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Abstract
This paper introduces a new, efficient approach for estimating
projecting feature transforms for speech recognition. It is based
on the MMI′ criterion, a likelihood ratio criterion motivated by a
simplification of the MMI criterion, and is shown to be closely
related to HLDA. In comparison to current methods, the new
method is faster, making it more suitable for speaker adaptive
training, where the number of speakers, and therefore the num-
ber of transforms are substantial.

The proposed method was integrated into the RWTH par-
liamentary speeches transcription system. Experimental results
are presented using speaker specific projecting transforms, both
when used in recognition only and when used for speaker adap-
tive training, showing consistent improvements. Furthermore,
the observed improvements are shown to be additive to the im-
provement of MLLR. Comparisons to DLT are presented, and
results are presented for a new projecting DLT method.

Index Terms: Speech recognition, speaker adaptation, het-
eroscedastic linear discriminant analysis

1. Introduction
Several approaches to using projecting transforms for speaker
adaptation have been proposed. This section gives an overview
of the proposed methods.

The maximum likelihood (ML) estimation of linear trans-
formations, as described in [1], requires computing the Jaco-
bian of the transform. For projecting matrices, the algorithms
presented are unsuitable in unmodified form.

One method, presented in [2], is derived from the cri-
terion used for heteroscedastic linear discriminant analysis
(HLDA) [3], an extension of linear discriminant analysis (LDA)
that allows class specific covariances. In this method, as in the
linear transform estimation algorithm presented in [1], the ma-
trices are estimated from accumulated statistics using a row-
wise iterative update algorithm. One drawback of the method
is that it requires inverting an n × n matrix per matrix row and
iteration, where n is the dimension of the untransformed fea-
tures.

Another approach, presented in [4], involves estimating a
speaker specific non-projecting matrix in a high dimensional
feature space, before applying a global dimension reducing
transform. The speaker specific matrices are estimated on a
single Gaussian model with full covariances. Although sub-
stantial improvements were achieved, it was concluded that to a
large part this is due to using the single Gaussian model in es-
timation. This conclusion is supported by the improvements
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obtained in [5] when using a single Gaussian model to esti-
mate the matrices in (non-projecting) speaker adaptive training
(SAT). To what extent the improvement is to attribute to the
speaker dependent projection is not clear from the results pre-
sented. Furthermore, since the adaptation target model uses full
covariances a general optimization method was used instead of
the row-wise iteration of [1].

2. Estimation of Projections Using MMI′

One possible way to estimate projecting feature transforms
would be to use a standard discriminative criterion such as
maximum mutual information (MMI). For non-projecting mean
transformation estimation, results show that this requires inter-
polation with an ML estimated matrix to be useful [6]. See
Sec. 3 for details on estimation of projecting feature transforms
using this approach.

One criterion that has proven to be useful for optimizing pa-
rameters in the signal processing front-end [7], including pro-
jecting feature transforms is a likelihood ratio criterion moti-
vated in [7] as a simplification of the MMI criterion. Some
of the derivations below were first presented in a previous
work [8], where the MMI′ criterion was used as an evaluation
metric for VTLN linear transforms.

Starting with the MMI criterion, the competing model is
exchanged with a single full covariance Gaussian model that is
optimized (using maximum likelihood) on the same data as the
transformation. Specifically for the case of a feature transform
W the objective function is

gMMI′(M, W ) = (1)

− log P (WxT
1 |μ′, Σ′) + log P (WxT

1 |M, wN
1 ).

where xT
1 is the sequence of untransformed feature vectors,

wN
1 the sequence of words in the transcription, M the acoustic

model parameters, and Σ′ and μ′ the parameters of the compet-
ing Gaussian.

The resulting criterion is called the MMI′ criterion. In [7]
this criterion was used in a direct optimization framework, using
multiple passes over the training data to compute the objective
function and its derivative. On the other hand, the close for-
mal similarity to the standard ML criterion allows for the use
of the EM algorithm by defining an auxiliary function, in exact
correspondence to the ML case.

Like in the ML derivation, start by forming the difference

between gMMI′ for two different transformations W and Ŵ
keeping other parameters fixed.

gMMI′(M, Ŵ ) − gMMI′(M, W ) = (2)

− log
P (ŴxT

1 |μ′, Σ′)
P (WxT

1 |μ′, Σ′)
+ log

P (ŴxT
1 |M, wN

1 )

P (WxT
1 |M, wN

1 )
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The second term is equivalent to the difference in log likeli-
hoods formed in the proof for EM estimation of hidden Markov
models (HMMs), and can be handled exactly as in that proof,
while the term corresponding to the competing Gaussian lack
state dependence. Combining all terms give

gMMI′(W, Ŵ ) − gMMI′(W, W ) = (3)

