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Abstract. The PASCAL Visual Object Classes Challenge ran from
February to March 2005. The goal of the challenge was to recognize
objects from a number of visual object classes in realistic scenes (i.e.
not pre-segmented objects). Four object classes were selected: motor-
bikes, bicycles, cars and people. Twelve teams entered the challenge. In
this chapter we provide details of the datasets, algorithms used by the
teams, evaluation criteria, and results achieved.

1 Introduction

In recent years there has been a rapid growth in research, and quite some success,
in visual recognition of object classes; examples include [1,5, 10,14, 18,28, 39,
43]. Many of these papers have used the same image datasets as [18] in order
to compare their performance. The datasets are the so-called ‘Caltech 5 (faces,
airplanes, motorbikes, cars rear, spotted cats) and UTUC car side images of [1].
The problem is that methods are now achieving such good performance that they
have effectively saturated on these datasets, and thus the datasets are failing to
challenge the next generation of algorithms. Such saturation can arise because



the images used do not explore the full range of variability of the imaged visual
class. Some dimensions of variability include: clean vs. cluttered background;
stereotypical views vs. multiple views (e.g. side views of cars vs. cars from all
angles); degree of scale change, amount of occlusion; the presence of multiple
objects (of one or multiple classes) in the images.

Given this problem of saturation of performance, the Visual Object Classes
Challenge was designed to be more challenging by enhancing some of the di-
mensions of variability listed above compared to the databases that had been
available previously, so as to explore the failure modes of different algorithms.

The PASCAL'? Visual Object Classes (VOC) Challenge ran from February
to March 2005. A development kit of training and validation data, baseline al-
gorithms, plus evaluation software was made available on 21 February, and the
test data was released on 14 March. The deadline for submission of results was
31 March, and a challenge workshop was held in Southampton (UK) on 11 April
2005. Twelve teams entered the challenge and six presented their findings at the
workshop. The development kit and test images can be found at the website
http://www.pascal-network.org/challenges/VOC/.

The structure of the remainder of the chapter is as follows. Section 2 de-
scribes the various competitions defined for the challenge. Section 3 describes
the datasets provided to participants in the challenge for training and testing.
Section 4 defines the classification competitions of the challenge and the method
of evaluation, and discusses the types of method participants used for classifica-
tion. Section 5 defines the detection competitions of the challenge and the method
of evaluation, and discusses the types of method participants used for detection.
Section 6 presents descriptions of the methods provided by participants. Sec-
tion 7 presents the results of the classification competitions, and Section 8 the
results for the detection competitions. Section 9 concludes the chapter with dis-
cussion of the challenge results, aspects of the challenge raised by participants
in the challenge workshop, and prospects for future challenges.

2 Challenge

The goal of the challenge was to recognize objects from a number of visual object
classes in realistic scenes. Four object classes were selected, namely motorbikes,
bicycles, cars, and people. There were two main competitions:

1. CLASSIFICATION: For each of the four classes, predicting the pres-
ence/absence of an example of that class in the test image.

2. DETECTION: Predicting the bounding box and label of each object from the
4 target classes in the test image.

Contestants were permitted to enter either or both of the competitions, and to
tackle any or all of the four object classes. The challenge further divided the

13 PASCAL stands for pattern analysis, statistical modelling and computational learn-
ing. It is the name of an EU Network of Excellence funded under the IST Programme
of the European Union.



competitions according to what data was used by the participants for training
their systems:

1. Training using any data excluding the provided test sets.
2. Training using only the data provided for the challenge.

The intention in the first case was to establish just what level of success could
currently be achieved on these problems, and by what method. Participants
were free to use their own databases of training images which might be much
larger than those provided for the challenge, additional annotation of the images
such as object parts or reference points, 3D models, etc. Such resources should
potentially improve results over using a smaller fixed training set.

In the second case, the intention was to establish which methods were most
successful given a specified training set of limited size. This was to allow judge-
ment of which methods generalize best given limited data, and thus might scale
better to the problem of recognizing a large number of classes, for which the
collection of large data sets becomes an onerous task.

3 Image Sets

Two distinct sets of images were provided to participants: a first set containing
images both for training and testing, and a second set containing only images
for testing.

3.1 First Image Set

The first image set was divided into several subsets:
train: Training data

val: Validation data (suggested). The validation data could be
used as additional training data (see below).

train+val: The union of train and val.

testl: First test set. This test set was taken from the same distri-
bution of images as the training and validation data, and
was expected to provide an ‘easier’ challenge.

