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Abstract
In this work, the RWTH automatic speech recognition systems
developed for the third TC-STAR evaluation campaign 2007 are
presented. The RWTH systems make systematic use of inter-
nal system combination, combining systems with differences in
feature extraction, adaptation methods, and training data used.
To take advantage of this, novel feature extraction methods were
employed; this year saw the introduction of Gammatone fea-
tures and MLP based phone posterior features. Further im-
provements were achieved using unsupervised training, and it
is notable that these improvements were achieved using a fairly
low amount of automatically transcribed data. Also contribut-
ing to the improvements over last year was the switch to MPE
training, and the introduction of projecting SAT transforms.
Index Terms: speech recognition, system combination

1. Introduction
This paper describes in detail the English and Spanish RWTH
Automatic Speech recognition systems, which were developed
for the 2007 TC-STAR Evaluation Campaign. The TC-STAR
EPPS Task, described in detail in [1], is a large vocabulary task
with the focus on parliamentary speeches and political debates,
in English and Spanish.

The main improvement compared to the system used in the
last year’s evaluation [1] was the systematic use of system com-
bination techniques, combining systems with differences in fea-
ture extraction, adaptation methods, and training data. For sys-
tem combination both minimum frame WER [2] and ROVER
were used.

All the individual systems were based on a one-pass four-
gram decoder with optional fast vocal tract length normalization
(VTLN). In a second pass, speaker adaptation was applied. All
systems included constrained maximum likelihood linear re-
gression (CMLLR) including speaker adaptive training (SAT),
maximum likelihood linear regression (MLLR), and discrimi-
native minimum phone error (MPE) training. As an optional
step before system combination, the lattices produced by the
second recognition step can be rescored with an improved lan-
guage model.

For each of the languages, the evaluation was carried out
in three different conditions, differing in what training data was
eligible for use. In the restricted condition, only certain training
data provided through the TC-STAR consortium was allowed.
For the public condition, any publicly available training data re-
specting a cut-off date (i.e before May 31st, 2006) was eligible.
In the open condition any training data before the cut-off could
be used. The RWTH systems participated in the restricted con-
dition for English and Spanish, as well as in the public condition
for English.

2. Acoustic Modeling
The RWTH system consisted of four independent subsystems,
each differing in the acoustic modelling used. The individual

systems were numbered from 1 to 4.
The acoustic models were trained using the data allowed in

the restricted condition. The data consisted of approximately
300h of audio data from the European parliament plenary ses-
sions (EPPS) for both English and Spanish, of which 100h were
manually transcribed. The transcriptions include a segmenta-
tion into sentence like units, speaker labels, and topic head-
ings. In Spanish, this was augmented with about 40h of man-
ually transcribed recordings from the Spanish Parliament and
Congress (SPC). See Table 1 for details. About 100h of the
untranscribed data was new compared to last year.

Table 1: Recordings from the EPPS (both) and SPC (Spanish)
domain available for acoustic modelling.

En EPPS Es EPPS Es SPC
Total Data [h] 278.8 249.1 38.4
Transcribed Data [h] 91.6 61.9 38.4

# Segments 66,670 59,490 42,118
# Running Words 660,603 458,917 257,481

Untranscribed Data [h] 187.2 187.2 -

2.1. Baseline Acoustic Modeling
The largest difference between the different systems is in the
basic acoustic modeling, and especially in the feature extraction
methods used. All systems were trained on the manually tran-
scribed acoustic data allowed in the restricted condition; Sys-
tem 4 additionally used the untranscribed data provided for the
restricted condition.

System 1 used an acoustic front end consisting of mel-
frequency cepstral coefficient (MFCC) features derived from a
bank of 20 filters. 16 cepstral coefficients including the zeroth
coefficient were used, and cepstral mean normalization was ap-
plied. The MFCC features were augmented with a voicedness
feature [3]. The MFCCs and voicedness features from nine con-
secutive frames were concatenated and a linear discriminative
analysis (LDA) was used to project the resulting vector to 45
components.

