
www.elsevier.com/locate/specom

Speech Communication 49 (2007) 514–525
Using multiple acoustic feature sets for speech recognition

András Zolnay a,*, Daniil Kocharov b, Ralf Schlüter a, Hermann Ney a
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Abstract

In this paper, the use of multiple acoustic feature sets for speech recognition is investigated. The combination of both auditory as well
as articulatory motivated features is considered. In addition to a voicing feature, we introduce a recently developed articulatory moti-
vated feature, the spectrum derivative feature. Features are combined both directly using linear discriminant analysis (LDA) as well as
indirectly on model level using discriminative model combination (DMC). Experimental results are presented for both small- and large-
vocabulary tasks. The results show that the accuracy of automatic speech recognition systems can be significantly improved by the
combination of auditory and articulatory motivated features. The word error rate is reduced from 1.8% to 1.5% on the SieTill task
for German digit string recognition. Consistent improvements in word error rate have been obtained on two large-vocabulary corpora.
The word error rate is reduced from 19.1% to 18.4% on the VerbMobil II corpus, a German large-vocabulary conversational speech task,
and from 14.1% to 13.5% on the British English part of the European parliament plenary sessions (EPPS) task from the 2005 TC-STAR
ASR evaluation campaign.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Most automatic speech recognition systems use at least
partly acoustic features motivated by the models of the
human auditory system. The most commonly used meth-
ods are the Mel frequency cepstrum coefficients (MFCC),
perceptual linear prediction (PLP), and variations of these
techniques. There have also been attempts at using acoustic
features for speech recognition which are motivated by
models of the human speech production system.

In this paper, the combination of several acoustic fea-
tures is investigated. The extraction of different state-of-
the-art auditory motivated acoustic features is reviewed,
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and detailed descriptions of the extraction of the voicing
and the novel spectrum derivative features are given. In
addition, investigations on the combination of these acous-
tic features are presented. Both the direct combination of
feature sets by using linear discriminant analysis (LDA)
as well as the implicit combination of feature sets via their
acoustic emission distributions using discriminative model
combination (DMC) and combinations thereof are
described. The contributions of this paper are:

• Voicing measure: Former investigations showed that
incorporation of the voicing information into speech
recognition can improve the word error rate (WER).
In this work, an autocorrelation based voicing measure
is tested in combination with different state-of-the-art
acoustic features. Experiments carried out on two
large-vocabulary tasks have shown that using an addi-
tional voicing measure improves even the performance
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of the vocal tract length normalized (VTLN) MFCC
feature.

• Spectrum derivative measure: The novel spectrum deriv-
ative measure was first published in (Kocharov et al.,
2005). In this work, the spectrum derivative feature is
investigated in detail on different small- and large-
vocabulary corpora. Recognition results have shown
that combination of state-of-the-art acoustic features
with the spectrum derivative measure improves the
WER significantly.

• Linear discriminant analysis: In former publications, lin-
ear discriminant analysis (LDA) was used in single- and
multi-feature speech recognition systems. In this work,
the application of LDA to acoustic feature combination
is reviewed in detail. Experiments performed on small-
and large-vocabulary corpora are presented which have
shown that combination of increasing numbers of audi-
tory and articulatory motivated acoustic features can
improve the recognition accuracy significantly.

• Discriminative model combination: In earlier publica-
tions, discriminative model combination (DMC) was
used to combine different acoustic and language models.
There were also attempts at applying DMC to acoustic
feature combination. In this work, LDA based feature
combination is nested into DMC. The nested setup leads
to significant improvements in WER compared to the
best underlying single LDA combined system.

The remainder of this work is organized as follows: In
the subsequent sections, we review publications closely
related to this work. A review of the implementation of
the MFCC, PLP, and MF-PLP features is given in Section
2 along with a short summary of the implementation of
vocal tract length normalization (VTLN) used in the
experiments presented here. Detailed descriptions of the
voicing and the spectrum derivative measures are pre-
sented as well. The LDA and the DMC based feature com-
bination methods are described in Sections 3.1 and 3.2,
respectively.

1.1. Acoustic feature extraction

In this section, a review of state-of-the-art auditory and
articulatory motivated feature extraction techniques is
given which are close related to methods investigated in
this paper.

The most widespread acoustic feature, the Mel fre-
quency cepstrum coefficients (MFCC), was first introduced
in (Davis and Mermelstein, 1980). The perceptual linear
predictive (PLP) feature introduced in (Hermansky, 1990)
is based on ideas similar to the MFCCs. Nevertheless, there
are major differences in data flow and in recognition
performance as well. The third fairly widespread auditory
based MF-PLP feature was derived from the two afore-
mentioned ones, as described in (Woodland et al., 1997).
The MF-PLP feature uses a Mel scale triangular filter bank
embedded into the data flow of the PLP feature.
Besides methods processing the short-term magnitude
spectrum, new acoustic features have been proposed
recently which focus on the short-term phase spectrum.
In (Paliwal and Alsteris, 2005), human perception experi-
ments have shown that the phase spectrum contributes to
speech intelligibility even for windows of less than 1 s. On
a small-vocabulary task, significant reduction in word error
rate (WER) has been presented in (Schlüter and Ney, 2001)
by using an LDA combination of the MFCC and a set of
features derived from the short-term phase spectrum.

Also, acoustic features derived from the group delay
function have been investigated in different speech applica-
tions. In (Hegde et al., 2005), significant improvements in
accuracy have been reported when combining a modified
group delay function based feature with MFCCs.