SX

s=1

TX

t=1

γs(t)
ˆ − log

P (Ŵxt|μ′, Σ′)
P (Wxt|μ′, Σ′)

+ log
P (Ŵxt|Ms)

P (Wxt|Ms)

˜
,

plus a term guaranteed to be larger than 0 from the EM proof.
γs(t) are state occupation probabilities for state s at time t that
are dependant on W , and Ms denote the model parameters in
state s. Further rearranging the expression makes it possible to

rewrite Eq. (3) as Q(W, Ŵ ) − Q(W, W ), were Q is the auxil-
iary function. Since the competing Gaussian model is trained on
the same data as the matrix, the resulting term can be simplified;

P (Ŵxt|μ′, Σ′) =
1

2
log

˛̨
Σ′ ˛̨. (4)

Thus, the auxiliary function is given by

Q(W, Ŵ ) =

SX

s=1

TX

t=1

γs(t)
ˆ1

2
log

˛̨
Σ′ ˛̨ + log P (Ŵxt|s, Ms)

˜
. (5)

Finally, expressing Eq. (5) in terms of sufficient statistics leads
to

Q′(W, Ŵ ) = (6)

T

2
log

˛̨
ŴΣŴ T

˛̨ − 1

2

DX

d=1

`
ŵdG(d)ŵT

d − 2ŵdk(d)T ´
,

where ŵd is the dth row of Ŵ , and terms constant with respect

to the transform Ŵ have been omitted. Σ is the full covari-
ance of the untransformed adaptation data, while G and k are
statistics as defined in [1], i.e.

G(d) =

SX

s=1

1

σ
(s)2
d

TX

t=1

γs(t)xtx
T
t (7)

k(d) =

SX

s=1

1

σ
(s)2
d

μ
(s)
d

TX

t=1

γs(t)x
T
t , (8)

Using these equations, EM optimization can be carried out
in exactly the same way as for non-projecting linear transforms
by iteratively optimizing γs(t) using the forward backward al-

gorithm, and Ŵ by accumulating the sufficient statistics and
optimizing Q. It should be noted that Q is a strict auxiliary
function, and not as in the case of extended Baum Welsh a gen-
eralized one, and thus improvement in Q guarantee improve-
ment in the objective function. To be able to estimate an affine
transform, as opposed to the linear case presented in the for-
mulas, the feature vectors are extended with a constant dummy
feature, set to one. Since the equations are derived for project-
ing transforms they are still valid.

To optimize Q the auxiliary function is differentiated with
respect to ŵi yielding

∂Q′(W, Ŵ )

∂ŵi
= T

ˆ
ΣŴ T `

ŴΣŴ T ´−1˜
i
− ŵiG

(i) + k(i),

(9)

where the subscript i on the bracketed term indicates taking the
ith column of the term.

Using this expression combined with Eq. (6) allows using a
general optimization algorithm to calculate the matrix. The ap-
proach chosen in this work though, was to derive a row-wise it-
erative estimation algorithm similar to the one introduced in [1]
for non-projecting transformations.

In [1] the row-wise update is guaranteed to increase the ob-
jective function, since a closed form solution for ŵi is possible.
For the current problem no closed form solution can be found,
but convergence still occur in practice. An argument to why this
should be the case can be outlined as followed.

Equating Eq. (9) to zero and rewriting leads to a row-wise

update formula for Ŵ ,

ŵi =
ˆ
T

ˆ
ΣŴ T `

ŴΣŴ T ´−1˜
i
+ k(i)˜`

G(i)´−1
. (10)

This describes a fixed point map for ŵi, and also for the com-

plete Ŵ if all rows except i are kept fixed. In practice, a mod-
ified row update similar to the one used for CMLLR in [1] is
used,

ŵi =
ˆ
αT

ˆ
ΣŴ T `

ŴΣŴ T ´−1˜
i
+ k(i)˜`

G(i)´−1
, (11)

where α is computed as in [1]. To show convergence, one would
have to show that Eq. 11 describes a contracting map. Although
no proof of convergence is known, in practice the iteration con-
verges and provides a convenient way of finding the zeros of
Eq. (9).

The MMI′ criterion is closely related to the HLDA criterion
and other linear discriminant criteria. The first term of Eq. (6)
is the total scatter matrix, with LDA/HLDA terminology. The
second term is the within class term, and if the target model is
trained on the data used for estimation, the same expression as
in HLDA is reached for this term. Although the criteria are very
similar, the total scatter term is not exactly the same. From the
discussion in [9] we see that the original HLDA uses the deter-
minant of the diagonal of the total scatter matrix, whereas the
MMI′ criterion uses the determinant of the full scatter matrix.
In practice there seems to be no noticeable difference. Tests
during development have shown that matrices estimated using
the presented method are identical, within numerical precision,
to those produced using the FMLLR-P (projecting feature space
maximum likelihood linear regression) adaptation method [2],
that is based on the original HLDA criterion.