In System 2, gammatone cepstral coefficients were used, as
presented in [4]. The gammatone filterbank is reported to give a
good approximation of the human auditory filter. Acoustic fea-
tures derived from a gammatone filterbank were shown to per-
form comparable to standard features such as MFCC and PLP.
Both cepstral mean and variance normalization were applied to
the Gammatone cepstral features. In addition a LDA estimated
as in System 1 was used.

System 3 used the features from System 1, but augmented
them with phone posterior features estimated using a multi-
layer perceptron (MLP). The neural network was trained using
the phonemes of the given language, as estimated by a phone
alignment. The input to the neural network was multiple time
resolution features (MRasta [5]), which were based on PLP fea-
tures. The dimensionality of the phone posterior features was



reduced using a KLT-transform, and the result was concatenated
to the features from System 1.

System 4 differs from System 1 mainly through the use of
the untranscribed data allowed in the restricted condition, us-
ing unsupervised training with word posterior confidence selec-
tion. The recordings were automatically transcribed using sys-
tems optimized for the raw recording conditions, which differ
from the evaluation conditions, where noise, music, and foreign
speech segments are already manually excluded. Therefore, the
automatic segmentation, speaker clustering, and data threshold
parameters were optimized on a raw recording development set
derived from the TC-STAR development corpus of the first TC-
STAR evaluation campaign. Notable here is that even though a
fairly low amount of automatically transcribed data was used,
significant improvements were still obtained. System 4 used
features similar to System 1 but used both cepstral mean and
variance normalization.

Acoustic models for all systems were cross-word triphone
based 6-state left-to-right Gaussian mixture hidden Markov
models with a globally pooled diagonal covariance matrix. A
number of 4500 generalized triphone states was used. The base-
line acoustic models were maximum likelihood (ML) / Viterbi
trained using the training data provided for the restricted condi-
tion.

2.2. Speaker Normalization and Adaptation
Depending on the individual system, two or three different ap-
proaches for speaker normalization / adaptation were applied.
First, in all subsystems using MFCC features, vocal tract length
normalization (VTLN) was applied to the filterbank within the
MFCC extraction both in training and testing. For recognition,
a fast one pass VTLN method was used, where the warping fac-
tor was estimated using a Gaussian mixture classifier, trained
on the acoustic training corpus. Warping factors were estimated
using a grid search over 21 factors in the range 0.8 – 1.2. For
Systems 1 and 3 the classifier was trained only on a subset of
the corpus, and was used to estimate warping factors in acoustic
training. In System 4 the warping factors estimated using grid
search were used for acoustic model training. System 3, based
on gammatone features, used no VTLN.

In Systems 3 and 4, speaker adaptive training (SAT) based
on constrained maximum likelihood linear regression (CM-
LLR) [6] was used to compensate for speaker variation in both
training and testing. The simple target model approach [7] was
used, since results in [7] indicate that it outperforms the stan-
dard CMLLR-SAT method [6]. As target model an acoustic
model with a single Gaussian per state trained on baseline fea-
tures was used. Systems 1 and 2 used a similar approach to
SAT, but used projecting affine feature transforms instead of
CMLLR. The speaker specific transforms were estimated us-
ing the so called MMI′ criterion, and replaced the LDA matrix
in feature extraction, see [8] for details.

Finally, maximum likelihood linear regression (MLLR)
was applied to the means of the acoustic model in recognition.
A regression class tree was used to adjust the number of regres-
sion classes to the amount of data available.

Since both CMLLR and MLLR are text dependent, a two
pass setup is needed. Also, since they are carried out in a
speaker dependent manner, and since no speaker identities were
provided in the evaluation, an automatic speaker labeling was
applied. For SAT, the speaker labels provided in the training
data were used. The details of the two-pass system is described
in Sec. 4.1.

2.3. Discriminative Training
To refine the ML trained acoustic model, discriminative train-
ing was performed. The minimum phone error (MPE) criterion

[9] was used as preliminary experiments had shown an improve-
ment compared to the maximum mutual information (MMI) and
minimum classification error (MCE) criteria used in last years
systems. The discriminative training was initialized with the
ML trained acoustic model.