Applications of articulatory models have already been
intensively studied in speech recognition systems. In (Well-
ing and Ney, 1996), one of the first recognition systems was
presented which use formant frequencies as acoustic
features. In (Holmes et al., 1997), formant frequencies were
used in combination with the MFCC feature. Using a sim-
ple acoustic model, significant improvements in WER were
obtained on a connected-digit recognition task when
adding the formant based features. Besides formants, the
voicing feature is one of the most intensively researched
articulatory features. In rule based speech recognition
systems, voiced–unvoiced detection was used as one of
the acoustical features. In (Atal and Rabiner, 1976), a
voiced–unvoiced–silence detection algorithm is proposed
using statistical approaches. A voicing measure instead of
a voiced–unvoiced decision is described in (Thomson and
Chengalvarayan, 1998). The authors presented results
obtained by using an autocorrelation based voicing mea-
sure along with liftered cepstral coefficients. Using the con-
catenated features, a large relative improvement in WER
was obtained by applying discriminative training. Different
voicing measure extraction methods are compared in
(Zolnay et al., 2003). Recognition tests were carried out
by using the different voicing measures along with the
MFCC feature. In (Graciarena et al., 2004), the entropy
of the high order cepstrum is used to extract voicing infor-
mation. Recognition tests showed significant improvement
in WER when the entropy based voicing feature was com-
bined with an autocorrelation based one and with the
MFCC feature. A sub-band based periodic and aperiodic
feature set is applied to the Aurora-2J corpus in (Ishizuka
and Miyazaki, 2004). Significant improvements in WER
are reported when comparing the proposed feature set with
the baseline MFCCs. A novel articulatory motivated fea-
ture has been proposed recently in (Kocharov et al.,
2005) providing information on the distinction between
obstruents and sonants. The spectrum derivative feature
has been tested in combination with the MFCC feature
leading to significant improvements in WER on small-
and large-vocabulary tasks. The spectrum derivative fea-
ture captures the intensity of changes of the magnitude
spectrum over the frequency axis. Similarly, the derivative
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Fig. 1. Block diagram of Mel frequency cepstral coefficients.
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of magnitude spectrum formed the basis of acoustic fea-
tures for speech recognition in (Paliwal, 1999; Nadeu
et al., 2001). A measure similar to the spectrum derivative
feature is proposed in (Gray et al., 1974). This measure
quantifies the flatness of magnitude spectrum and it has
been developed to give insight into the whitening process
of linear prediction.

Articulatory information can also be successfully utilized
to improve the MFCC feature itself. In (Gu and Rose,
2001), the magnitude spectrum of harmonics is emphasized
leading to a large improvement in WER on an isolated digit
string recognition task. The idea of scaling the frequency
axis of the speech signal to account for gender specific vari-
ation of the vocal tract was first proposed in (Wakita, 1977).
Meanwhile, Vocal Tract Length Normalization became a
standard method in the speech recognition community.

1.2. Acoustic feature combination

The goal of acoustic feature combination is to exploit
mutually complementary classification information pro-
vided by different features. Acoustic feature combination
can be carried out at different levels of a speech recogni-
tion system. In the following, we review publications
closely related to linear discriminant analysis (LDA) and
discriminative model combination (DMC) based feature
combination.

Combination of acoustic features can be performed
directly on the level of feature vectors using LDA. In this
approach, different acoustic feature sets are combined by
means of an optimal linear transformation. In (Häb-
Umbach and Ney, 1992), LDA was used successfully to
find an optimal linear combination of successive vectors
of a single-feature stream. The combination of different
cepstral features was tested by using LDA in (Häb-
Umbach and Loog, 1999), however, without significant
improvements in WER compared to using the MFCCs
alone. Significant reduction in WER are presented using
the LDA based feature combination in (Schlüter and
Ney, 2001) when combining MFCCs and a set of phase fea-
tures and in (Zolnay et al., 2002) when combining MFCCs
with a voicing measure.

Combination of acoustic features can also be carried out
at the level of acoustic probabilities. In this case, acoustic
models trained on different feature sets produce probabili-
ties which are combined in a log-linear manner. Log-linear
model combination has already been applied to different
problems in speech recognition. In (Tolba et al., 2002),
acoustic features were combined by the means of log-linear
modeling. The combination of the MFCCs with main spec-
tral peak features led to a significant reduction in WER on
a noisy small-vocabulary task. Word error minimizing
training of log-linear model weights for speech recognition
models was proposed in (Beyerlein, 1997). Discriminative
model combination (DMC) applied to five acoustic and
language models (within-word and across-word acoustic
models, bigram, trigram, and fourgram language models)
led to a significant improvement in WER, compared to
the best pairwise combinations, as described in (Beyerlein,
1998). An application of DMC to acoustic feature combi-
nation is published in (Häb-Umbach and Loog, 1999).
Significant improvements in WER were obtained by the
combination of state-of-the-art cepstral features.
2. Signal analysis

In this section, the feature extraction methods used in
the experiments presented are described. First the Mel
frequency cepstrum coefficients (MFCC) are described,
followed by the perceptual linear predictive (PLP) features,
and the MF-PLP feature. Subsequently, vocal tract length
normalization (VTLN) is shortly reviewed. Finally, two
articulatory motivated features are presented, the autocor-
relation based voicing feature and the spectrum derivative
feature.
2.1. Mel frequency cepstral coefficients

