error Ratd AER)  lower part of Table 2. While the differences in score
metric. Yet, theB!-g0 library performs better than are small, it seems that concentrating on bi-phrases
the analogousd! library on the translation task. with 3 gaps or less affords the best compromise.
This suggests that AER may not be an appropriateor small libraries such as those under consideration
metric to measure the potential of an alignment fohere, this sort of filtering may not be very important.
phrase-based translation. However, for higher-order librarie¢, B3, etc.) it
Adding non-contiguous bi-phrases allows anothgpecomes crucial, because it allows to control the ex-
small gain. Again, this is interesting, as it sugponential growth of the libraries.
gests that “native” non-contiguous bi-phrases are in-
deed useful for the translation task, i.e. those nor¢ Conclusions
contiguous bi-phrases obtained directly as cepts in
the B alignment. In this paper, we have proposed a phrase-based sta-
Surprisingly, however, combining cepts from thelistical machine translation method based on non-
B alignment to produce contiguous bi-phrasBé-{ contiguous phrases. We have also presented a esti-
G0) does not turn out to be fruitful. Why this Mation procedure for the parameters of a log-linear
is so is not obvious and, certainly, more experifranslation model, that maximizes a smooth version
ments would be required to establish whether thigf the NIST scoring function, and therefore lends
tendency continues with larger combinations’¢ itself to standard gradient-based optimization tech-
g0, B*-g0...). Composite non-contiguous bi-phrase8idues.
produced with theB alignments 32-g3) seem From our experiments with these new methods,
to bring improvements with regard to “basic” bi-we essentially draw two conclusions. The first and
phrases B;), but it is not clear whether these aremost obvious is that non-contiguous bi-phrases can
significant. indeed be fruitful in phrase-based statistical machine
- translation. While we are not yet able to character-
SWhile the d_ifferences in scores in these and ch(_ar_ experize which bi-phrases are most he|pfu|, some of those
ments are relatively small, we believe them to be significant, .
%at we are currently capable of extracting are well

they have been confirmed systematically in other experiments'® ;
and, in our experience, by visual inspection of the translationssuited to cover some short-distance phenomena.



The second conclusion is that alignment quality i®aniel Marcu and William Wong. 2002. A phrase-based,
crucial in producing good translations with phrase- Joint probability model for statistical machine transla-

: . . tion. In Proc. of the Conf. on Empirical Methods in
based methods. While this may sound obvious, our .- -, Language Processing (EMNLP 0Philadel-

experiments shed some light on two specific aspects phia, pa.

of this question. The first is that the alignment . _
method that produces the most useful bi-phrasesC: Méza. 1994. OPT++: An Object-Oriented Class
Library for Nonlinear Optimization. Technical Report

need not be the one With the beaitgnmept error SAND94-8225, Sandia National Laboratories, Albu-
rate (AER). The second is that, depending on the querque, USA, March.

alignments one starts with, constructing increasing| o .
J. Och and H. Ney. 2000. Improved Statistical Align-

large b|_—phrases does not necessarily lead to b_et €I ent Models. InProceedings of ACL 200(ages
translations. Some of our best results were obtained 440447, Hongkong, China, October.

with relatively small libraries (just over 200,000 en-

tries) of short bi-phrases. In other words, it's nof "anz Josef Och and Hermann Ney. 2003. A Systematic
h bi-ph h it's h d th Comparison of Various Statistical Alignment Models.
ow many bi-phrases you have, 1ts how goo ey Computational Linguistic29(1):19-51, March.

are. This is the line of research that we intend to
pursue in the near future. Franz Josef Och and Hermann Ney. 2004. The Align-
ment Template Approach to Statistical Machine Trans-

lation. i I Li isti 4):417-449.
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