The word-conditioned word lattices used in training were
generated with the VTLN/voicedness system in combination
with a bigram language model. Since the lattices were domi-
nated by silence and noise arcs, the lattices were filtered. The
idea behind this filtering was to correct the posteriors for accu-
mulation of discriminative statistics. This step was (particularly
for the English system) essential for good performance. A sim-
ilar effect was observed if normalizing the pronunciation scores
to 1. However, this approach yielded slightly worse results.

For acoustic rescoring during discriminative training itera-
tions the exact match approach was used, i.e. the word boundary
times were kept fixed. The optimal number of training iterations
was determined by recognition on the development corpus. The
resulting models comprise about 800–900k Gaussians.

3. Lexicon and Language Modeling
3.1. Lexicon Modeling
Last year’s recognition lexica have been improved using various
approaches. For both English and Spanish, we corrected some
minor errors and added the names of the politicians who have
joined the European Parliament (EP) in the meantime. We also
enlarged the vocabulary utilizing publicly available language
modeling data (cf. Sec. 3.2): on parts of the Gigaword-corpus,
unigrams with their respective counts have been calculated and
sorted according to descending rank. For each language, the top
100k words of these unigram-counts have been checked if they
already occur within the lexicon. From the missing words, ap-
proximately 1,300 words for English and 1,000 words for Span-
ish have been included. The pronunciations for the names of
the additional members of the EP as well as for the LM-derived
ones were generated using the grapheme-to-phoneme conver-
sion (g2p) tool [10]. Additionally, we introduced pronunciation
weights based on relative frequencies calculated on an align-
ment of the training data. To prevent overfitting, these frequen-
cies were smoothed with a uniform distribution over the number
of pronunciations. A uniform distribution was also assumed if
there were no observations of a certain orthography within the
training data but more than one possible pronunciation (as e.g.
for words added by the g2p tool).

The English pronunciation lexicon was derived from the
British English example pronunciation dictionary (BEEP). The
Spanish pronunciation lexicon was derived from the lexicon of
the LC-STAR project [11]. Using these dictionaries, statistical
grapheme-to-phoneme conversion models were trained [10] for
Spanish and English. The models were used to produce pronun-
ciations for words not covered by the original lexica.

3.2. Language Modeling
For the restricted condition, we trained standard case sensitive
fourgram LMs with all available data. This includes the final
text editions (FTE) and verbatim transcriptions (VT) up un-
til May 2006 excluding the previous evaluation time intervals.
Thus, there are approximately 2M additional running words for
both English and Spanish due to the extended allowed time pe-
riod compared to last year’s system. For Spanish, there are also
the debates of the Spanish Parliament and Congress available
with the same time constraints (see [1] for an detailed descrip-
tion of the available text sources). For each language, an LM for
each data source has been trained using modified Kneser-Ney
discounting as the smoothing method. These LMs have been
linearly interpolated whereas the interpolation weights have
been optimized on the development set. Our final restricted con-



dition language model for English contains approximately 7.5M
multi-grams, the one for Spanish about 14M multi-grams. Ta-
ble 2 gives an overview of the text sources used for the restricted
condition.

In contrast to last year’s Evaluation, we also submitted re-
sults for the public condition data track for English. For this
track, we trained an additional fourgram language model on the
data of the British Parliament (BP) made available by ELDA
(approximately 51M running tokens) and parts of the English
Gigaword corpus (GW), which may be purchased by LDC (ap-
proximately 174M running tokens). This LM has been inter-
polated with the language model for the restricted condition.
The final public condition LM contains about 26M multi-grams.
This LM was not used for recognition but for rescoring on the
word graphs of the restricted condition. We used the SRI Lan-
guage Modeling Toolkit to build and interpolate the LMs [12].
Statistics of the resulting language models are shown in Table
3.