In the preliminary phase of the challenge, the train and val image sets were
released with the development kit. This gave participants the opportunity to try
out the code provided in the development kit, including baseline implementa-
tions of the classification and detection tasks, and code for evaluating results.
The baseline implementations provided used the train set for training, and
demonstrated use of the evaluation functions on the val set. For the challenge
proper, the testl set was released for evaluating results, to be used for testing



Table 1. Statistics of the first image set. The number of images (containing at least
one object of the corresponding class) and number of object instances are shown.

train val train+val testl
images objects images objects images objects images objects

motorbikes 107 109 107 108 214 217 216 220
bicycles 57 63 57 60 114 123 113 123
people 42 81 42 71 84 152 84 149

cars 136 159 136 161 272 320 275 341

alone. Participants were free to use any subset of the train and val sets for
training. Table 1 lists statistics for the first image set.

Examples of images from the first image set containing instances of each ob-
ject class are shown in Figure 1. Images were taken from the PASCAL image
database collection; these were provided by Bastian Leibe & Bernt Schiele (TU-
Darmstadt), Shivani Agarwal, Aatif Awan & Dan Roth (University of Illinois
at Urbana-Champaign), Rob Fergus & Pietro Perona (California Institute of
Technology), Antonio Torralba, Kevin P. Murphy & William T. Freeman (Mas-
sachusetts Institute of Technology), Andreas Opelt & Axel Pinz (Graz University
of Technology), and Navneet Dalal & Bill Triggs (INRIA).

The images used in the challenge were manually selected to remove dupli-
cate images, and very similar images taken from video sequences. Subjective
judgement of which objects are “recognizable” was made and images contain-
ing annotated objects which were deemed unrecognizable were discarded. The
subjective judgement required that the object size (in pixels) was sufficiently
large, and that the object could be recognized in isolation without the need for
“excessive” contextual reasoning e.g. “this blob in the distance must be a car
because it is on a road.” Images where the annotation was ambiguous were also
discarded, for example images of many bicycles in a bike rack for which correct
segmentation of the image into individual objects proves impossible even for a
human observer.

The images contain objects at a variety of scales and in varying context.
Many images feature the object of interest in a “dominant” position, i.e. in the
centre of the image, occupying a large area of the image, and against a fairly
uniform background. The pose variation in this image set is somewhat limited,
for example most motorbikes appear in a “side” view, and most cars in either
“side” or “front” views (Figure 1). Pose for the bicycles and people classes is
somewhat more variable. Most instances of the objects appear un-occluded in
the image, though there are some examples, particularly for people (Figure 1)
where only part of the object is visible.

Annotation All the images used in the first image set had already been anno-
tated by contributors of the data to the PASCAL image databases collection.
The annotation was not changed for the challenge beyond discarding images



Fig. 1. Example images from the first image set. From top to bottom: motorbikes,
bicycles, people, and cars. The original images are in colour.

for which the annotation was considered incomplete, ambiguous, or erroneous.
For each object of interest (e.g. cars), the annotation provides a bounding box
(Figure 2a); for some object instances additional annotation is available in the
form of a segmentation mask (Figure 2b) specifying which pixels are part of the
object.

Each object is labelled with one of the object classes used in the challenge:
motorbikes, bicycles, people or cars; in addition, the original PASCAL object
class labels were included in the annotation. For some object instances these
specify a more detailed label, typically corresponding to a pose of the object
e.g. PAScarSide and PAScarRear respectively identify side and rear views of a
car. Participants were free to use this information, for example the group from
TU-Darmstadt chose to only train on side views (Section 6.2).



(a) Bounding box (b) Segmentation mask

Fig. 2. Annotation of objects available for training. (a) all objects are annotated with
their bounding boxes. (b) some objects additionally have a pixel segmentation mask.

3.2 Second Test Set

In the first image set, images from the original pool of data were assigned ran-
domly to training sets (train+val) and test set (testl). This follows standard
practice in the machine learning field in which training and test data are as-
sumed to be drawn from the same distribution. To enable a more difficult set of
competitions a second test set (test2) was also prepared, intended to give a dis-
tribution of images with more variability than the training data. This image set
was collected from Google Images specifically for the challenge. Example images
from test2 are shown in Figure 3. The image set is less homogenous than the
first image set due to the wide range of different sources from which the images
were taken. Some images resembling the composition of those in the first image
set were selected, but also images containing greater variation in scale, pose, and
level of occlusion. Table 2 lists statistics for the test2 image set.

Table 2. Statistics of the test2 image set. The number of images (containing at least
one object of the corresponding class) and number of object instances are shown.

test2
images objects

motorbikes 202 227
bicycles 279 399
people 526 1038

cars 275 381
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Fig. 3. Example images from the test2 test set. From top to bottom: motorbikes,
bicycles, people, and cars. The original images are in colour. There is greater variability
in scale and pose, and more occlusion than the images of testl shown in Figure 1.

