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ABSTRACT

We present the RWTH phrase-based statistical machine trans-

lation system designed for the translation of Arabic speech

into English text. This system was used in the Global Au-

tonomous Language Exploitation (GALE) Go/No-Go Trans-

lation Evaluation 2007.

Using a two-pass approach, we first generate n-best trans-

lation candidates and then rerank these candidates using addi-

tional models. We give a short review of the decoder as well

as of the models used in both passes.

We stress the difficulties of spoken language translation,

i.e. how to combine the recognition and translation systems

and how to compensate for missing punctuation. In addition,

we cover our work on domain adaptation for the applied lan-

guage models. We present translation results for the official

GALE 2006 evaluation set and the GALE 2007 development

set.

Index Terms— speech to text, adjustment of ASR and

MT vocabularies, LM adaptation, punctuation prediction

1. INTRODUCTION

We describe the RWTH spoken language translation system

that was used in the Global Autonomous Language Exploita-

tion (GALE)1 Go/No-Go Translation Evaluation this summer.

The system performs a two-pass approach: in the first pass

our statistical phrase-based decoder generates n-best transla-

tion candidates which are reranked applying additional mod-

els in the second pass.

When going from text translation to the translation of au-

tomatically recognized speech, one has to focus on a couple

of problems. First of all, it has to be ensured that both the au-

tomatic speech recognition (ASR) system and the statistical

machine translation (SMT) system use matching vocabular-

ies. Furthermore, ASR output lacks the existence of any type

of punctuation marks or sentence segmentation. Case infor-

mation is not present, numbers and abbreviations are written

out as words, recognition errors occur, and one has to deal

1http://www.arpa.mil/ipto/programs/gale/index.htm

with the effects of natural speech like hesitations and filler

words.

Within the GALE evaluations, the systems have to trans-

late recorded speech out of two different domains: broadcast

news (BN) and broadcast conversations (BC) which are fo-

cused more on discussions and call-ins that have a conversa-

tional style of speech. The most straightforward way to tai-

lor an SMT system to a specific domain is to apply domain

adapted language models.

The paper is organized as follows. Section 2 gives a brief

overview of our SMT system and the models used in the two

passes. Section 3 then reports on our work to adjust the ASR

and SMT vocabularies. Afterwards, we describe the domain

adaptation for the used language models and the prediction

of punctuation marks in the translation process in Sections 4

and 5. Experiments on the GALE 2006 evaluation set and on

the GALE 2007 development set are discussed in section 6.

Section 7 concludes.

2. THE RWTH SMT SYSTEM

In statistical machine translation, we are given a source lan-

guage sentence fJ
1 = f1 . . . fj . . . fJ , which is to be trans-

lated into a target language sentence eI
1 = e1 . . . ei . . . eI .

Among all possible target language sentences, we choose

the sentence with the highest probability:

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1|fJ
1 )

}
(1)

The posterior probability Pr(eI
1|fJ

1 ) is modeled directly us-

ing a log-linear combination of several models [1]:

Pr(eI
1|fJ

1 ) =
exp

(∑M
m=1 λmhm(eI

1, f
J
1 )

)
∑
e′I′

1

exp
(∑M

m=1 λmhm(e′I
′

1 , fJ
1 )

) (2)

The denominator is a normalization factor that depends only

on the source sentence fJ
1 . Therefore, we can omit it during
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the search process. As a decision rule, we obtain:

êÎ
1 = argmax

I,eI
1

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}
(3)

This approach is a generalization of the source-channel ap-

proach [2]. The model scaling factors λM
1 are optimized w.r.t.

the final translation quality measured by an error criterion [3].

The overall system is similar to the ones successfully used

in recent evaluations [4, 5, 6]. For a more detailed system

description the reader is referred to these publications.

2.1. Models used during decoding

In the first pass, we run our phrase-based decoder to generate

the n-best translation candidates using a log-linear combina-

tion of the following models:

• phrase-based model:

During decoding, the hypotheses are generated by con-

catenating target language phrases. The pairs of source

and target phrases that are consistent with the word

alignment are extracted from the bilingual training cor-

pus as described in [7]. We then use relative fre-

quencies to estimate the phrase translation probabili-

ties. To obtain a more symmetric model, the phrase-

based model is used for both translation directions.