The data flow of the Mel frequency cepstral coefficients
(MFCC) feature extraction is depicted in Fig. 1. Every
10 ms, a Hamming window is applied to preemphasized
25 ms segments and fast Fourier transform is applied along
with an appropriate zero padding. The obtained spectral
magnitudes are integrated within 20 triangular filters
arranged on the Mel frequency scale. The filter output is
the logarithm of the sum of the weighted spectral magni-
tudes. The number of filters depends on the sample rate,
15 for 8 kHz and 20 for 16 kHz. Subsequently, a discrete
cosine transform is applied to decorrelate the filter bank
outputs. The optimal number of cepstrum coefficients
depends on the corpus, see Table 1. Finally, normalization
steps are applied to account for variations in the recording
channel. Here, cepstral mean subtraction and energy



Table 1
Settings of the RWTH recognition system for the SieTill, VM II, and EPPS corpora

Corpus name SieTill VM II EPPS

train eval train eval train dev eval

Speech seg. [h] 11.6 11.7 61.5 1.6 40.8 3.7 3.5
# Speakers 362 356 857 16 154 16 36

Lexicon Vocabulary size 11 10157 54265
Language model Type Zerogram test Class-trigram test Trigram

dev eval
Perplexity 11 62.0 87 99

Feature extraction Sample rate [kHz] 8 16 16
# MFCCs 12 16 16
LDA window 11 11 9
LDA output 30 45 45

Model units Type Whole-word Triphone Triphone
Gender dep. Yes No No
Across-word No Yes Yes

HMM topology # States per unit 39 (average) 3 6
# Silence states 1 1 1

State tying Type None Decision tree Decision tree
# GMMs 215 3501 4501

Emission modeling # Densities 7k 396k 446k
Pooled covar. Yes Yes Yes
Diagonal covar. Yes Yes Yes

SPEECH SIGNAL
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normalization are carried out either utterance-wise or using
a sliding window.
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Fig. 2. Block diagram of perceptual linear predictive analysis.
2.2. Perceptual linear predictive analysis

The motivation of the perceptual linear predictive (PLP)
feature, proposed in (Hermansky, 1990), is similar to the
one of the MFCCs. As depicted in Fig. 2, every 10 ms, a
Hamming window is applied to the speech signal. Unlike
in the MFCC method, a window length of 20 ms is used.
Fast Fourier transform is applied and the resulting spectral
magnitudes are integrated within 20 trapezoidal filters
arranged on the Bark-frequency scale. The filter output is
the weighted sum of the spectral magnitudes. The number
of filters depends on the sample rate, 15 for 8 kHz and 20
for 16 kHz. The filter bank is virtually extended by two
more filters, centered at frequency 0 and at sample-rate/2.
Since these filters reach far beyond the valid frequency
range, their output is discarded and replaced by the value
of the right and left neighbor, respectively. Equal loudness
preemphasis is applied to the extended filter bank outputs
followed by the application of the intensity loudness law.
Next, the cepstrum coefficients are derived from an all-
poles approximation of the output of the intensity loudness
law. For this, autocorrelation coefficients are calculated by
applying the inverse discrete Fourier transform to the out-
put of the intensity loudness law. To obtain the cepstrum
coefficients, the autocorrelation coefficients are trans-
formed to the gain and to autoregressive coefficients by
using the Levinson–Durbin recursion. Instead of regenerat-
ing the smoothed all-poles approximation of the output of
the intensity loudness law, the cepstrum coefficients are
computed directly by applying a simple recursion. The zer-
oth cepstrum coefficient is explicitly set to the logarithm of
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the square of the gain. Finally, the resulting cepstrum coef-
ficients are normalized as described in Section 2.1.

2.3. PLP derived from Mel scale filter bank

In this method, the MFCC and PLP techniques are
merged into one algorithm generating the MF-PLP feature.
As shown in Fig. 3, the Mel scale triangular filter bank
taken from the MFCC algorithm is applied here to the
power spectrum instead of the magnitude spectrum. Subse-
quently, cepstrum coefficients are computed as described
for the extraction of PLP features, where the copying of
the outermost filters and the equal loudness preemphasis
is skipped. The dynamic range of the filter bank outputs
is compressed by the intensity loudness law. The cepstrum
coefficients are calculated from the output of the intensity
loudness law via the all-poles approximation as described
in Section 2.2. Finally, a normalization is applied as
described in Section 2.1.

2.4. Vocal tract length normalization

A considerable part of the variability in the speech
signal is caused by speaker dependent differences in vocal
tract length. Vocal tract length normalization tries to
account for this effect by warping the frequency axis of
the power spectrum. In a simplified model, the human
vocal tract is treated as a straight uniform tube of length
L. According to this model, a change in L by a certain fac-
tor a�1 results in a scaling of the frequency axis by a. Thus,
for this model, the frequency axis should be scaled linearly
to compensate for the variability caused by different vocal
tracts of individual speakers. The warping of frequency
axis can be implemented similar to the Mel warping in
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the MFCC data flow. Instead of a separate warping step
requiring interpolation of the magnitude spectrum, the
linear warping function is nested into the Mel warping
function. The nested warping function can simply be inte-
grated into the filter bank. The algorithm of the filter warp-
ing remains unchanged. The only difference is that the Mel
warping function is replaced by the nested warping func-
tion. The estimation of the warping factors in test either
is carried out using the maximum likelihood estimation
on a preliminary recognition pass (Lee and Rose, 1996)
or is based on text-independent Gaussian mixture models
without the need of a first recognition pass (Welling
et al., 2002). In this work, maximum likelihood estimation
of the warping factors has been used.
2.5. Voicing feature