3.3 Negative Examples

For both training and testing it is necessary to have a pool of negative images not
containing objects of a particular class. Some other work has used a fixed negative
image set of generic “background” images for testing; this risks oversimplifying
the task, for example finding images of cars might reasonably be achieved by
finding images of roads; if however the negative image set contains many images
of roads with no cars, the difficulty of the task is made more realistic.

The challenge treated both the classification and detection tasks as a set of
binary classification/detection problems (Sections 4, 5) e.g. car vs. non-car, and
made use of images containing other object classes as the negative examples. For
example in the car detection task, images containing motorbikes (but no cars)
were among the negative examples; in the motorbike detection task, images
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Fig. 4. Example Receiver Operating Characteristic (ROC) curve for the classification
task. The two quantitative measures of performance are illustrated: the Equal Error
Rate (EER) and Area Under Curve (AUC).

containing cars (but no motorbikes) became negative examples. Because the
contexts in which the four object classes appear might be considered similar,
e.g. cars, motorbikes, bicycles and people may all appear in a street scene, re-
use of the images in this way should make for a more realistic (and harder)
task.

4 Classification Task

The goal in the classification task is to determine whether a given image contains
at least one instance of a particular object class. The task was treated as four
independent binary classification tasks i.e. “does this image contain an object
of type x?” where = was either motorbike, bicycle, people or cars. Treating
the task in this way enables the use of the well-established Receiver Operating
Characteristic (ROC) for examining results. Other work has also considered the
“forced choice” scenario i.e. “is this an image of a motorbike, a bicycle, a person,
or a car?”; this scenario is inapplicable in the context of the challenge since a
single image may contain instances of objects from more than one class.

4.1 Evaluation of Results

Evaluation of results was performed using ROC curve analysis. This required
that participants’ methods output a “confidence” for an image, with large values
indicating high confidence that the object class of interest is present. Figure 4
shows an example ROC curve, obtained by applying a set of thresholds to the
confidence output by a method. On the z-axis is plotted the proportion of false
positives (how many times a method says the object class is present when it is
not); on the y-axis is plotted the proportion of true positives (how many times



a method says the object class is present when it is). The ROC curve makes
it easy to observe the trade-off between the two; some methods may recognize
some small proportion of objects very accurately but fail to recognize many,
where others may give more balanced performance.

A definitive measure for quantitative evaluation of ROC curves is not possible
since, depending on the application, one might wish to place different emphasis
on the accuracy of a method at low or high false positive rates. The challenge
used two measures to avoid bias: (i) the Equal Error Rate (EER) measures the
accuracy at which the number of false positives and false negatives are equal.
This measure somewhat emphasizes the behaviour of a method at low false
positive rates which might be reasonable for a real-world application; (ii) the
Area Under Curve (AUC) measures the total area under the ROC curve. This
measure penalizes failures across the whole range of false positives, e.g. a method
which recognizes some large proportion of instance with zero error but fails on
the remaining portion of the data. In practice, in the experiments, the method
judged “best” by each of the two measures was typically the same.

4.2 Competitions and Participation

Four competitions were defined for the classification task, by the choice of train-
ing data: provided for the challenge, or the participant’s own data; and the test
set used: the “easier” testl images, or the “harder” test2 images. Table 3 sum-
marizes the competitions. For each competition, performance on each of the four
object classes was evaluated. Participants were free to submit results for any or
all of the object classes.

Table 3. Competitions for the classification task, defined by the choice of training
data and test data.

No. Task Training data Test data
1 Classification train+val testl
2 Classification train+val test2
3 Classification not VOC testl or test2 testl
4 Classification not VOC testl or test2 test2

Table 4 lists the participation in competitions 1 and 2, which used the pro-
vided train+val image set for training. Nine of the twelve participants entered
results for these competitions. All but one tackled all object classes (see Sec-
tion 4.3). Half the participants submitted results for both test sets. No results
were submitted for competitions 3 and 4, in which data other than the provided
train+val image set could be used.



Table 4. Participation in classification competitions 1 and 2 which used the provided
train+val image set for training. Bullets indicate participation in the competition for
a particular test set and object class.

testl test2
motorbikes bicycles people cars ~ motorbikes bicycles people cars

Aachen ° ° ° ° ° ° .
Darmstadt ° - - . ° _ _
Edinburgh ° ° ° ° ° ° °

FranceTelecom - - — - _ _ _
HUT ° ° . ° ° ° ° .

INRIA-Dalal — - -
INRIA-Dorko - - -

INRIA-Jurie ° ° ° ° - - _ -
INRIA-Zhang . . . . . . . .
METU ° ° ° ° - — _ _
MPITuebingen . ° ° ° ° ° ° °
Southampton . . ° ° - _ _ _

4.3 Overview of Classification Methods

Section 6 gives full details of the methods used by participants. The approaches
used for the classification task can be broadly divided into four categories:

Distributions of Local Image Features. Most participants took the ap-
proach of capturing the image content as a distribution over local image features.
In these methods a set of vector-valued descriptors capturing local image con-
tent is extracted from the image, typically around “interest” points; the image is
represented by some form of probability distribution over the set of descriptors.
Recognition is carried out by training a classifier to distinguish the distributions
for a particular class.