3. Discriminative Linear Transforms
One well known adaptation method is the discriminative linear
transform (DLT) method [6], based on an H-smoothed MMI
criterion,

gH(M, W ) = (1 − H)gML(M, W ) + HgMMI(M, W ). (12)

When H = 1, the criterion is equivalent to the MMI criterion,
while H = 0 leads to the ML criterion. The smoothing intro-
duced has two purposes, both as a general smoothing of the cri-
terion, but most importantly to ensure that convergence of the
auxiliary function leads to convergence in the objective func-
tion. In [6], the criterion is used to estimate Gaussian mean
transforms, but the same approach can also be used for feature
transforms.

In the case of CMLLR the smoothing will be done with the
ML criterion, but for the projecting case MMI′ will be used.
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The criterion can be rewritten (for both the CMLLR and the
projecting case) as

gH′(M, W ) = gnum(M, W ) − Hgden(M, W ), (13)

where gnum is the ML (or MMI′) objective function, and gden,
is the same objective function but accumulated over a denom-
inator lattice. Note that also gden includes the term from the
Jacobian (or the MMI′ contrast model term); when H=1 it will
cancel with the Jacobian from gnum so that the pure MMI case
contains no Jacobian. Analogous to the original DLT the esti-
mation of the matrices can be carried out exactly as in Sec. 2
but with the accumulators defined as

G(d) = G(d)
num − HG

(d)
den (14)

k(d) = k(d)
num − Hk

(d)
den , (15)

and T defined as (1 − H)T .

In all experiments for this paper two-gram lattices were
used, and the posteriors were computed using a one-gram lan-
guage model as proposed in [6]. The posterior were smoothed
with the inverse language model scale.

4. Implementation Considerations
The proposed method can be efficiently implemented, using the
update rule defined in Sec. 2. In the following discussion n will
denote the length of the original feature vector, and p the size of
the projected one.

For the proposed method the cost of the row update is dom-

inated by the inversion of ŴΣŴ T in Eq. (11), a p × p matrix.
For this to be the case, care must be taken to each iteration only

update the portions of ŴΣŴ T and ΣŴ T that has changed.
Thus the cost of one row update is O(p3), and the cost of one
complete iteration over the rows is O(p4).

In contrast, for the FMLLR-P method [2], the matrix in-
verted is the extended transformation matrix; an n × n matrix.
Additionally, the iterations are performed over the rows of the
extended matrix. Combined this leads to a time complexity of
O(n4) for one iteration over all the rows.

Since informal tests show that both methods require ap-
proximately the same number of iterations to converge, the new
method clearly has an advantage, especially when n is much
larger than p. For the system used in this paper, having n = 153
and p = 45, a comparison showed a significant improvement in
run time per matrix estimation; from 8 minutes for FMLLR-P
to 20 seconds for the proposed method when using 200 itera-
tions. This makes a large difference when performing speaker
adaptive training.

5. Experimental Results
All recognition experiments were performed on the TC-STAR
project English EPPS corpora as used in the 2006 evaluation,
and the experiments were performed with systems developed
for the 2006 evaluation as baseline [10]. The training mate-
rial includes 88 hours of manually transcribed recordings. The
tests were performed on the development and evaluation sets,
each consisting of 3.2 hours. The system used a MFCC front-
end augmented with a single voicedness feature, and the mod-
els used consisted of roughly 900k Gaussians sharing a single
globally pooled covariance. Furthermore, in all experiments a
one pass VTLN method, using a classifier to estimate the warp-
ing factor, was used. For the following experiments, maximum

Table 1: Recognition performance

C
M

L
L

R

M
L

L
R

S
A

T

P
ro

je
ct

io
n

EPPS 2006

WER [%]
Dev Eval

no no no no 16.4 13.5
yes 15.1 11.9

yes 15.0 11.7
yes no 14.4 11.0

yes 14.4 10.8
yes no no 14.0 11.0

yes 13.8 11.0
yes no 13.6 10.6

yes 13.3 10.4

likelihood trained models were used, although discriminatively
trained models were used in the evaluation. For further details
of the baseline systems used, see [10].

The baseline systems used LDA to map from a higher di-
mensional feature space to lower dimension; since the system
utilizes a globally pooled covariance, HLDA has no advantage
over LDA. The dimension of the LDA matrix was 45 × 153.
When standard CMLLR was used, it was applied after the LDA
transform. When using the new projecting method, the speaker-
specific matrix was applied instead of the LDA matrix. The
method were used as an affine transform, i.e. a dummy fea-
ture was added to the input dimension of the transform. When
estimating the projecting transforms, the LDA was used as the
starting point for the iteration.