Voicing represents an important characterizing feature
of phonemes. Therefore, a method explicitly extracting
the degree of voicing from a speech signal can be expected
to improve discrimination of phonemes and consequently
to improve recognition results. Here, the goal is to produce
a continuous measure representing the degree of periodic
vibration of the vocal cords instead of the implementation
of a voiced–unvoiced decision algorithm. The oscillation of
the vocal chords produces quasiperiodic segments in the
speech signal. Common motivation of the voicing extrac-
tion methods is to quantify this periodicity. In (Zolnay
et al., 2003), three methods were compared which produce
voicing measures describing the degree of periodicity of a
speech signal in a given time frame. The harmonic product

spectrum based method measures the periodicity of a time
frame in the frequency domain while the autocorrelation

based and the average magnitude difference based methods
operate in the time domain. Since the comparison did not
show any significant differences, in this work, the autocor-
relation based method has been used.
2.5.1. Extraction algorithm

Assume the unbiased estimate of the autocorrelationeRtðsÞ for some time frame t and a shift s:

eRtðsÞ ¼
1

T � s

XT�s�1

m¼0

xtðmÞxtðmþ sÞ; ð1Þ

where T is the length of a time frame. The autocorrelation
of periodic signals of frequency f attains its maximum not
only at s = 0 but also at integer multiples of the period, i.e.
for s ¼ k

f ; k ¼ 0;�1;�2; . . . Therefore, a peak in the range
of practically relevant pitches with a value close to Rt(0) is
a strong indication of periodicity. In order to produce a
bounded measure of voicing, the autocorrelation is divided
by eRtð0Þ. The resulting function provides values mainly in
the interval [�1� � �1] nevertheless because of the unbiased
estimate, theoretically any value is possible. The voicing
measure vt is thus the maximum value of the normalized
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autocorrelation in the interval of practically relevant pitch
periods [2.5 ms� � �12.5 ms]:

vt ¼ 2:5 ms�fs6s612:5 ms�fs
eRtðsÞeRtð0Þ

; ð2Þ

where fs denotes the sample rate. Values of vt close to 1
indicate voicing, values close to 0 indicate voiceless time
frames. Fig. 4 summarizes the necessary steps to extract
the voicing measure. The autocorrelation function is deter-
mined every 10 ms on speech segments of 40 ms length. The
window length has been optimized empirically on small-
and large-vocabulary corpora. The optimal value of
40 ms corresponds to former results (cf. Rabiner and Scha-
fer, 1979, p. 318). The frame energy normalization ensures
that eRtð0Þ � 1 such that the division in (2) can be omitted.
After calculating the unbiased autocorrelation for discrete
lags in the interval [2.5 ms Æ fs, 12.5 ms Æ fs], a simple linear
search is used to find the maximal value. In this way, a
one-dimensional voicing feature is generated every 10 ms.

2.5.2. Analysis of the voicing feature

To analyze the voicing measure vt, histograms of the
measure on a voiced–unvoiced sound pair have been esti-
mated. For example, in Fig. 5, we have compared the pair
of fricatives /v/–/f/ which phonetically differ only by the
type of excitation (i.e. state of the vocal cords). The voicing
histogram of both phonemes has been estimated on values
aligned to any of the states of the triphones with the given
phoneme as central phoneme. As shown in Fig. 5, the voic-
ing measure can effectively contribute to the discrimination
of voiced–unvoiced sound pairs.
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Fig. 5. Histograms of the voicing measure vt for the voiced fricative
/v/ and its unvoiced counterpart /f/ estimated on the VM II corpus
(cf. Section 4.1).
2.6. Spectrum derivative feature

The spectrum derivative feature was first introduced in
(Kocharov et al., 2005) to distinguish consonants from
two articulatory classes: obstruents and sonants. From a
phonetic point of view, these two classes differ by the pres-
ence of formants. In the magnitude spectrum of sonants,
we can observe peaky formant-like structures. However,
obstruents manifest in a flat and noisy magnitude spec-
trum. Hence, a feature summarizing the intensity of
changes of the magnitude spectrum over the frequency axis
can help to distinguish both phonetic classes.
2.6.1. Extraction algorithm

The spectrum derivative feature is a measure calculated
as the absolute sum of the first order derivatives of the
magnitude spectrum. The extraction procedure is shown
in Fig. 6. A Hamming window is applied to preemphasized
speech segments. The frame shift is chosen to 10 ms. The
window length has been optimized empirically in a range
between 15 ms and 90 ms. The best results have been
obtained by using 25 ms window, as used for MFCC gen-
eration. The magnitude spectrum Xt[n] of time frame t is
calculated by using FFT along with an appropriate zero
padding. The preprocessing of the magnitude spectrum
begins with discarding the high frequency magnitudes.
The cut-off frequency is chosen at 1 kHz. Comparative
tests on different corpora have shown that processing the
lower part of the magnitude spectrum only gives the best
recognition results. Nevertheless, further experiments are
necessary to understand the effects of filtering. In the next
step, the filtered magnitude spectrum bX t½n� is energy
normalized to account for frame energy variation. Experi-
ments have been carried out by using frame-wise and
utterance-wise energy normalization. Best recognition
results have been obtained by applying energy normaliza-
tion to every time frame:
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eX t½n� ¼
bX t½n�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffibX t½0�2 þ bX t

N
2

� �2 þ 2
PN=2�1

n¼1
bX t½n�2

q ; ð3Þ

where t denotes the time frame, n denotes the discrete fre-
quency, and N is the number of FFT points. The first order
derivative at[n] is calculated over the normalized magnitude
spectrum eX ½n�:
at½n� ¼ eX t½n� � eX t½n� 1�; ð4Þ
at½0� � 0: ð5Þ

Finally, the spectrum derivative feature is a continuous
measure st calculated as the logarithm of the absolute
sum of the discrete first order derivatives:

st ¼ log
XN=2

n¼0

jat½n�j
 !