All participants in this category used the SIFT descriptor [32] to represent
the appearance of local image regions.

All but one participant (INRIA-Jurie) used “interest point” detection algo-
rithms to define points about which local descriptors were extracted, including
the Harris and LoG detectors. Aachen additionally extract descriptors around
points on a fixed coarse grid; INRIA-Jurie extracted descriptors around points
on a dense grid at multiple scales.

Four participants: Aachen, Edinburgh, INRIA-Jurie, and INRIA-Zhang used
a “bag of words” representation. In these methods, local descriptors are assigned
a discrete “visual word” from a dictionary obtained by clustering. The image rep-
resentation is then a histogram over the dictionary, recording either the presence
of each word, or the number of times each word occurs in the image.

Two participants MPITuebingen and Southampton used an alternative
method based on defining a kernel between sets of extracted features. Both



participants used the Bhattacharyya kernel; for Southampton this was defined
by a Gaussian distribution in SIFT feature space, while MPITuebingen used a
“minor kernel” to lift the calculation into a kernel feature space.

All but two participants in this category used a support vector machine
(SVM) classifier. Aachen used a log-linear model trained by iterative scaling;
Edinburgh used a functionally equivalent model trained by logistic regression.

Recognition of Individual Local Features. METU proposed a method also
employing interest point detection and extraction of local features; the SIFT
descriptor and colour features were used. In the METU method, rather than
examining the entire distribution of local descriptors for an image, a model is
learnt which assigns a class probability to each local feature; a class is assigned
to the image by a noisy-or operation on the class probabilities for each local
feature in the image.

Recognition based on Segmented Regions. HUT proposed a method com-
bining features extracted both from the entire image and from regions obtained
by an image segmentation algorithm; features included colour, shape and texture
descriptors. A number of Self Organizing Maps (SOMs) defined on the different
feature spaces were used to classify descriptors obtained from the segmented
regions and the whole image, and these results were combined to produce an
overall classification.

Classification by Detection. Darmstadt adopted the approach of “classifica-
tion by detection” in which a detector for the class of object is applied to the
image and the image assigned to the object class if a sufficiently confident detec-
tion is found. The method is described more fully in Section 5.3. This approach
is of particular interest since it is able to show “why” the object class is assigned
to the image, by highlighting the image area thought to be an instance of the
object class.

4.4 Discussion of Classification Methods

Most participants used “global” methods in which a descriptor of the overall
image content is extracted; this leaves the task of deciding which elements of
the descriptor are relevant to the object of interest to the classifier. All of these
participants used only the class label attached to an image for training, ignoring
additional annotation such as the bounding boxes of objects in the image.

One possible advantage of “global” methods is that the image description
captures information not only about the object of interest e.g. a car, but also
it’s context e.g. the road. This contextual information might prove useful in
recognizing some object classes; however, the risk is that the system may fail
to distinguish the object from the context and thus show poor generalization to
other environments, for example recognizing a car in a street vs. in a field.



precision
o o o
- I3 o

o
w

o
N

measured
« interpolated
0 01 02 03 04 05 06 07 08 09 1
recall

o
i

Fig. 5. Example Precision/Recall (PR) curve for the detection task. The solid line
denotes measured performance (perfect precision at zero recall is assumed). The dots
indicate the corresponding interpolated precision values used in the average precision
(AP) measure.

The approach used by METU uses very local information: the classification
may be based on a single local feature in the image; interestingly, the learning
method used here ignores the bounding box information provided. HUT com-
bined global and more local information by computing feature descriptors from
both the whole image and segmented regions.

Darmstadt’s “classification by detection” approach explicitly ignores all but
the object, using bounding boxes or segmentation masks for training, and looking
at local evidence for testing; this ensures that the method is modelling the object
class of interest rather than statistical regularities in the image background, but
may also fail to take advantage of contextual information.

The Darmstadt method is able to give a visual explanation of why an image
has been classified as containing an object of interest, since it outputs bound-
ing boxes for each object. For some of the other methods (Aachen, Edinburgh,
METU, HUT) it might be possible to obtain some kind of labelling of the objects
in the image by back-projecting highly-weighted features into the image.

Only two participants explicitly incorporated any geometric information:
HUT included shape descriptors of segmented regions in their image representa-
tion, and the Darmstadt method uses both local appearance of object parts and
their geometric relations. In the global methods, geometric information such as
the positions of object parts might be implicitly encoded, but is not transpar-
ently represented.

