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ABSTRACT Moreover, we assume a given, restricted set of topic
Topic segmentation, i.e. the combined task of document'@P€ls (each of which may correspond to a multitude of
segmentation and topic identification, is an interesting issueYPcial section start phrases). Examples of such documents

both from a theoretical point of view as well as for practical &€ medical reports, scientific articles, meeting protocals,
applications. Previous studies have mainly focussed on/egal documents etc. We propose an algorithm allowing

applications exposing rather weak correlations regarding© €xPlicitly exploit these typical document structures as
the topic order (e.g. Broadcast News). In this work, we 2dditional knowledge sources, by applying a generative
concentrate on documents following a typical structure appr_oach using Markov models_ on the Iev_el c_)f complete
regarding the sequence and organization of the individualS€Ctions. ~ We aim at an optimal combination of the
sections. We propose an algorithm allowing to explicitly gddltlonal knowledge sources for significant performance
add such structures as additional knowledge sources b))mprovements compared t_o state-of-th(_a-art algorithms l_ooth
modeling the document structure on the level of complete for manually and automatically transcribed texts. Detailed

sections. Specifically, we address the issues of explicit€valuation results are presented on a medical report
section length modeling and modeling of typical section database, significantly outperforming a simulated state-

start phrases. On a database of dictated reports, we shoff-the-art algorithm and a simple cue phrase matching

significant improvements over state-of-the-art approaches2PProach.

both on manually and automatically transcribed text.  1he restof the paper is organized as follows: Section 2
Moreover, we show that our approach is significantly more Priéfly reviews previous work on topic segmentation.
robust against recognition errors than a phrase matching>ection 3 highlights the main differences of our approach

approach exploiting merely the typical section start phrases.compared to previous algorithms. In Section 4, we give
the theoretical formulation of our algorithm. Our database

is described in section 5, and the error measures used are
introduced in section 6. Section 7 describes our basic
system configuration. We evaluate the explicit modeling of
section lengths in section 8 and report further refinements
in word emission modeling in section 9. In section 10, we
present evaluation results and performance comparisons on
automatically transcribed texts. Finally, our main findings
and future directions of work are summarized in section 11.

1. INTRODUCTION

Topic segmentation — the combined task of document
segmentation and topic identification — is theoretically
challenging and has a number of practical applications.
For example, it helps to improve the readibility of long

text documents, allows to partition them into smaller
units for further processing, allows to identify related

information in a pool of documents, allows a quick access
to specific information in a document etc. In this work, 2. PREVIOUS WORK

we focus on the case of topic segmentation for documents

following a typical structure regarding the sequence and Text segmentation methods were previously mostly applied
organization of the individual sections. In particular, we to the domain of Broadcast News (topic detection and
assume significant correlations in the oder of the observedtracking, TDT) [1] where news stories appear in almost
topic sequences, in the section lengths belonging to thearbitrary order. Two tasks have to be distinguished: The
same topic, and in typical section start or end phrases.first task is the mere segmentation, i.e. the detection of



story boundaries without providing meaningful labels for modeling and characteristic phrases at the beginning or end
the found sections. Here, most approaches concentrat®f the individual sections.
on finding specific indications of a topic switch. Such Conceptually, we abandon the sentence-by-sentence
indications are usually expressed as binary features (e.gtagging paradigm. Instead, we view the wansattions
prosodical, lexical and cue word features [6]). In a as basic units. These sections are now specified not
statistical framework, these features are often used to trainonly by their topic but also by their size and location in
the posterior probability of a boundary given the presence the document. This allows us to model the document
or absence of a certain feature combination. Two importantstructure, i.e. the topic sequences, onlthel of complete
techniques to model such dependencies are Maximumsectionsoptionally including longer ranging dependencies
Entropy [2] and Decision Trees [4]. such as topic trigrams or position dependencies of topics.
The second, extended task includes the labeling of theFurthermore, since the start and end position of each section
found sections. Here, we have a pre-defined set of topicsis explicitly known, we may employ more realistic length
t = 1,...T, and each section has to be assigned to onemodels, thus replacing the inadequate implicit distributions
of them. One natural approach igaggingscheme where  used in [5]. The introduction of explicit length models
each word or sentence has to be tagged with a certain topiavill be shown to be a key advantage of the proposed
label t. Here, the segmentation is implicitly determined method. (This comes at the cost of a more complex dynamic
from locally changing labels. Again, Maximum Entropy programming since we now perform tao-dimensional
techniques (also used for Named Entity Tagging [3]) can be simultaneous optimization over the section boundaries and
applied for modelling th@osterior probability of the topic ~ over the topic sequence in the text.) Finally, we may
label sequence given the observed words. use more sophisticated emission models to capture crucial
Alternatively, [5] proposed ajenerativeapproach for  features of text evolution within each section. This is useful,
the tagging scheme which is based on Markov models andif formulations in the beginning of a section usually differ
classical language modeling. Here, the joint probability of from those used in the section “body”, or near its end.
the document structure and observed text is optimized. This
joint distribution is decomposed into theior probability 4. THEORY
for the document structure and thenditional probability
for the observed words given that structure. The prior Qur task is to find an optimal segmentation of the given
probabilities are modeled witMarkov chains The given  \ord streamw?¥ := wy, ..., wy into K sections K is to be
topics are viewed as Markov states. The topic sequencepptimized) which are labeled by the topits := 1, ..., tx