Table 2: Text resources available for language modelling, re-
stricted condition.

running words
VT FTE Spanish SPC

English 781,649 33,894,405 -
Spanish 516,936 35,190,383 47,181,386

Table 3: Language model statistics.
#multi-grams PP on Dev06 PP on Eval07

English, restricted 7,472,949 95.9 110.8
Spanish, restricted 14,286,867 76.5 104.8

English, public 25,759,369 110.3 107.1

4. Recognition Process
4.1. Two-Pass Speaker Adapted System
The RWTH baseline system realizes a one-pass fourgram
Viterbi decoder. Each of the individual systems used two
pass recognition to facilitate speaker adaptation, as described in
Sec. 2.2. The first pass was performed using an ML estimated
acoustic model. Since no fine-grained segmentation of the data
was provided in the evaluation, the complete recordings were
recognized using the first pass of system 1. The recordings var-
ied in length between a couple of minutes and half an hour.
The silence information from the recognition was used to seg-
ment the audio data. The segment boundaries were chosen at the
longest silence regions in such a way that no segment is longer
than 35s, while keeping the number of segments at a minimum.

To provide a speaker labeling, a generalized likelihood ratio
based segment clustering with a Bayesian information criterion
based stopping condition was applied to the segmented recog-
nition corpus [13]. For System 1, the output of the segmenta-
tion recognition was used to estimate SAT and MLLR matri-
ces needed by the adaptation, while for systems 2 – 4 a first
pass recognition performed on the segmented recordings was
used. The second pass was performed to produce lattices using
the best acoustic models, discriminatively trained on the SAT
transformed features, and adapted using the MLLR matrices. In
the English public systems, the lattices were rescored using the
larger language model described in Sec. 3.2.

4.2. System Combination
A common method to improve the recognition performance is
to combine the output of several subsystems. Crucial for good
combination results are subsystems that are diverse in the er-
rors they make. According to the literature different acous-
tic features and the usage of (partly) different training data are
two techniques to achieve systems that produce different errors.

Table 4: Recognition corpora statistics
English Spanish

dev06 eval06 eval07 dev06 eval06 eval07
Audio [h] 3.2 3.2 2.9 2.4 6.9 6.2
# Run. wrd 27k 30k 27k 21k 60k 57k
# Speakers 41 41 50 31 63 53

Hence, the four systems described in chapter 2 set up a promis-
ing base for system combination.

For the 2007 evaluation campaign we investigated two com-
bination approaches: the well-known ROVER (Recognizer Out-
put Voting Error Reduction) [14] approach and the minimum
frame WER (min-fWER) approach [2]. All ROVER exper-
iments were done using confidence scores. The confidence
scores were calculated from lattices produced by the final de-
coding step, see [15].

The min-fWER approach is defined within a Minimum
Bayes’ Risk (MBR) framework. Similar to confusion networks
it aims to find consensus among a lattice but utilizes a differ-
ent approximation. The min-fWER approach can easily be ex-
tended to work on a union of lattices and thus find consensus
over several subsystems.

The search space used by ROVER consists of all possible
paths through the alignment of the first-best hypothesis of all
subsystems. In particular, it allows paths that are not present
in one of the subsystems’ lattices. This can lead to broken lan-
guage model contexts in the final hypothesis, which is known
to harm subsequent machine translation. In contrast, the search
space for min-fWER is explicitly restricted to the union over the
lattices produced by the different subsystems. Thus, we ensure
that our final hypothesis does not break language model context.

5. Experiments
The development and evaluation sets were transcribed by
ELDA. For parameter optimization, the 2006 evaluation devel-
opment and evaluation sets were available. Statistics are given
in Table 4, together with the statistics for the 2007 development
data. Note that for the Spanish 2006 development set the statis-
tics are for the EPPS part only.

5.1. Individual Systems
For the development of the individual systems, the 2006 devel-
opment set was used for development and the 2006 evaluation
set was used as verification. Results are presented for two of
the individual systems, one in English and one in Spanish. The
other systems produced similar results. In the case of the En-
glish system, results were produced both with and without a
final rescoring with the public condition data language model.
This rescoring was the only difference between the restricted
and public systems.

Table 5 shows the development results of the English Sys-
tem 4, using untranscribed data, while Table 6 summarises the
development results for the Spanish System 1. All error rates
but the min-fWER results are Viterbi decoding results. The
min-fWER results were calculated over the lattices later used
for system combination. Note that in all results for the Span-
ish 2006 development set, the results reported only include the
EPPS portion of the set. For the evaluation sets, the results for
the combined EPPS plus SPC corpora are reported.