5 Detection Task

The goal in the detection task is to detect and localize any instances of a partic-
ular object class in an image. Localization was defined as specifying a ‘bounding



box’ rectangle enclosing each object instance in the image. One detection task
was run for each class: motorbikes, bicycles, people, and cars.

5.1 Evaluation of Results

Evaluation of results was performed using Precsion/Recall (PR) curve analysis.
The output required from participants’ methods was a set of bounding boxes with
corresponding “confidence” values, with large values indicating high confidence
that the detection corresponds to an instance of the object class of interest.
Figure 5 shows an example PR curve, obtained by applying a set of thresholds
to the confidence output by a method. On the z-axis is plotted the recall (what
proportion of object instances in the image set have been detected); on the y-axis
is plotted the precision (what proportion of the detections actually correspond
to correct object instances). The PR curve makes it easy to observe the trade-
off between the two; some methods may have high precision but low recall, for
example detecting a particular view of an object reliably, where other methods
may give more balanced performance. Use of Precision/Recall as opposed to the
Receiver Operating Characteristic was chosen to provide a standard scale for
evaluation which is independent of the algorithmic details of the methods, for
example whether a “window scanning” mechanism or other means were used.

As in the classification case, a definitive measure for quantitative evaluation
of PR curves is not possible, because of the possible requirements for differ-
ent emphasis at low or high recall. The challenge used the interpolated Aver-
age Precision (AP) measure defined by the Text Retrieval Conference (TREC).
This measures the mean precision at a set of eleven equally spaced recall levels
[0,0.1,...,1]:

1
AP = 1_ Z pinte?“p(r)

re{0,0.1,...,1}

The precision at each recall level r is interpolated by taking the maximum pre-
cision measured for a method for which the corresponding recall exceeds 7:

pinterp(r) = max p(f) (1)
T>T
where p(7) is the measured precision at recall 7.

Figure 5 shows the interpolated precision values for the measured curve
shown. Use of the interpolated precision ameliorates the effects of different sam-
pling of recall that each method may produce, and reduces the influence of the
“sawtooth” pattern of temporary false detections typical of PR curves. Because
the AP measure includes measurements of precision across the full range of re-
call, it penalizes methods which achieve low total recall (failing to detect some
proportion of object instances) as well as those with consistently low precision.

Evaluation of Bounding Boxes. Judging each detection output by a method
as either a true positive (object) or false positive (non-object) requires comparing



the corresponding bounding box predicted by the method with ground truth
bounding boxes of objects in the test set. To be considered a correct detection,
the area of overlap a, between the predicted bounding box B, and ground truth
bounding box By, was required to exceed 50% by the formula

_area(B, N Byt)
~ area(B, U By)

(2)

The threshold of 50% was set deliberately low to account for inaccuracies in
bounding boxes in the ground truth data, for example defining the bounding
box for a highly non-convex object, e.g. a side view of a motorbike or a car with
an extended radio aerial, is somewhat subjective.

Detections output by a method were assigned to ground truth objects satis-
fying the overlap criterion in order ranked by the (decreasing) confidence output.
Lower-ranked detections of the same object as a higher-ranked detection were
considered false positives. The consequence is that methods producing multi-
ple detections of a single object would score poorly. All participants included
algorithms in their methods to arbitrate between multiple detections.

5.2 Competitions and Participation

Four competitions were defined for the detection task, by the choice of training
data: provided for the challenge, or the participant’s own data; and the test
set used: the “easier” testl images, or the “harder” test2 images. Table 5
summarizes the competitions. For each competition, performance on each of the
four object classes was evaluated. Participants were free to submit results for
any or all of the object classes.

Table 5. Competitions for the detection task, defined by the choice of training data
and test data.

No. Task Training data Test data
5 Detection train+val testi
6 Detection train+val test2
7 Detection not VOC testl or test2 testl
8 Detection not VOC testl or test2 test2

Table 6 lists the participation in competitions 5 and 6, which used the pro-
vided train+val image set for training. Five of the twelve participants entered
results for these competitions. All five of these participants tackled the motor-
bike class, four the car class, and three the people class. Edinburgh submitted
baseline results for all four classes. The concentration on the motorbike and
car classes is expected as these are more typical “opaque” objects which have
attracted most attention in the object recognition community; recognition of



Table 6. Participation in the detection task. Bullets indicate participation in the
competition for a particular test set and object class.

testl test2
motorbikes bicycles people cars  motorbikes bicycles people cars

Aachen - — - - — _ _ _
Darmstadt ° — — ° ° _ _
Edinburgh ° ° ° ° ° ° °

FranceTelecom . — - ° ° _ _
HUT - — - - — _ _ _
INRIA-Dalal ° - ° ° ° — ° .
INRIA-Dorko ° - . — — _ _ _

INRIA-Jurie - - - - — _ _ _
INRIA-Zhang - - - — - _ _ _
METU - - - - - — _ _
MPITuebingen - - — - - _ _ _
Southampton - - - — - _ _ -

more “wiry” objects (bicycles) or articulated objects (people) has been a recent
development.