is modeled bytransition probabilitiesbetween subsequent and characterized by the section end positions (word
Markov states. (In [5] these probabilities are pooled into one indices)n’< := ny, ..., nx. We are thus interested #n:

global topic-switch and one topic-loop probability.) The

conditional probability for the observed words is modelled argmax {Pr(t{,n{, Klw)')} 1)

by topic-specific (unigram) language modedssociated tR i1 K

with the Markov states. ) ) )
Although this approach allows an efficient training of USing Bayes rule and dropping the constant prior

the involved statistical models, it has some drawbacks: Probability for U{{v we arrive at thegenerativeapproach

Due to the sentence-by-sentence tagging longer-ranging"here we optimize over the product of theor probability

document structures on thievel of complete sections for the text structulre and theonditionalprobability for the

cannot be captured. Applying transition probabilities on OPserved words given that structure:

the sentence level results in an implicit section length K K NLEKE K

distribution from the accumulated topic-loop probabilities. tfrgff?XK {Pr(t,ni', K) - Pr(wy [t 01", K) ;- (2)

Unfortunately, the resulting monotonous, exponentially "

decaying length distribution is contrary to the experimental \ye will not model the distributiop( ) over the number of

o_bservatlor_] that very short sections are u_nI_lker._ Finally, sections explicitly and decompose the prir(t/, nk | K)

since 'sectlon boundgrles are only |mpI|C|FIy' given py into Pr(t) - Pr(nf<|tX). Here, we approximat@r(t)

changing tags, the typl_cal evolution ofgtextwnhln asection py 5 product oftopic transition probabilitiesp(ty|t,_1).2

cannot be modelled without an extension of the algorithm. ¢ probabilityPr(nX |tX) of the section end positions is

decomposed into a product of topic-dependent probabilities
3. MARKOV MODELS ON SECTION LEVEL p(Ang|ty) of thesection lengthg\ny, := nj, —ny_. The
conditional probability of the observed words is provided
In this work we propose an algorithm that extends by topic-specific language modeiéw, |tx). They may be
the generative approach based on Markov models by Lnx is always— IV whence we optimize over 1,

emph.asizin_g. typical document structures, al!owing 10 2\ore sophisticated models may include a dependency on the absolute
exploit additional knowledge sources, e.g. explicit length section positiork: or longer-ranging topid/-grams.




extended t@(w, |tx, n —nk_1) to include a dependency on The Co-Occurrence Agreement Probability’p is

the position of each word within its section. capable of assessing the placement of section boundaries
By introducing the modeling assumptions into Eqg. (2), independent of the assigned topic labels. This quantity is
we get the following optimization criterion: also used as an evaluation criterion in the TDT task and

is described in detail in [2]. Here, for any two words
K drawn randomly from the text¥, Pp is defined as the
argmax { H (p(tkItk1) “p(Ang | tg) - probability tocorrectlyidentify them as either belonging to
tn LK (=1 e the same section, or to different sectiody, favors exact
H p(wy|tk, n — nk_1)> } 3) boundary matches, but also takes fairly close matches into
account. In practical applications, only word péits;, w;)
inside a window of fixed length are considered. Following
This problem can be solved using dynamic programming [2] we set the window length to half the average reference
in which we perform atwo-dimensionalsimultaneous  section length. In tables 1 and 2 we give the “co-occurence
optimization over the section boundaries and over the agreement error rate COAER”, definedlas Pp.
topics. The Word Labeling Error Rat§WLER) is defined by
Note that our formal approach allows to differentiate a word-by-word comparison of the automatically assigned
between two consecutive words and two consecutivetopic and the reference topic. One error is counted for
sections with the same topic. We have the freedom to alloweach incorrectly labeled word, and the errors are divided
or explicitly forbid a transition from some topic to itself. by the text lengthN. This simple metric assesses both
This may be controlled by(t|tx—1). Such a distinctionis  segmentation and labeling decisions.
not possible in the sentence tagging approach of [5]. Finally, we used an error metric that judges the
Topic segmentation with this algorithm can be correctness of the hypothesized sequence of topics: the
performed either on the word level or on the sentence level. Topic Levenshtein Error Ra{@LER). For every report, the
In the second case, the allowed section end positigrese reference and automatic segmentation each yield a topic
restricted to a set of pre-definedntence engositions (e.g.  sequence. TLER is defined as the Levenshtein editing
exploiting punctuation). This reduces the computational distance between the two topic sequences, divided by the
complexity and makes the segmentation more robust. number of sections in the reference segmentation. This error
metric allowed for interpretation of topic detection errors in
terms of insertions, deletions, and substitutions.
5. DATABASE The three error rates provided the basis for a versatile

