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ABSTRACT

Topic segmentation, i.e. the combined task of document
segmentation and topic identification, is an interesting issue
both from a theoretical point of view as well as for practical
applications. Previous studies have mainly focussed on
applications exposing rather weak correlations regarding
the topic order (e.g. Broadcast News). In this work, we
concentrate on documents following a typical structure
regarding the sequence and organization of the individual
sections. We propose an algorithm allowing to explicitly
add such structures as additional knowledge sources by
modeling the document structure on the level of complete
sections. Specifically, we address the issues of explicit
section length modeling and modeling of typical section
start phrases. On a database of dictated reports, we show
significant improvements over state-of-the-art approaches
both on manually and automatically transcribed text.
Moreover, we show that our approach is significantly more
robust against recognition errors than a phrase matching
approach exploiting merely the typical section start phrases.

1. INTRODUCTION

Topic segmentation — the combined task of document
segmentation and topic identification — is theoretically
challenging and has a number of practical applications.
For example, it helps to improve the readibility of long
text documents, allows to partition them into smaller
units for further processing, allows to identify related
information in a pool of documents, allows a quick access
to specific information in a document etc. In this work,
we focus on the case of topic segmentation for documents
following a typical structure regarding the sequence and
organization of the individual sections. In particular, we
assume significant correlations in the oder of the observed
topic sequences, in the section lengths belonging to the
same topic, and in typical section start or end phrases.

Moreover, we assume a given, restricted set of topic
labels (each of which may correspond to a multitude of
typcial section start phrases). Examples of such documents
are medical reports, scientific articles, meeting protocols,
legal documents etc. We propose an algorithm allowing
to explicitly exploit these typical document structures as
additional knowledge sources, by applying a generative
approach using Markov models on the level of complete
sections. We aim at an optimal combination of the
additional knowledge sources for significant performance
improvements compared to state-of-the-art algorithms both
for manually and automatically transcribed texts. Detailed
evaluation results are presented on a medical report
database, significantly outperforming a simulated state-
of-the-art algorithm and a simple cue phrase matching
approach.

The rest of the paper is organized as follows: Section 2
briefly reviews previous work on topic segmentation.
Section 3 highlights the main differences of our approach
compared to previous algorithms. In Section 4, we give
the theoretical formulation of our algorithm. Our database
is described in section 5, and the error measures used are
introduced in section 6. Section 7 describes our basic
system configuration. We evaluate the explicit modeling of
section lengths in section 8 and report further refinements
in word emission modeling in section 9. In section 10, we
present evaluation results and performance comparisons on
automatically transcribed texts. Finally, our main findings
and future directions of work are summarized in section 11.

2. PREVIOUS WORK

Text segmentation methods were previously mostly applied
to the domain of Broadcast News (topic detection and
tracking, TDT) [1] where news stories appear in almost
arbitrary order. Two tasks have to be distinguished: The
first task is the mere segmentation, i.e. the detection of



story boundaries without providing meaningful labels for
the found sections. Here, most approaches concentrate
on finding specific indications of a topic switch. Such
indications are usually expressed as binary features (e.g.
prosodical, lexical and cue word features [6]). In a
statistical framework, these features are often used to train
the posteriorprobability of a boundary given the presence
or absence of a certain feature combination. Two important
techniques to model such dependencies are Maximum
Entropy [2] and Decision Trees [4].

The second, extended task includes the labeling of the
found sections. Here, we have a pre-defined set of topics
t = 1, . . . T , and each section has to be assigned to one
of them. One natural approach is ataggingscheme where
each word or sentence has to be tagged with a certain topic
label t. Here, the segmentation is implicitly determined
from locally changing labels. Again, Maximum Entropy
techniques (also used for Named Entity Tagging [3]) can be
applied for modelling theposteriorprobability of the topic
label sequence given the observed words.

Alternatively, [5] proposed agenerativeapproach for
the tagging scheme which is based on Markov models and
classical language modeling. Here, the joint probability of
the document structure and observed text is optimized. This
joint distribution is decomposed into theprior probability
for the document structure and theconditionalprobability
for the observed words given that structure. The prior
probabilities are modeled withMarkov chains: The given
topics are viewed as Markov states. The topic sequence
is modeled bytransition probabilitiesbetween subsequent
Markov states. (In [5] these probabilities are pooled into one
global topic-switch and one topic-loop probability.) The
conditional probability for the observed words is modelled
by topic-specific (unigram) language modelsassociated
with the Markov states.

Although this approach allows an efficient training of
the involved statistical models, it has some drawbacks:
Due to the sentence-by-sentence tagging longer-ranging
document structures on thelevel of complete sections
cannot be captured. Applying transition probabilities on
the sentence level results in an implicit section length
distribution from the accumulated topic-loop probabilities.
Unfortunately, the resulting monotonous, exponentially
decaying length distribution is contrary to the experimental
observation that very short sections are unlikely. Finally,
since section boundaries are only implicitly given by
changing tags, the typical evolution of a text within a section
cannot be modelled without an extension of the algorithm.