Only one participant, INRIA-Dalal, submitted results for competitions 7 and
8, in which training data other than that provided for the challenge could be
used. This participant submitted results for the people class on both test1 and
test2 image sets.

5.3 Overview of Detection Methods

Section 6 gives full details of the methods used by participants. The approaches
used for the detection task can be broadly divided into three categories:

Configurations of Local Image Features. Two participants: Darmstadt
and INRIA-Dorko used an approach based on local image features. These meth-
ods use interest point detectors and local image features represented as “visual
words”, as used by many of the methods in the classification task. In contrast
to the classification task, the detection methods explicitly build a model of the
spatial arrangement of the features; detection of the object then requires image
features to match the model both in terms of appearance and spatial configura-
tion. The two methods proposed differed in terms of the feature representation:
patches of pixels/SIFT descriptors, clustering method for dictionary or “code-
book” learning, and voting scheme for detection. Darmstadt used a Minimum
Description Length (MDL) method to refine ambiguous detections and an SVM
classifier to verify detections. INRIA-Dorko added a measure of discriminative
power of each visual word to the voting scheme.



Window-based Classifiers. Two participants: FranceTelecom and INRIA-
Dalal used “window-based” methods. In this approach, a fixed sized window
is scanned over the image at all pixel positions and multiple scales; for each
window, a classifier is applied to label the window as object or non-object, and
positively labelled windows are grouped to give detections. FranceTelecom used a
Convolutional Neural Network (CNN) classifier which applies a set of successive
feature extraction (convolution) and down-sampling operations to the raw input
image. INRIA-Dalal used a “histogram of oriented gradient” representation of
the image window similar to computing SIFT descriptors around grid points
within the window, and an SVM classifier.

Baseline Methods. Edinburgh proposed a set of “baseline” detection meth-
ods. Confidence in detections was computed either as the prior probability of a
class from the training data, or using the classifier trained for the classification
task. Several baseline methods for proposing bounding boxes were investigated
including simply proposing the bounding box of the entire image, the mean
bounding box from the training data, the bounding box of all strong interest
points, or bounding boxes based on the “purity” of visual word representations
of local features with respect to a class.

5.4 Discussion of Detection Methods

There have been two main approaches to object detection in the community:
(i) window-based methods, which run a binary classifier over image windows, ef-
fectively turning the detection problem into a large number of whole-image clas-
sification problems; (ii) parts-based methods, which model objects as a collection
of parts in terms of local appearance and spatial configuration. It is valuable that
both these approaches were represented in the challenge. The methods proposed
differ considerably in their representation of object appearance and geometric
information. In the INRIA-Dalal method, a “holistic” representation of primi-
tive local features (edges) is used; the position of features is encoded implicitly
with respect to a fixed coordinate system. The FranceTelecom method might
be understood as learning the approximate position of local object parts; the
convolution operations can be viewed as part detection, and the sub-sampling
steps introduce “slack” in the coordinate frame. The Darmstadt and INRIA-
Dorko methods explicitly decompose the object appearance into local parts and
their spatial configuration. It is particularly interesting to see how these methods
compare across more rigid objects (cars/motorbikes), and those for which the
shape of the object changes considerably (people).

6 Participants

Twelve participants took part in the challenge. We include here participants’
own descriptions of the methods used.



6.1 Aachen

Participants: Thomas Deselaers, Daniel Keysers, Hermann Ney
Affiliation: RWTH Aachen, Aachen, Germany
E-mail: {deselaers,keysers,ney}@informatik.rwth-aachen.de
WWW: http://www-i6.informatik.rwth-aachen.de/

The approach used by the Human Language Technology and Pattern Recog-
nition group of the RWTH Aachen University, Aachen, Germany, to participate
in the PASCAL Visual Object Classes Challenge consists of four steps:

patch extraction
clustering
creation of histograms

= L o=

discriminative training and classification

where the first three steps are feature extraction steps and the last is the actual
classification step. This approach was first published in [12] and was extended
and improved in [13].

The method follows the promising approach of considering objects to be
constellations of parts which offers the immediate advantages that occlusions
can be handled very well, that the geometrical relationship between parts can
be modelled (or neglected), and that one can focus on the discriminative parts
of an object. That is, one can focus on the image parts that distinguish a certain
object from other objects.

The steps of the method are briefly outlined in the following paragraphs.

Patch Extraction. Given an image, we extract square image patches at up to
500 image points. Additionally, 300 points from a uniform grid of 15x20 cells
that is projected onto the image are used. At each of these points a set of square
image patches of varying sizes (in this case 7 x 7,11 x 11,21 x 21, and 31 x 31
pixels) are extracted and scaled to a common size (in this case 15 x 15 pixels).