) ) evaluation of our algorithm.
We present experimental results on a medical report

database. The training corpus consists of manual transcripts

of 4075 dictated reports, with sections manually introduced 7. BASIC SYSTEM CONFIGURATION
by special formatting and inserted topic names. In order ) . i , i
to reduce the variability in topic name formulations (e.g. | "€ topic transition probabilities(t|t') were trained on
singular versus plural formulations), we manually clustered € 1evel of complete sections. Each report in the training
the list of observed topic names with regard to similar names COrPUS was converted to its topic sequence (out of 51 topic

to arrive at a set of’ = 51 different meaningful, coherent  12P€ls). An additional fictitious topi¢, was added to
topic labels. The average number of sections in a report’®Present the beginning and the end of each report. The
was 6, and the average section length was 65 words. AnProbabilitiesp(i[to) and p(to|t), respectively, were used
analysis of the data showed that about 85% of the sectiond©' initialization and final maximization in the dynamic
were started with an indicative cue phrase (related to theProgramming algorithm.  The perplexity of the topic
topic label and the section content, e.g. “next is summary”). Séquénce of the training corpus with respect to a topic
However, there was a wide variety in the formulations of transition bigram was 6.5. o ,
these start phrases (see also section 10.1). The available training data was insufficient to train
Two data sets with slightly different characteristics were sr:actlon Iengtg plr;)bab.'“t'eﬁ(A”lt) forlei':lch tﬁp'cl:t' We q
used for testing: Test set A consists of 186 reports (with ant us gro(ljjpe | 3 toplcs Imto hseve:jal efngt classes a(rjw
average of 400 words and 8 sections per report), test set B o stimatedpooled section length models from aggregate

67 reports (on average 460 words and 8 sections per report). Istograms fo_r each'length class. .
In the basic configuration of our system, we used topic-

specific word unigram probabilities(w|t) independent of
6. ERROR MEASURES the word’s section internal position.
First evaluation experiments showed that the algorithm
In order to measure the performance of the implementedperforms significantly better on the sentence level than on
algorithm, three different error metrics were used. the word level. The error rates for the basic configuration

n=ng_1+1



. . 9. WORD EMISSION PROBABILITIES
Table 1. Performance comparison of the simulated

generative approach of [5] and our section-level Markov one ohservation in our first experiments was that simple
model with explicit optimization over section boundaries topic-specific word unigrams did not always provide

in its basic and final configuration. Error rates in %, see gygficient information for correct segmentation and labeling

section 6. decisions. First, we lack a mechanism to place boundaries
TESTSET A immedia_tely before an indicative start phrase _ since the

ERROR RATES (%) COAER WLER TLER words’ dlgtances from the boundary are not con§|d§req by a
implicit length modeling simple unigram. Se_cond, some words were SO |.nd|cat|ve of
(simulation of [5]) 14.6 41.6 60 4 a certain short topic that their occurrence within a longer

topic immediately triggered an erroneous topic switch.
Solutions to these two problems are presented below.

explicit length modeling
(basic configuration 12.0 40.4 47.9
explicit length modeling
(final configuration) 5.0 27.6

25 6 9.1. Topic Start/Continue Models

We extended the word emission modeling by training

separatéopic startandtopic continueunigrams to account

for the fact that some words (e.g. from indicative cue
of the system (sentence-level segmentation) are given inphrases) are more likely to begin a section, while others
Table 1, line 2. For comparison, the first line in table 1 ygsyally represent the internal content of a section. The topic
gives r_esults for an al_gorithm With_out epr_icit section length gtart modelg, (w, |t) were estimated on the firgwords of
modeling, described in the following section. each section, and the topic continue mogelsv,,|t) on the
remainder of the sections. Correspondingly, our dynamic
programming algorithm predicted the fistvords in each
assumed section by a start model and the rest of the section
by a continue model:

8. EVALUATION OF EXPLICIT SECTION
LENGTH MODELING

A contrast experiment was performed to support the o
. . e . : ps(wnlt) + n—i<0

statement that the inclusion of explicit length modeling and plwplt,n — i) := { pelwnlt) + n—i>0 (4)
explicit optimization over section boundaries outperforms anr '
the basic approach introduced in [5] on our database. Wegxperimentally, the optimal was found to be 5. Significant
simulated this sentence-by-sentence labeling approach bymprovements were observed for this modeling approach:
estimating the topic transition probabilitiggt|t') on the  Most of the start phrases were now used by the algorithm to
level of sentences (i.e. each topic indexappeared as predict a correct topic transition.
many times in the training corpus as there are sentences |n a refined version, we introduced a statistical modeling
in the section labeled with). Instead of using pooled of ¢, This was achieved by introducingwixture modefor
topic-loop and switch probabilities as in [Sh(t[t') is  the emission of the first words in a section, each mixture
modelled individually for each topic pair. We replaced encoding a switch from the start to the continue state at
our explicit length models(An|t) by (5(t[t))*"~", where  the respective positiom: € [0, ...,6]. Assuming that
Ab is defined as the number of sentences containingevery lengthm of a start phrase is equally probable, we
the An words. This reflects the accumulated topic-loop ysed uniform prior probabilities for afp + 1) paths. This
probabilities. resulted in further significant performance improvements,

The results of this simulation show significantly larger especially regarding the number of topic deletion and
error rates than those obtained with explicit length models substitution errors. Especially in cases when either no
(compare lines 1 and 2 in table 1). The monotonous dictated cue phrases were present in the beginning of a
implicit length distributions favor short topics and result section or these cue phrases were short, the misleading
in an increased topic insertion rate (reflected in TLER). influence of the topic start model was strongly reduced.
In contrast, even in its basic configuration, the section- Thus, we arrived at a flexible modeling approach effectively
level Markov model avoids erroneous insertions of short ytilizing indicative section start phrases, if present.
sections to a large extent. This can be attributed to the
low probabilities for too short sections from our explicit
length models. Moreover, our approach allows to explicitly
model typical section start phrases allowing strong further In spite of using most of the indicative cue phrases for
performance improvements (line 3 in table 1), as explained placing correct section boundaries and topic labels, we still
in the next section. On test set B, similar results were observed too many topic insertions significantly exceeding
observed. the number of deletions and substitutions. A manual

9.2. Smoothing of Topic Continue Models



inspection revealed that many lenghty sections are still p(w) taken to the power ofl — «). We thereby achieved a
“broken up” into several shorter topic segments. This good balance between topic insertions and deletions.
“aggressive” segmentation behavior may be explained by  The topic segmentation performance of our system in
the following reasoning: In our database, we observed soméits final configuration is presented in Table 1, line 3. This
more general topics which are discussed in long sections, adinal configuration included the topic transition bigram
well as highly specific topics which are typically discussed p(¢|t’), length models, and the optimized emission model
in short sections involving a highly specific vocabulary. (start and continue models and log-linear interpolation of
However, some of these “highly specific’ words (e.g. the continue models withv = 0.2). In comparison
“education”) might also appear within a longer section with the basic configuration, the number of topic insertion
belonging to a more general topic (e.g. “family history”) errors was drastically reduced. The section boundaries
and employing a more general, less restricted vocabulary.are now placed quite exactly, as expressed by the low co-
Due to this situation, the probability of a word given a occurence agreement error rate of 5%. The appearance
more general topic is much lower than its probability given of indicative start phrases almost always results in correct
a highly specific topic, even if the absolute frequency of topic segmentation decisions. On the other hand, sections
the word is more or less equal in both topics. For such without indicative start phrases are also detected rather well,
words, the biasagainstlonger and more general topics based on the complete content of a section and on structural
is accumulated in the product of emission probabilities as information.
in (3). This results in favoring many short topics by the
automatic segmentation algorithm. 10. PERFORMANCE ON AUTOMATICALLY