• phrase count features:

As rare phrases tend to be overestimated and errors

can originate from erroneous translations in the training

data and misaligned words, we include features based

on the actual count of the phrase pair. We check if this

count is below a specific threshold. We use three phrase

count features with manually chosen thresholds rang-

ing from 1.0 to 3.0.

• word-based lexicon model:

Longer phrases are rare and therefore tend to be overes-

timated. We use a word-based lexicon model to smooth

the phrase translation probabilities. The computation is

similar to IBM model 1 but only takes into account the

words within the phrase pair. Like the phrase-based

model, this model is used in both translation directions.

• word and phrase penalty model:

These two models are simple heuristics which influence

the average sentence and phrase lengths and can thus

be used to enable the decoder to generate longer trans-

lation candidates.

• target language model:

We apply a 4-gram language model which is built us-

ing the SRI Language Modeling toolkit [8] (smoothing

technique is modified Kneser-Ney discounting with in-

terpolation).

• reordering model:

This model assigns costs simply based on the jump

width, also used in, e.g. [9].

2.2. Rescoring models

Afterwards, we rerank the generated n-best translation candi-

dates applying the following rescoring models:

• IBM model 1:

This rescoring model measures the quality of the trans-

lations by using the IBM model 1 lexicon probabilities

estimated during the word alignment training on a sen-

tence level.

• deletion model:

During IBM model 1 rescoring, we count all source

words whose lexical probability given each target word

is below a specified threshold, in the experiments the

threshold was chosen between 10−1 and 10−4.

• sentence length model:

As described in [10], we explicitly model the target sen-

tence length I by summing up the posterior probabili-

ties of those target candidates that have length I .

• count language models:

We apply on-the-fly language model estimation from n-

gram counts using deleted interpolation. In the experi-

ments, the Google n-gram counts and counts collected

on the GigaWord corpus are used. We use 5-grams for

this rescoring model.

3. ADJUSTMENT OF ASR AND SMT
VOCABULARIES

As in any data-driven approach, our SMT system requires the

proper preprocessing of training and testing data. Otherwise,

the system will encounter many words that have not been ob-

served in training and that are thus missing from the phrase

tables and word lexica. When translating automatically rec-

ognized speech, preprocessing becomes even more important

as the ASR and SMT systems are usually trained on differ-

ent training data using different preprocessing tools. To over-

come these difficulties and to adjust the ASR and SMT vo-

cabularies, we perform the following steps. Note that both

systems process UTF-8 encoded data.

1. First, we apply some rule-based normalization of Ara-

bic words as described in [11], e.g. always mapping the

hamza at the beginning of a word onto the same form,

or removing the tanween character at the end of a word.

2. The next step is to split pre- and suffixes. For morpho-

logically rich languages like Arabic, this step is impor-

tant to reduce the number of occurring words and to ob-

tain a computationally manageable system. In former
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experiments [5], we used the MADA tool [12] for mor-

phological disambiguation and applied the D2-scheme

of [13] for word segmentation. These tools require

the input to be Buckwalter encoded. Buckwalter maps

the Arabic (UTF-8) characters onto an ASCII alphabet

and is thus error prone since there may still be English

words and non-Arabic characters in the original input

which can not be represented in the Buckwalter encod-

ing. We therefore decided to extract all splittings of

pre- and suffixes on a Buckwalter encoded and MADA

preprocessed version of the training data, to recode the

splittings in UTF-8, and to apply them as mappings.

3. In a third step, the spoken numbers are converted to dig-

its and regular expressions are used to categorize num-

bers, URLs and e-mail addresses.

4. DOMAIN ADAPTED LANGUAGE MODELS

In this section, we describe the training of language models

resulting in genre-specific domain adaptation for the overall

MT system. For the LM training, we combine different cor-

pora representing various genres, e.g. broadcast news or con-

versations. The interpolation weights for these corpora are

determined with the Downhill-Simplex algorithm, which is

a standard approach for training the parameters of the log-

linear model combination. The optimization criterion is the

perplexity of the interpolated LM on a development set.