: ð6Þ

Note that this method can be straightforward extended to
using higher order derivatives. The measure can be calcu-
lated for every higher order derivative of the magnitude
spectrum as well. Nevertheless, experiments has not shown
any consistent additional improvement in WER when
using the higher order derivatives on top of the first order
derivative.

2.6.2. Analysis of the spectral derivative feature

In order to analyze the spectrum derivative feature,
histograms of the spectrum derivative measure have been
generated for a specific phoneme pair. Fig. 7 depicts distri-
butions of st on the exemplary phoneme pair /v/ and /s/,
which, phonetically, differ by their sonority. The histogram
estimation has been carried out similar to the voicing
feature described in Section 2.5.2.

3. Feature combination

3.1. LDA based feature combination

The linear discriminant analysis (LDA) based feature
combination approach can be used to combine different
acoustic feature vectors directly. In (Häb-Umbach and
Ney, 1992), LDA was first used successfully to find an opti-
mal linear combination of successive vectors of a single-
feature stream. In the following steps, we describe a
straightforward way to use this method for feature combi-
nation. In the first step, feature vectors xfi

t extracted by dif-
ferent algorithms fi are concatenated for all time frames t.
In the second step, 2L + 1 successive concatenated vectors
are concatenated again for all time frames t which makes
up the large input vector of LDA. With L = 5 and with
F = 3 different features, the size of the LDA input vector
grows up to �400 components. Finally, the combined fea-
ture vector yt is created by projecting the large input vector
on a smaller subspace:

yt ¼ V T � ½½xf1
t�L; . . . ;xfF

t�L�; . . . ; ½xf1
t ; . . . ;x

fF
t �; . . . ; ½x

f1
tþL; . . . ;x

fF
tþL��

T
;

ð7Þ

where the matrix V is determined by LDA such that it con-
veys the most relevant classification information to yt. The
resulting acoustic vectors are used both in training and in
recognition.

3.2. DMC based feature combination

Discriminative model combination (DMC) was first
proposed in (Beyerlein, 1997). This method provides a flex-
ible framework for log-linear combination of acoustic and
language models for speech recognition. In the following,
DMC is shortly reviewed and the application of DMC to
acoustic feature combination is described. The DMC based
approach combines acoustic features indirectly via log-lin-
ear combination of acoustic models for each acoustic fea-
ture. The log-linear model weights are trained by using a
discriminative criterion minimizing word error rate.

The basic idea of DMC is to modify the modeling of the
posterior probability P(WjX) in Bayes’ decision rule:

W opt ¼ argmax
W

P ðW jX Þ: ð8Þ

In the standard case, the posterior probability is decom-
posed into the language model probability P(W) and the
acoustic model probability P(XjW):

PðW jX Þ ¼ P ðW ÞPðX jW ÞP
W 0P ðW 0ÞP ðX jW 0Þ : ð9Þ

In case of discriminative model combination, the posterior
probability is generalized to a log-linear distribution:

PðW jX Þ ¼ e�
P

i
kigiðW ;X ÞP

W 0e
�
P

i
kigiðW 0;X Þ

: ð10Þ

When applying log-linear modeling to speech recognition,
the basic feature function types are negative logarithms
of probability distributions:

• language model: glm(W,X) = �logP(W),
• acoustic model: gam;fi

ðW ;X Þ ¼ � log P fiðX fi jW Þ.

In order to combine different acoustic features, we rede-
fine X to be a sequence of tuples containing the time-syn-
chronous acoustic feature vectors xfi

t instead of a sequence



Table 2
Word error rates for baseline acoustic features. SieTill and VM II corpora:
results only on evaluation set. EPPS corpus: results on both development/

evaluation sets

Corpus Acoustic feature Error rates (%)

del ins WER

SieTill MFCC 0.3 0.5 1.8

VM II MFCC 4.5 2.9 21.0
VTLN 3.8 2.9 19.1
MF-PLP 5.2 2.3 21.0
PLP 5.9 2.3 21.4

EPPS MFCC 4.3/3.8 1.4/1.7 14.7/15.3
VTLN 4.3/3.7 1.3/1.5 14.2/14.1
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of single feature acoustic observation vectors. Further-
more, we introduce separate acoustic feature functions
gam;fi

ðW ;X Þ for each acoustic feature fi. Theoretically, every
feature function receives all the different acoustic feature
vectors. Nevertheless, in our system, the acoustic fea-
ture functions make only use of the underlying acoustic
feature fi. Consequently, the Bayes’ decision rule for log-
linear feature combination using a single language model
and for each acoustic feature a separate acoustic model
can be written as

W opt ¼ argmax
W

P ðW Þklm
Y

i

P fiðX fi jW Þ
kfi : ð11Þ
MF-PLP 4.2/3.7 1.5/1.7 14.8/15.3
PLP 4.3/3.5 1.6/1.8 15.4/15.8
3.2.1. DMC training process

The training of a DMC system consists of two major
steps: independent training of the parameters of each fea-
ture function gi(W,X) and discriminative training of the
log-linear model weights ki. In this work, the negative log-
arithms of the probability distributions have been used as
feature functions. In order to train the parameters of the
language and acoustic model distributions, standard maxi-
mum likelihood training has been performed. The training
of model weights has been carried out in a discriminative
manner minimizing word error rate. Detailed descriptions
of the word error minimizing training of log-linear model
weights can be found in (Beyerlein, 1998, 2000).