Experiments were performed comparing the performance
of the projecting adaptation matrices to standard non-projecting
feature transformations, with and without using speaker adap-
tive training, and with and without combining with maximum
likelihood linear regression (MLLR) model adaptation. All
adaptation was unsupervised, i.e. performed with the first pass
recognition output as ground truth. The speaker identity infor-
mation on the recognition corpora was provided by a segment
clustering algorithm. For the speaker adaptive training, the ap-
proach suggested in [5] was used.

Table 1 summarizes the results of these experiments. The
baseline is the system with no adaptation except VTLN added.
CMLLR denotes that a single affine feature transform was uti-
lized per speaker. Projection indicates that the transform is pro-
jecting, estimated using the new method introduced in this pa-
per. SAT means that feature transforms were estimated also on
the training set and models estimated on the speaker-normalized
features. In the case of using SAT, for both the training- and
recognition set speakers, the matrices were estimated using a
single Gaussian acoustic model. MLLR indicates that the model
was further adapted using MLLR speaker wise.

Further experiments were performed comparing the perfor-
mance of the projecting transform adaptation method to CM-
LLR based DLT. This included experiments using the project-
ing DLT as presented in Sec. 3. Table 2 shows the results of
the CMLLR based DLT for different number of iterations and
different values of the constant H , on the 2006 development
set. Table 3 shows in the same way the experiments using pro-
jecting DLT. The column for H = 0 represents ML (or MMI′

for projecting matrices.) The results show that the improve-
ments of DLT, both for the CMLLR case, but especially for the
projecting transforms are very small, and also that the perfor-
mance vary depending on the parameters. It seems unfeasible
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Table 2: CMLLR based DLT
H =

I 0 0.33 0.50 0.66 0.83 0.95

1 15.2 15.1 15.1 15.0 14.9 15.0

2 15.0 15.0 15.0 14.9 15.0 14.8

3 15.0 15.0 14.9 14.9 14.9 14.9

4 15.0 15.1 14.9 15.0 15.0 15.0

5 15.0 15.1 15.0 15.0 14.8 15.1

Table 3: Projecting DLT

H =
I 0 0.33 0.50 0.66 0.83

1 15.0 15.0 15.0 15.0 14.9

2 14.8 14.8 14.8 14.8 15.0

3 14.9 14.8 14.8 14.7 14.9

4 14.7 14.8 14.7 14.8 14.9

5 14.8 14.7 14.7 14.7 14.8

to use DLT with success for unsupervised adaptation. It should
be noted that this second set of experiments were performed us-
ing a slightly different setup compared to the first experiment,
and the results are not directly comparable to those of Table 1.

As can be seen, in all cases the use of projecting matri-
ces gives an improvement of about 0.2% absolute, or about 2%
relative, when compared to the non-projecting case. Although
not large, the improvements are consistent between the differ-
ent experiments and corpora and in line with the results reported
in [2]. When compared to the results in [4] the improvements
seem small, but it must be remembered that those improvements
to a large extent were due to the effects of using a zero split
model as target model, an effect that is already included in the
non-projecting SAT baseline in the current work.

It may be argued that the improvement of the method is
mainly due to increased number of parameters, and not the use
of the additional information in the input features. On the other
hand, the fact that an improvement is observed in combination
with (regression tree based) MLLR, shows that even with a very
high number of parameters the projecting matrix still brings
an improvement. Note that in this case, the use of regression
classes for the feature transforms would be redundant in the
RWTH system, due to the use of a globally pooled covariance.

6. Conclusions
This paper introduced a novel variant of feature space projec-
tions for adaptation, based on the MMI′ criterion. The criterion
was shown to be closely related to the criterion used in HLDA,
and the resulting matrices equal to the matrices produced by the
FMLLR-P method, within numerical errors. An efficient esti-
mation method for the matrices was presented, more efficient
than FMLLR-P estimation, making the proposed method suit-
able for use with speaker adaptive training. Finally recognition
results were presented, showing performance improvements us-
ing projecting transforms, both for recognition only, and when
used for speaker adaptive training, and both with and without
additional MLLR adaptation. Results were presented for CM-
LLR based, as well as projecting DLT, but no significant and
practical improvements could be reached.

The improvements of the projecting transforms were con-
sistent across corpora and condition, and when compared to
DLT usable in practice for unsupervised adaptation. As a final
note the method introduced in this paper was successfully ap-
plied for SAT in the 2007 RWTH TC-STAR Evaluation system,
see [11] for details.
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[11] J. Lööf, Ch. Gollan, S. Hahn, G. Heigold, B. Hoffmeis-
ter, Ch. Plahl, D. Rybach, R. Schlüter, and H. Ney, “The
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