4.1. Implementation

We use the SRI Language Modeling toolkit [8] and incor-

porate the Downhill-Simplex method from the Numerical

Recipes [14]. The genre-specific training corpora are sepa-

rately loaded as dynamic language models where the interpo-

lated probabilities of n-grams are calculated on-the-fly. This

results in very efficient training of the interpolation weights,

i.e. only the probabilities accessed during perplexity calcu-

lations are merged for the different LMs. Depending on the

number of models, the training converges after 30–40 itera-

tions.

In a final step, a static mixture of the LM is created and

written to disk. Thus, it is possible to train several tuned base-

line models (e.g. additional ones using more data) and again

interpolate them using this approach. Interestingly, when ap-

plied to the specific genres such as BN and BC, the perplexity

reductions on the development set carry over nicely to the test

set, which makes this method appealing.

4.2. Results

In Table 1, the perplexity reductions on the test set are shown

for the two domains. The baseline denotes perplexities ob-

tained with a standard modified Kneser-Ney discounted lan-

guage model without any genre-specific tuning (BASE) and

4-gram w/ KN discounting

BASE DMIX-GS DMIX-GS* total red.

TEST-BC 116.3 95.9 90.5 -22.2%

TEST-BN 127.8 108.5 103.4 -19.1%

Table 1. Perplexities on the test set (GALE 2006 MT evalua-

tion set) for various settings: BASE – baseline 4-gram w/ KN

discounting; DMIX-GS – genre-specific adaptation using DS;

DMIX-GS* – genre-specific adaptation using additional data.

trained on the whole target language corpora of the avail-

able bilingual data (GALE allowed corpora). After tuning

the weights for each of the six main sub-parts of the LM and

for each genre via Downhill-Simplex, we obtain significant

reductions in terms of perplexity (DMIX-GS). As there is ad-

ditional monolingual data available (e.g. GigaWord v2, TDT,

BBN data, . . .), this procedure is repeated, resulting in col-

umn DMIX-GS*. DMIX-GS* is tuned using DMIX-GS plus five

additional (genre-specific) LMs.

We achieve overall reductions of 22% on BN and 19% on

BN. The effect on the translation error measures can be seen

in Section 6.

5. PUNCTUATION PREDICTION

The translations of the ASR output are expected to have

proper sentence boundaries and punctuation. However, this

annotation can not be transferred from the automatic tran-

scripts, since the raw ASR output is just a sequence of words

for a given audio document. We perform the sentence seg-

mentation using the algorithm of ICSI/UW [15], which ap-

plies multiple acoustic and language model features to com-

pute posterior probabilities of a segment boundary after each

word. If the segmentation posterior probability is higher than

a given threshold, a segment boundary is inserted. The thresh-

old is optimized on a development set. Alternatively, we can

use the dynamic programming algorithm of [16] with the pos-

terior probability as the main feature. This algorithm has the

advantage that the minimum and maximum sentence lengths

can be explicitly specified, and an explicit language-specific

sentence length model can be used. A limit on the maximum

sentence length – 60 words – is necessary to reduce the com-

putational complexity of translation. We set the minimum

sentence length to 3 words, since one- and two-word seg-

ments are difficult to translate because of the missing context.

The ICSI/UW sentence segmentation system is able to

predict the sentence type, i. e. if a sentence is a statement or

a question. This information is used to generate the sentence-

final punctuation – a period or a question mark. We insert

these punctuation marks into the ASR output and translate

them as usual.

In order to obtain sentence-internal punctuation in the En-

glish translations, we let the MT system predict the commas,

as described in [16]. To this end, we train the word align-
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ARABIC ENGLISH

TRAIN: Sentences 7 M

Running Words 176 M 181 M

Vocabulary 681 K 492 K

Singletons 304 K 243 K

DEV-BC: Sentences 315

Running Words 7 707 10 009

Vocabulary 2 557 1 833

OOVs 590 70

DEV-BN: Sentences 565

Running Words 13 424 17 729

Vocabulary 4 587 3 075

OOVs 292 186

TEST-BC: Sentences 529

Running Words 13 033 17 073

Vocabulary 3 915 2 528

OOVs 332 246

TEST-BN: Sentences 956

Running Words 13 397 18 204

Vocabulary 4 457 2 965

OOVs 281 272

Table 2. Corpus Statistics of the GALE 2007 MT training

data (TRAIN), the GALE 2007 MT development set (DEV-

BC/BN), and the GALE 2006 MT evaluation set (TEST-

BC/BN) after preprocessing.