4. Experiments

4.1. Corpora and recognition systems

Experiments for acoustic feature combination have been
carried out on a number of small- and large-vocabulary
speech recognition tasks. Small-vocabulary tests have been
performed on the SieTill corpus. The corpus consists of
German continuous digit strings recorded over telephone
line. Large-vocabulary experiments have been conducted
on the VerbMobil II (VM II) corpus and on the English
partition of the European parliament plenary sessions
(EPPS) corpus from the 2005 TC-STAR ASR evaluation
campaign. The VM II corpus consists of German conversa-
tional speech whereas the EPPS corpus contains plenary
session speeches of the European Parliament in British
English. The settings of the RWTH speech recognition sys-
tems for these corpora are summarized in Table 1.

4.2. Baseline recognition results

Baseline recognition tests have been carried out by using
the state-the-of-art MFCC, MF-PLP, PLP, and VTLN fea-
tures. Table 2 summarizes the results.

Although vocal tract length normalization can be
applied to any of the MFCC, PLP, and MF-PLP features,
in this paper, VTLN denotes the normalization of the
MFCC feature. On the EPPS corpus, we used text-inde-
pendent Gaussian mixture models for warping factor esti-
mation. For the sake of faster recognition passes, we
have used supervised warping factor estimation on the
VM II corpus. Note that only slight or insignificant differ-
ences in WER can be found when comparing the super-
vised warping factor estimation with other unsupervised
ones.
4.3. LDA based feature combination

In this section, experimental results are presented which
have been obtained by the LDA based combination of
state-of-the-art features with the voicing and the spectrum
derivative measures.

For the different corpora, the number of concatenated
successive feature vectors (L) taken as input to LDA, and
the dimension of the projected feature space, cf. (7), have
been optimized using the MFCC feature and are given in
Table 1. For a given corpus, the size of the projected fea-
ture vectors has been kept constant throughout different
experiments to ensure comparable numbers of parameters
and therefore comparability of recognition results. Never-
theless, the LDA input dimension increases with the
number of feature sets combined, therefore implying a
slight increase of parameters for the LDA transformation
matrix. Finally, note that LDA has been applied in baseline
experiments using a single feature in the same way as in
feature combination experiments.
4.3.1. Recognition results for voicing feature inclusion
The one-dimensional voicing measure has to be viewed

as an auxiliary feature in contrast to the baseline MFCC,
PLP, MF-PLP, or VTLN features. Therefore, the use of
the voicing measure necessarily implies feature combina-
tion. Here, LDA based feature combination as described
in Section 3.1 has been used to incorporate the voicing fea-
ture. Table 3 summarizes the results obtained by using a
single additional voicing measure (V) on different corpora.
The application of the voicing measure has led to consis-
tent improvements in WER of 11% on the small- and 3%



Table 3
Word error rates obtained by the LDA based combination of baseline
features (MFCC, VTLN, MF-PLP, PLP) and the voicing feature (V).
SieTill and VM II corpora: results only on evaluation set. EPPS corpus:
results on both development/evaluation sets

Corpus Baseline feature V Error rates (%)

del ins WER

SieTill MFCC No 0.3 0.5 1.8
Yes 0.3 0.4 1.6

VM II MFCC No 4.5 2.9 21.0
Yes 4.6 2.7 20.3

VTLN No 3.8 2.9 19.1
Yes 4.1 2.7 18.7

MF-PLP No 5.2 2.3 21.0
Yes 4.7 2.6 20.5

PLP No 5.9 2.3 21.4
Yes 4.6 3.0 20.6

EPPS MFCC No 4.3/3.8 1.4/1.7 14.7/15.3
Yes 3.9/3.4 1.5/1.9 14.3/14.8

VTLN No 4.3/3.7 1.3/1.5 14.2/14.1
Yes 4.0/3.3 1.5/1.6 13.8/14.0

MF-PLP No 4.2/3.7 1.5/1.7 14.8/15.3
Yes 3.7/3.2 1.7/2.0 14.3/15.2

PLP No 4.3/3.5 1.6/1.8 15.4/15.8
Yes 4.5/3.7 1.4/1.6 15.1/15.4
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on the large-vocabulary corpora relative to the baseline
features.

In order to analyze the effects of the additional voicing
feature on recognition accuracy, the difference of two con-
fusion matrices is shown in Table 4. The confusion matri-
ces were obtained on the small-vocabulary German digit
string recognition SieTill task considering correctly recog-
nized and substituted utterances. In order to show the
changes caused by using the additional voicing feature,
the difference of the confusion matrices is presented rather
than showing the single matrices separately. The confusion
matrix obtained by using the LDA combined MFCC and
voicing features has been subtracted from the one generated
by using only the MFCC feature. Consequently, in the
Table 4
Difference confusion matrix generated by subtracting the confusion matrix ob
features from the one obtained by using solely the MFCC feature

Recognized Spoken

‘1’ ‘2’ ‘3’ ‘4’ ‘5’

‘1’ /aIns/ �12 3 3 0 �1
‘2’ /tsvaI/ 1 �16 �16 0 �1
‘3’ /draI/ 2 9 6 0 0
‘4’ /fi+ a/ �1 �1 0 �4 1
‘5’ /fYnf/ 2 0 1 1 �6

‘6’ /zeks/ 0 1 1 0 �1
‘7’ /zi+bEn/ 1 �1 �1 �2 1
‘8’ /axt/ 0 0 3 0 0
‘9’ /nOYn/ 3 �1 4 0 3
‘0’ /n¨l/ 0 2 1 0 2
‘zwo’ /tsvo+/ 0 3 �1 2 1

Larger improvements and degradations are emphasized.
diagonal of the difference confusion matrix, negative ele-
ments show improvements and positive ones degradations.
Naturally, negative off-diagonal elements indicate degrada-
tions and positive ones improvements.