To overcome this problem, we tested various smoothing TRANSCRIBED TEXTS
techniques to reduce the specificity (the discriminative

dependency on the topic) of the emission models. In An important issue for a topic segmentation algorithm
our system, it makes sense to strongly smooth only thejs jts performance on automatically transcribed texts.
topic continue models because the topic start models wererg this end, we evaluated our section-level Markov
introgiL_Jced especially for “boosting” the influence of topic- model approach on the output of an automatic speech
specific start phrases. recognition (ASR) system and compared its performance
Two straightforward smoothing techniques for(w|t) to the simulation of the approach reported in [5] (see
are (1) heavy absolute discounting and interpolation with section 8) and a simple cue phrase matching approach (see
the topic-independent language mopleb) or (2) the linear  below). Experimental resuftsare reported on test set B
interpolation ofp.(w[t) with p(w). Both methods reduced (table 2). The reference segmentation of the ASR texts was
the topic insertion errors, but at the expense of significant derived from a Levenshtein alignment with the segmented
increases in the deletion and/or substitution errors. manual transcriptions. The word error rate of the ASR
Another approach is to “scale” the product of topic transcriptions on test set B was 24.5%.
continue probabilities with an exponeat < 1 in order
tq re_du_ce Fhe acgumulated bia_s toward_s too st_rong topic19 1. cue phrase matching approach
discrimination. With such a scaling, the information about
the text structure (typical topic sequences, section length)For comparison, we evaluated a simple cue phrase matching
gets more impact and the influence of the observed wordsapproach merely looking for typical section start phrases.
is reduced. We have to keep in mind, however, that in Here, we search for longest phrase matches after sentence
certain segmentation hypotheses the scaled topic continuseparator symbols using a list of indicative section start
probabilities compete with the unscaled — and thus typically phrases extracted from the training data (each with a
lower — topic start probabilities for the same words. This minimum frequency of 5). For our data, this list contained
introduces a biasgainstthe paths using the start models 291 phrases, with an average of 5.7 different phrases
which again results in higher topic deletion error rates. per topic. Note that this method is only able to detect
To eliminate the bias, we propose the log-linear sections starting with an indicative cue phrase from this list.
interpolation of each topic-specific continue model with the Furthermore, this method can produce “false alarms”, if a
topic-independent unigram: phrase from the list (e.g. “education”) appears in running
text without indicating the start of a new section.

LOGLIN pe(wlt) - pi—e (w)
t) := 5
P = o ) () ©)

With this approach, the discrimination between topics is
reduced as with the simple scaling, but the bias against

starting new sections is eliminated singe’ 1N (w|t) is
of the same order as (w,|t) due to the interpolation with 3As before, all models were trained on the manual transcriptions.

10.2. Performance comparison

Table 2 shows evaluation results for the section-level
Markov model (in its final configuration), the simulation
of [5] and the cue phrase matching approach, both for




to section internal structures, like explicit section lengths
and indicative start phrases. In a generative approach,
these knowledge sources were effectively integrated by
%erforming a (two-dimensional) simultaneous optimization
over the section boundaries and the topic sequence in
the text (“section-level Markov model”), allowing to
utilize statistical information about typical topic sequences,
section lengths and typical text phrases at any position
within a section. On a database consisting of dictated
reports, we obtained strong performance improvements
compared to state-of-the-art algorithms both on manually
and automatically transcribed texts. We showed that this is
due to the flexibility of our algorithm to effectively use the

Table 2. Performance comparison of the section-level
Markov model algorithm with the simulated sentence-by-
sentence labeling approach and the cue phrase matchin
method (manually / automatically transcribed reports).
Error rates in %, see section 6.

Manual transcriptions of test set B
Error Rates (%):] COAER | WLER | TLER
Section Markov mode 6.9 31.8 34.4
Simulation of [5] | 16.7 477 | 775
Cue phrase matching 6.5 35.3 43.6

ASR transcriptions of test set B additional knowledge sources related to section lengths and
Error Rates (%)) COAER | WLER | TLER typical section start phrases. Moreover, our algorithm was
Section Markov mode| 8.5 35.0 | 422 found to be remarkably robust against recognition errors,
Simulation of [5] | 18.2 48.2 | 80.4 due to the utilization of section conteand typical start
Cue phrase matching 9.5 49.2 | 58.0 formulations which are modeled in a flexible way.

Our results strongly motivate to exploit all available
statistical information on typical text structures for signif-
icant performance improvements in topic segmentation and

the reference and the ASR transcriptions. As can be seeRext processing tasks, integrated in a profound theoretical
in the upper part of table 2, our segmentation algorithm famework.

outperforms the cue phrase matching method already for \\e are currently working on extensions of our

the cue phrase matching method to detect sections with nqts apsolute positiok into the topic prediction probabilities
indicative start phrase (accounting for more than 15% Ofp(tk|tk—1,k) and to use a topic trigram(¢|¢', t"').

all sections) and to learn the great variety of start phrase
formulations.

As we go to the ASR transcriptions, the phrase matching
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