ment as usual with punctuation marks present in the source

and target part of the bilingual training corpus. Then, we

remove all of the sentence-internal punctuation marks from

the source part of the corpus only, adjusting the word align-

ment indices. Thus, many bilingual phrases extracted from

the modified alignment contain target language commas (and

other sentence-internal punctuation like semicolon) as inser-

tions. During decoding, the decision on whether or not to

insert a comma is made jointly by the translation model and

the language model. The scaling factors of the MT models

are re-optimized on the ASR output for the development set.

6. EXPERIMENTAL RESULTS

6.1. Experimental setup
Experiments are carried out on the current GALE MT test

sets. In this work, we focus on the translation of Arabic tran-

scripts out of the BC and BN domain. The corpus statistics

are shown in Table 2. We train our models on approximately

seven million sentence pairs, and use the GALE 2007 MT

development set to tune the system, e.g. the model scaling

factors, w.r.t. the BLEU score [17]. The GALE 2006 MT

evaluation set is used as a blind test corpus.

For the source language, preprocessing consists of the

steps described in Section 3 plus the removal of sentence-

internal punctuation. For the target language, we mainly

tokenize the corpora, i.e. separate punctuation marks from

words. Additionally, we expand English contradictions like

it’s or I’m and remove the case information in order to reduce

the vocabulary size and to improve the training. Regular ex-

pression are applied to categorize the corresponding numbers,

URLs and e-mail addresses.

The automatic transcripts for the test sets are obtained us-

ing a system combination of three systems based on SRI’s

ASR system architecture.2 For details about the ASR archi-

tecture the reader is referred to [18]. The Rover combination

of the individual systems results in word error rates of 13.0%

on the development set and 23.8% on the test set. More pre-

cisely, the combined system achieves error rates of 10.8%

(BN) and 16.9% (BC) on the genre-specific parts of the de-

velopment set.

6.2. Discussion
To measure the translation quality, we apply the automatic

evaluation criteria also used in the official GALE evaluations,

i.e. the BLEU score and the Translation Error Rate (TER)

[19]. The BLEU score is the geometric mean of the n-gram

precision in combination with a brevity penalty for too short

sentences. TER measures the number of edits required to

change a system output into one of the references. Both scores

are computed case-sensitive w.r.t. a single reference transla-

tion.

As we lowercase the training corpus during preprocess-

ing, we need to restore the correct case information. There-

fore, we build a disambiguation language model. True-casing

is done in a postprocessing step using the disambiguation tool

from the SRILM toolkit. Compared to the correct case of the

references, true-casing has an error rate of less than 2% on the

dev set and about 3% on the test set.

Furthermore, we use the ICSI/UW algorithm to automati-

cally segment the ASR transcripts into sentences. Obviously,

this results in a sentence segmentation that is different from

the segmentation of the reference translations. On document

level, we align the system translations to the reference trans-

lations using our automatic sentence (re-)segmentation tool

[20], which traces back the decisions of the Levenshtein edit

distance algorithm.

The translation results for the GALE 2007 development

set (DEV-BC/BN) and for the GALE 2006 evaluation set

(TEST-BC/BN) are presented in Table 3. For the reranking

experiments, we use the 10 000 best translation candidates.