By introducing the voicing feature, the overall number
of errors decreased by more than 1

10
. Nevertheless, locally

also degradations can be found in the difference confusion
matrix. Furthermore, the amount of confusions between
the words ‘2’ and ‘3’ has increased. In this case, a voicing
feature could only contribute to the first stop consonant,
and it could be observed that in this case, the word ‘2’ is
favored at the cost of word ‘3’, with a negligible effect on
the overall change in error rate. Apart from small varia-
tions, in all other cases improvements could be observed.
4.3.2. Recognition results for spectrum derivative inclusion

Similar to the voicing feature, also the spectrum deriva-
tive feature has to be viewed as auxiliary. Therefore, results
for the spectrum derivative feature have also been pro-
duced using LDA based feature combination, here using
the MFCC and VTLN features. Table 5 shows the results
obtained by using the single additional spectrum derivative
measure (SD) on different corpora. Applying the spectrum
derivative measure has resulted in improvements in WER
of 11% on the SieTill and 3% on the VM II corpora relative
to the baseline features. The spectrum derivative feature
could not improve the WER significantly on the EPPS

corpus.
4.3.3. Combining MFCC, VTLN, voicing, and spectrum
derivative features

Finally, experiments to combine the MFCC, vocal tract
length normalized MFCC (VTLN), voicing (V), and spec-
trum derivative (SD) features have been conducted using
LDA. Table 6 summarizes the corresponding recognition
results.

On the small-vocabulary SieTill task, an improvement
of 11% in WER relative to the MFCCs has been obtained
tained by using the LDA based combination of the MFCC and voicing

‘6’ ‘7’ ‘8’ ‘9’ ‘0’ ‘zwo’

2 1 0 1 0 �1
0 0 0 1 0 0
0 0 0 3 1 0
0 0 1 0 1 0
�1 �1 0 �1 �2 0
�4 0 �1 1 0 0

1 0 0 0 0 0
�1 1 �2 0 0 0

0 0 0 �6 10 0
0 0 0 �1 �12 1
2 0 0 1 1 �2



Table 5
Word error rates obtained by the LDA based combination of baseline
features (MFCC, VTLN) and the spectrum derivative feature (SD). SieTill

and VM II corpora: results only on evaluation set. EPPS corpus: results on
both development/evaluation sets

Corpus Baseline feature SD Error rates (%)

del ins WER

SieTill MFCC No 0.3 0.5 1.8
Yes 0.3 0.4 1.6

VM II MFCC No 4.5 2.9 21.0
Yes 4.5 2.9 20.3

VTLN No 3.8 2.9 19.1
Yes 3.7 3.0 18.6

EPPS MFCC No 4.3/3.8 1.4/1.7 14.7/15.3
Yes 4.5/4.0 1.2/1.5 14.7/15.1

VTLN No 4.3/3.7 1.3/1.5 14.2/14.1
Yes 4.0/3.3 1.5/1.7 14.2/14.1

Table 6
Word error rates obtained by the LDA based combination of increasing
number of acoustic features. SieTill and VM II corpora: results only on
evaluation set. EPPS corpus: results on both development/evaluation sets

Corpus Acoustic feature Error rates (%)

del ins WER

SieTill MFCC 0.3 0.5 1.8
+V 0.3 0.4 1.6
+SD 0.2 0.3 1.5

VM II MFCC 4.5 2.9 21.0
+V 4.6 2.7 20.3
+SD 4.4 2.9 20.1

VTLN 3.8 2.9 19.1
+V 4.1 2.7 18.7
+SD 3.9 2.9 18.4

EPPS MFCC 4.3/3.8 1.4/1.7 14.7/15.3
+V 3.9/3.4 1.5/1.9 14.3/14.8
+SD 4.2/3.7 1.4/1.6 14.4/14.9

VTLN 4.3/3.7 1.3/1.5 14.2/14.1
+V 4.0/3.3 1.5/1.6 13.8/14.0
+SD 3.6/3.1 1.6/1.8 13.7/14.0 Table 7

Word error rate obtained by nesting of discriminative model combination
(DMC) based and linear discriminant analysis (LDA) based feature
combination methods. VM II corpus: results only on evaluation set. EPPS

corpus: results on both development/evaluation sets

Corpus Acoustic features Error rates (%)

del ins WER

VM II MFCC 4.5 2.9 21.0
VTLN 3.8 2.9 19.1
LDA(MFCC + V) 4.6 2.7 20.3
LDA(VTLN + V) 4.1 2.7 18.7
DMC[LDA(MFCC + V) +

LDA(VTLN + V)] 4.1 2.5 18.4

EPPS MFCC 4.3/3.8 1.4/1.7 14.7/15.3
VTLN 4.3/3.7 1.3/1.5 14.2/14.1
LDA(MFCC + V) 3.9/3.4 1.5/1.9 14.3/14.8
LDA(VTLN + V) 4.0/3.3 1.5/1.6 13.8/14.0
DMC[LDA(MFCC + V) +

LDA(VTLN + V)] 4.1/3.5 1.2/1.4 13.6/13.5
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when adding the voicing feature. Extending the set of
features by the spectrum derivative feature, the WER has
further improved by relative 6%. Nevertheless, this
improvement has turned out to be significantly less than
the improvements obtained by the combination of solely
the MFCC and the spectrum derivative features. This
observation has been confirmed on the large-vocabulary
corpora as well.