5.2. System Combination Results
In the following section the results from the system combination
experiments are presented. The system combination weights
were tuned on the development set of 2006. The evaluation
2006 set served as test set and results are presented for this set
and also for the 2007 evaluation set. Table 7 shows the English
system results, both for the four individual systems, and for the



Table 5: System 4 English results
dev06 eval06

baseline 15.7 13.1
+SAT 14.0 11.5
+Unsupervised 12.9 -
+MPE 12.5 -
+MLLR 11.8 9.8
+ New Lexicon 11.6 9.6
+ Public LM 11.0 8.5
min-fWER decode 10.6 8.4

Table 6: System 1 Spanish results
dev06 eval06

baseline 9.9 13.8
+ SAT 7.9 -
+ MPE 7.3 9.6
+ MLLR 7.1 9.3
+ New Lexicon 7.1 9.3

combination methods. The results for the Spanish (restricted)
system are shown in Table 8.

Table 7: English combination results
Restricted Public

eval06 eval07 eval06 eval07
System 1 9.4 10.6 8.7 10.1
System 2 10.1 11.6 9.0 10.9
System 3 10.3 12.4 9.4 11.8
System 4 9.6 10.8 8.5 9.8
ROVER 8.8 9.9 7.9 9.3
Min-fWER 8.8 9.7 7.8 9.0

Table 8: Spanish combination results
eval06 eval07

System 1 9.2 9.3
System 2 10.1 9.8
System 3 9.8 9.8
System 4 9.9 9.9
ROVER 8.7 8.9

5.3. Comparison to the 2006 RWTH Systems
Table 9 summarizes the results from our current system, and
compares them to the results obtained using the 2006 system,
as well as to the best of the individual systems (in restricted
condition). Compared to last year’s evaluation, the systems for
the final TC-STAR evaluation presented here lead to relative
improvements of around 12-13% in word error rate for the re-
stricted condition.

Table 9: Summary of results
English Spanish

eval06 eval07 eval06 eval07
2006 Restricted 10.2 11.3 10.2 10.1
2007 Single sys. 9.4 10.6 9.2 9.3
2007 Restricted 8.8 9.7 8.7 8.9
2007 Public 7.8 9.0 - -

6. Conclusions
In this work, the RWTH automatic speech recognition systems
developed for the second TC-STAR evaluation campaign 2007
were presented. In comparison to the 2006 system, large im-
provements were obtained by using system combination tech-
niques, which depend on the use of new acoustic features: the

Gammatone features and the MLP based phone posterior fea-
tures. Furthermore, improvements were achieved using unsu-
pervised training, and it is notable that these improvements were
reached using a fairly low amount of automatically transcribed
data. Another contribution to the improvements was the use
of MPE training, and the introduction of projecting SAT trans-
forms. The English as well as the Spanish system achieved im-
provements of 12–13% relative in word error rate compared to
the systems used last year. The RWTH systems produced the
best results (w.r.t. WER) of all participating single site systems,
in the restricted and public condition of both the English and
the Spanish task.
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[4] R. Schlüter, I. Bezrukov, H. Wagner, and H. Ney, “Gamma-
tone features and feature combination for large vocabulary speech
recognition,” in Proc. Int. Conf. on Spoken Language Processing,
Honolulu, HI, USA, Apr. 2007.

[5] H. Hermansky and P. Fousek, “Multi-resolution RASTA filtering
for TANDEM-based ASR,” in Proc. European Conf. on Speech
Communication and Technology, Lisbon, Portugal, Sept. 2005,
pp. 361 – 164.

[6] M. J. F. Gales, “Maximum likelihood linear transformations for
HMM-based speech recognition,” Computer Speech and Lan-
guage, vol. 12, no. 2, pp. 75 – 98, Apr. 1998.

[7] D. Giuliani G. Stemmer, F. Brugnara, “Adaptive training us-
ing simple target models,” in Proc. IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing, Philadelphia, PA, USA, Mar.
2005, vol. 1, pp. 997 – 1000.
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