Applying the domain adapted genre-specific LMs im-

proves the system performance on the dev set as well as on

the test set for both domains. The perplexity reductions re-

ported in Section 4 hence also make a difference in transla-

tion quality. While we are able to further improve the scores

2We thank SRI International for providing us with the ASR transcripts.
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DEV-BC DEV-BN TEST-BC TEST-BN

SYSTEM BLEU TER BLEU TER BLEU TER BLEU TER

[%] [%] [%] [%] [%] [%] [%] [%]

GALE 2006 – – – – 12.34 75.57 16.03 69.25

GALE 2007 (1ST PASS)

- BASE 19.98 68.82 23.59 61.11 13.59 83.11 16.88 70.50

- DMIX-GS 21.97 64.32 24.89 58.83 15.29 78.43 17.87 67.97

- DMIX-GS* 22.84 64.19 25.64 58.39 14.99 79.23 18.24 68.29

GALE 2007 (2ND PASS)

- RESCORING 23.50 62.77 27.00 56.91 15.16 78.43 18.53 67.00

Table 3. Translation results for the GALE 2007 development set (DEV-BC/BN) and the GALE 2006 evaluation set (TEST-

BC/BN); comparison to the RWTH system used in the official GALE 2006 evaluation and overview of current improvements.

DEV-BC DEV-BN TEST-BC TEST-BN

INPUT BLEU TER BLEU TER BLEU TER BLEU TER

[%] [%] [%] [%] [%] [%] [%] [%]

CORRECT TRANSCRIPTS 27.90 53.62 28.79 53.27 22.05 58.72 20.72 62.13

RAW ASR OUTPUT 16.05 67.46 19.19 62.28 12.85 75.21 13.65 69.55

NORMALIZED ASR OUTPUT 22.84 64.19 25.64 58.39 14.99 79.23 18.24 68.29

Table 4. Translation results for the GALE 2007 development set (DEV-BC/BN) and the GALE 2006 evaluation set (TEST-

BC/BN) for different inputs; correct transcripts vs. raw ASR output vs. normalized ASR output.

on the dev set by adding additional LM data and reranking the

translation candidates, these improvements carry over only to

the BN part of the test set. This is comprehensible because

the additional LM data used in both passes are gathered only

on news data. Furthermore the improvements due to the ad-

ditional rescoring models are comparatively small as the test

sets provide just single reference translations and therefore do

not allow for a large tolerance in the MT output which can be

exploited in the reranking pass.

To show the progress made, we compare the results with

the official scores obtained in last year’s GALE MT evalu-

ation. W.r.t. to the BLEU score, already the baseline out-

performs the 2006 system. This is due to the use of additional

training data as well as new models, e.g. the phrase count fea-

tures, and re-optimization of the entire system. Certainly, the

advances of the ASR system account for better translations of

the transcripts as well. Domain adapted LMs and the rescor-

ing models further contribute to improve overall translation

quality. We achieve improvements of 2.82% BLEU (BC) and

2.50% BLEU (BN) absolute. However, there are still short-

comings in our system. Regarding the TER scores, we only

improve our system on the BN part of the test set. On the BC

part, TER scores even deteriorate. We still have to analyze the

translations in more detail but future steps require additional

models and LM data that better match the BC domain.

Table 4 shows the results for different types of input.

Given the correct transcripts, the system would be able to gen-

erate translations for the BC and BN sets that perform more or

less at the same level. However, transcribing BC is a substan-

tially harder task that is reflected in ASR error rates (10.8% on

BN vs. 16.9% on BC for the dev set). Of course, this affects

the MT performance. Translating automatically transcribed

inputs, the BLEU scores drop from 28.79% to 25.64% on BN

and from 27.90% to 22.84% on BC. Nonetheless, the numbers

demonstrate how important the adjustment steps described in

Section 3 are. The system performance shows clear deteri-

oration for the translations of the unnormalized ASR output.

7. CONCLUSION

We have described the RWTH spoken language translation

system that was used in the 2007 GALE Go/No-Go Transla-

tion Evaluation. The system uses a two pass approach; in the

first pass, we use a dynamic programming beam search de-

coder to generate n-best translation candidates. In the second

pass, these translations are reranked.

We have shown significant improvements compared to

the GALE 2006 system achieved by introducing new feature

functions based on phrase counts, applying domain adapted

genre-specific language models, adding additional data and

reranking the candidate translations. We have also described

our work on adjusting the ASR and SMT vocabularies in

a preprocessing step to MT and on predicting punctuation

marks that are missing from automatically transcribed speech

in the translation process.

Future work will focus on how to further adapt to domains

that contain very noisy data and data being highly diverse

from traditional newswire text, like broadcast conversations

or web texts.
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