In contrast to the interest points from the detector, the grid-points can also
fall onto very homogeneous areas of the image. This property is on the one
hand important for capturing homogeneity in objects which is not found by the
interest point detector and on the other hand it captures parts of the background
which usually is a good indicator for an object, as in natural image objects are
often found in a “natural” environment.

After the patches are extracted and scaled to a common size, a PCA di-
mensionality reduction is applied to reduce the large dimensionality of the data,
keeping 39 coefficients corresponding to the 40 components of largest variance
but discarding the first coefficient corresponding to the largest variance. The
first coefficient is discarded to achieve a partial brightness invariance. This ap-
proach is suitable because the first PCA coefficient usually accounts for global
brightness.



Clustering. The data are then clustered using a k-means style iterative split-
ting clustering algorithm to obtain a partition of all extracted patches. To do
so0, first one Gaussian density is estimated which is then iteratively split to ob-
tain more densities. These densities are then re-estimated using k-means until
convergence is reached and then the next split is done. It has be shown ex-
perimentally that results consistently improve up to 4096 clusters but for more
than 4096 clusters the improvement is so small that it is not worth the higher
computational demands.

Creation of Histograms. Once we have the cluster model, we discard all
information for each patch except its closest corresponding cluster centre identi-
fier. For the test data, this identifier is determined by evaluating the Euclidean
distance to all cluster centres for each patch. Thus, the clustering assigns a clus-
ter c(x) € {1,...C} to each image patch x and allows us to create histograms
of cluster frequencies by counting how many of the extracted patches belong to
each of the clusters. The histogram representation h(X) with C bins is then de-
termined by counting and normalization such that h.(X) = ﬁ ZZL:XI 0(e, e(xy)),
where § denotes the Kronecker delta function, ¢(x;) is the closest cluster centre
to x;, and x; is the [-th image patch extracted from image X, from which a total
of Lx patches are extracted.

Training and Classification. Having obtained this representation by his-
tograms of image patches, we define a decision rule for the classification of
images. The approach based on maximum likelihood of the class-conditional dis-
tributions does not take into account the information of competing classes during
training. We can use this information by maximizing the class posterior prob-
ability TTr_, TI*, p(k| Xgn) instead. Assuming a Gaussian density with pooled
covariances for the class-conditional distribution, this maximization is equivalent
to maximizing the parameters of a log-linear or maximum entropy model

c
1
klh) = — Akche |,
p(klh) Z(h) exp (almch::l k )
where Z(h) = Zszl exp (ak + ch=1 /\kchc) is the renormalization factor. We

use a modified version of generalized iterative scaling. Bayes’ decision rule is
used for classification.

Conclusions. The method performs well for various tasks (e.g. Caltech
{airplanes, faces, motorbikes}), was used in the ImageCLEF 2005 Automatic
Annotation Task'* where it performed very well, and also performed well in the
PASCAL Visual Object Classes Challenge described in this chapter. An impor-
tant advantage of this method is that it is possible to visualize those patches

' http://ir.shef.ac.uk/imageclef2005/



Fig. 6. Darmstadt: Illustration of the IRD approach. (a) input image; (b) detected
hypothesis by the ISM model using a rather low threshold; (c) input to the SVM stage;
(d) verified hypothesis.

which are discriminative for a certain class, e.g. in the case of faces it was learned
that the most discriminative parts are the eyes.

6.2 Darmstadt

Participants: Mario Fritz, Bastian Leibe, Edgar Seemann, Bernt Schiele
Affiliation: TU-Darmstadt, Darmstadt, Germany
E-mail: mario.fritz@informatik.tu-darmstadt.de

We submit results on the categories car and motorbike obtained with the
Implicit Shape Model (ISM) [28] and the Integrated Representative Discriminant
(IRD) approach [19]. The ISM in itself is an interesting model, as it has recently
shown impressive results on challenging object class detections problems [30].
The IRD approach augments the representative ISM by an additional discrimi-
nant stage, which improves the precision of the detection system.

Local Feature Representation. We use local features as data representation.
As scale-invariant interest point detector we use difference-of-Gaussians and as



region descriptor we use normalized raw pixel patches. Even though there exist
more sophisticated descriptors, we want to point out that due to the rather
high resolution of 25x25 pixels the representation is quite discriminant. The
high dimensionality of the resulting features is taken care of by the quantization
of the feature space via soft-matching to a codebook. More recently [35] [41]
we have used more efficient feature representation for the task of object class
detection.

Codebook. In both approaches, we use a codebook representation as a first
generalization step, which is generated by an agglomerative clustering scheme.
Up to now, our approaches have only been evaluated on single viewpoints. In
order to stay consistent with those experiments, we only selected side views from
the training set. This leaves us with 55 car images and 153 motorbike images for
building the codebook and learning the model.