On the large-vocabulary tasks, the MFCC and the best
performing VTLN features have been chosen as baselines.
On the VM II corpus, the combination of the baseline fea-
tures with the voicing measure has given a relative
improvement of 3% in WER. Similar to the small-vocabu-
lary task, adding the spectrum derivative feature results in
further improvement. The improvement is 1% relative to
the system using the additional voicing measure which is
less than the improvement obtained when combining the
spectrum derivative feature solely with the baseline fea-
tures, cf. Table 5. On the EPPS corpus, the additional voic-
ing measure has given improvements similar to the VM II

corpus. Nevertheless, the additional spectrum derivative
measure has not resulted in further improvements in WER.
4.4. Feature combination using DMC on top of LDA

Although DMC is applicable to any acoustic feature set,
the focus of the recognition tests presented in this work has
been on the combination of LDA combined features. The
output of LDA can be interpreted as a new separate acous-
tic feature. Consequently, acoustic models trained on LDA
output vectors can be combined in a straightforward way
using the DMC framework.

Recognition tests using DMC for feature combination
have been carried out using the standard word-conditioned
tree search algorithm with integrated log-linear model com-
bination. The integration of the log-linear model into a
standard search method facilitates a single-pass recogni-
tion. Weighting of the language model and the acoustic
models based on the different acoustic features happens
on demand and can be implemented in a straightforward
way.

Table 7 shows recognition results obtained by nesting
LDA into DMC. For each corpus, the first two lines repre-
sent the baseline results using the MFCC feature with and
without speaker normalization, cf. Table 2. The second
group shows the recognition results for the LDA based
combination of MFCC and VTLN features with the voic-
ing measure (V). In the final experiment, the acoustic mod-
els trained in the second group, i.e. LDA(MFCC + V) and
LDA(VTLN + V), have been combined using DMC. On
both corpora, the DMC based combination resulted in
improvements in WER compared to the LDA(VTLN + V)
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system. The most remarkable improvement has been
obtained on the evaluation set of the EPPS corpus. On this
corpus, the DMC based feature combination has lead to an
improvement in WER of 4% relative to the best LDA
based system.
5. Summary and outlook

In this paper, we have analyzed the combination of sev-
eral acoustic features both on feature and on model level.
Besides considering four state-of-the-art baseline acoustic
features, we have investigated the extraction of two articu-
latory motivated features. An autocorrelation based voic-
ing measure has been studied first followed by the novel
spectrum derivative feature. The articulatory motivated
features have been first tested separately in combination
with one of the baseline MFCC, MF-PLP, PLP, or VTLN
features. The combination has been carried out by using
LDA. The conclusions are summarized as follows:

• Additional articulatory motivated features can improve
the performance of state-of-the-art acoustic features.

• On the small-vocabulary SieTill task, combination of
MFCC feature with one of the voicing or spectrum
derivative features resulted in a relative improvement
of 11% in WER compared to the MFCC feature alone.

• Improvements were obtained also on the large-vocabu-
lary VM II and EPPS tasks. The additional voicing fea-
ture led to consistent improvements of up to 3% relative
to using the baseline feature alone. On the VM II cor-
pus, the use of the spectrum derivative feature resulted
in improvements comparable to those obtained by using
the voicing feature. However, no significant improve-
ments in WER could be observed on the EPPS corpus.

The combination of baseline acoustic features with both
of the voicing and spectrum derivative features gave further
improvements in WER. Experimental results can be sum-
marized as follows:

• Similar improvements were obtained by using the
MFCC or the speaker adapted VTLN features as
baseline.

• Improvements were consistent over the three different
corpora.

• When adding the spectrum derivative feature, the rela-
tive improvements over systems already using the addi-
tional voicing feature were significantly less than those
obtained by combining the spectrum derivative feature
with only the baseline features.

• Experiments on the small-vocabulary SieTill task gave a
relative improvement of 16% in WER when adding the
voicing and the spectrum derivative features to the
MFCCs. On large-vocabulary tasks, improvements of
up to 4% were obtained relative to the best performing
single feature systems.
Finally, DMC was shown to improve recognition results
starting from models based on LDA combined acoustic
features. The conclusions are:

• LDA based feature combination can be nested into
DMC in a straightforward way.

• DMC based combination of highly optimized feature
combination setups can improve the WER significantly.
On the EPPS corpus, the application of DMC gave a
relative improvement of 4% in WER compared to the
best LDA based system.

• The best recognition results were obtained by using the
voicing measure in combination with the MFCC and
the VTLN features. On both large-vocabulary corpora,
the LDA based method nested into DMC gave relative
improvements of 4% in WER compared to the best
single feature systems (VTLN).

Future work includes the optimization of the articula-
tory features presented and further development of
additional acoustic features. In particular, the spectrum
derivative feature will be compared to a closely related
spectral flatness feature proposed in (Gray et al., 1974).
Furthermore, alternative combination methods and espe-
cially system combination on the level of the recognition
output will be investigated for its potential in feature
combination.
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