Learning and Evaluating the Model. The basic idea of the ISM is to repre-
sent the appearance of an object by a non-parametric, spatial feature occurrence
distribution for each codebook. When using the model for detection, local fea-
ture are computed from the test image and afterwards matched to the codebook.
Based on these matches, the spatial distributions stored in the ISM can be used
to accumulate evidence for object hypothesis characterized by position in the
image and size of the object. For a more detailed description - in particular how
to achieve scale-invariance - we refer to [29].

MDL Hypothesis Verification Stage. As the ISM facilitates the use of seg-
mentation masks for increased performance, we included the provided annota-
tions in the training. Given this information, a pixel-level segmentation can be
inferred on the test images. On the one hand this information can be fed back
in the recognition loop for interleaved recognition and segmentation [28]. On
the other hand, the problem of accepting a subset of ambiguous hypothesis in
an image can be formulated as an optimization problem in a MDL framework
based on the inferred figure and background probabilities[28]. For both methods
submitted to the challenge we make use of the MDL stage.

SVM with Local Kernel of IRD Approach. The SVM validation stage is
trained on detections and false alarms of the ISM on the whole training set for
cars and motorbikes. We want to point out, that both systems work on the same
data representation, so that the SVM makes full use of the information provided
by the ISM. A hypothesis consists of an inferred position of the object centre in
the image, an inferred object scale and a set of features that are consistent with
this hypothesis. Based on this information, the SVM is used to eliminate false
positives of the representative ISM model during detection. The whole process
is illustrated in Figure 6.



Besides the fact, that it is appealing to combine representative and discrim-
inant models from a machine learning point of view, we also profit from the
explicit choices of the components: While part of the success of the ISM is a
result of its capability for “across instances” learning, the resulting hypothesis
can lack global consistency which result in superfluous object parts. By using
an SVM with a kernel function of appearance and position we enforce a global
consistency again. The benefit of enforcing global consistencies were studied in
more detail in [30].

Experiments. All experiments were performed on the test-sets exactly as spec-
ified in the PASCAL challenge. For computational reasons, the test images were
rescaled to a uniform width of 400 pixels. We report results on both the object
detection and the present/absent classification task. Detection performance is
evaluated using the hypothesis bounding boxes returned by the ISM approach.
For the classification task, an object-present decision is taken if at least one hy-
pothesis is detected in an image. Since our integrated ISM+SVM approach allows
for an additional precision/recall trade-off, we report two performance curves for
the detection tasks. One for optimal equal error rate (EER) performance and
one for optimized precision (labelled “ISMSVM_2” in the plots).

Notes on the Results. The models were exclusively trained on side-views.
As the test data also includes multiple viewpoints, 100 % recall is not reachable
given the used training scheme. Given that test-set 1 contains only side-views
for the motorbikes and approximately 59% side-views for the cars and 39% and
12% for test-set 2 respectively, we detect nearly all side-views with a high level
of precision.

6.3 Edinburgh

Participants: Tom Griffiths, Moray Allan, Amos Storkey, Chris Williams
Affiliation: University of Edinburgh, Edinburgh, UK
E-mail: moray@sermisy.org

Experiments. Our aim in these experiments was to assess the performance
that can be obtained using a simple approach based on classifiers and detectors
using SIFT representations of interest points. We deliberately did not use state-
of-the-art class-specific detectors.

All the systems described below begin by detecting Harris-Affine interest
points in images!® [37]. SIFT representations are then found for the image regions
chosen by the interest point detector [32]. The SIFT representations for all the

15 We wused code from the Oxford Visual Geometry Group available at
http://www.robots.ox.ac.uk/~vgg/research/affine/.



regions chosen in the training data are then clustered using k-means. A test
image can now be represented as a vector of activations by matching the SIFT
representation of its interest point regions against these clusters and counting
how many times each cluster was the best match for a region from the test image.
This approach was suggested by recent work of Csurka, Dance et al. [10].

All the systems were trained only on the provided training data (train),
with parameters optimised using the provided validation data (val). The test
data sets were only used in the final runs of the systems to obtain results for
submission. All the detectors described below assume a single object of interest
per image.

Edinburgh bof Classifier. This classifier uses logistic regression'®, based on a
1500-dimensional bag-of-features representation of each image. Interest points
were detected using the Harris-Affine region detector and encoded as SIFT de-
scriptors. These were pooled from all images in the training set and clustered
using simple k-means (k = 1500). The 1500-dimensional bag-of-features repre-
sentation for each image is computed by counting, for each of the 1500 cluster
centres, how many regions in the image have no closer cluster centre in SIFT
space.

Edinburgh meanbb Detector. This naive approach is intended to act as a base-
line result. All images in the test set are assigned t