3. MARKOV MODELS ON SECTION LEVEL

In this work we propose an algorithm that extends
the generative approach based on Markov models by
emphasizing typical document structures, allowing to
exploit additional knowledge sources, e.g. explicit length

modeling and characteristic phrases at the beginning or end
of the individual sections.

Conceptually, we abandon the sentence-by-sentence
tagging paradigm. Instead, we view the wantedsections
as basic units. These sections are now specified not
only by their topic but also by their size and location in
the document. This allows us to model the document
structure, i.e. the topic sequences, on thelevel of complete
sections, optionally including longer ranging dependencies
such as topic trigrams or position dependencies of topics.
Furthermore, since the start and end position of each section
is explicitly known, we may employ more realistic length
models, thus replacing the inadequate implicit distributions
used in [5]. The introduction of explicit length models
will be shown to be a key advantage of the proposed
method. (This comes at the cost of a more complex dynamic
programming since we now perform atwo-dimensional
simultaneous optimization over the section boundaries and
over the topic sequence in the text.) Finally, we may
use more sophisticated emission models to capture crucial
features of text evolution within each section. This is useful,
if formulations in the beginning of a section usually differ
from those used in the section “body”, or near its end.

4. THEORY

Our task is to find an optimal segmentation of the given
word streamwN1 := w1, ..., wN intoK sections (K is to be
optimized) which are labeled by the topicstK1 := t1, ..., tK
and characterized by the section end positions (word
indices)nK1 := n1, ..., nK . We are thus interested in:1

argmax
tK1 ,n

K−1
1 , K

{
Pr(tK1 , n

K
1 ,K|wN1 )

}
(1)

Using Bayes rule and dropping the constant prior
probability for wN1 we arrive at thegenerativeapproach
where we optimize over the product of theprior probability
for the text structure and theconditionalprobability for the
observed words given that structure:

argmax
tK1 ,n

K−1
1 , K

{
Pr(tK1 , n

K
1 ,K) · Pr(wN1 |tK1 , nK1 ,K)

}
(2)

We will not model the distributionp(K) over the number of
sections explicitly and decompose the priorPr(tK1 , n

K
1 ,K)

into Pr(tK1 ) · Pr(nK1 |tK1 ). Here, we approximatePr(tK1 )
by a product oftopic transitionprobabilitiesp(tk|tk−1).2

The probabilityPr(nK1 |tK1 ) of the section end positions is
decomposed into a product of topic-dependent probabilities
p(∆nk|tk) of thesection lengths∆nk := nk − nk−1. The
conditional probability of the observed words is provided
by topic-specific language modelsp(wn|tk). They may be

1nK is always= N whence we optimize overnK−1
1 .

2More sophisticated models may include a dependency on the absolute
section positionk or longer-ranging topicM -grams.



extended top(wn|tk, n−nk−1) to include a dependency on
the position of each word within its section.

By introducing the modeling assumptions into Eq. (2),
we get the following optimization criterion:

argmax
tK1 ,n

K−1
1 ,K

{
K∏
k=1

(
p(tk|tk−1) · p(∆nk | tk) ·
nk∏

n=nk−1+1

p(wn|tk, n− nk−1)

)}
(3)

This problem can be solved using dynamic programming
in which we perform atwo-dimensionalsimultaneous
optimization over the section boundaries and over the
topics.

Note that our formal approach allows to differentiate
between two consecutive words and two consecutive
sections with the same topic. We have the freedom to allow
or explicitly forbid a transition from some topic to itself.
This may be controlled byp(tk|tk−1). Such a distinction is
not possible in the sentence tagging approach of [5].

Topic segmentation with this algorithm can be
performed either on the word level or on the sentence level.
In the second case, the allowed section end positionsnk are
restricted to a set of pre-definedsentence endpositions (e.g.
exploiting punctuation). This reduces the computational
complexity and makes the segmentation more robust.

5. DATABASE

We present experimental results on a medical report
database. The training corpus consists of manual transcripts
of 4075 dictated reports, with sections manually introduced
by special formatting and inserted topic names. In order
to reduce the variability in topic name formulations (e.g.
singular versus plural formulations), we manually clustered
the list of observed topic names with regard to similar names
to arrive at a set ofT = 51 different meaningful, coherent
topic labels. The average number of sections in a report
was 6, and the average section length was 65 words. An
analysis of the data showed that about 85% of the sections
were started with an indicative cue phrase (related to the
topic label and the section content, e.g. “next is summary”).
However, there was a wide variety in the formulations of
these start phrases (see also section 10.1).

Two data sets with slightly different characteristics were
used for testing: Test set A consists of 186 reports (with an
average of 400 words and 8 sections per report), test set B of
67 reports (on average 460 words and 8 sections per report).

6. ERROR MEASURES

In order to measure the performance of the implemented
algorithm, three different error metrics were used.

The Co-Occurrence Agreement ProbabilityPD is
capable of assessing the placement of section boundaries
independent of the assigned topic labels. This quantity is
also used as an evaluation criterion in the TDT task and
is described in detail in [2]. Here, for any two words
drawn randomly from the textwN1 , PD is defined as the
probability tocorrectly identify them as either belonging to
the same section, or to different sections.PD favors exact
boundary matches, but also takes fairly close matches into
account. In practical applications, only word pairs(wi, wj)
inside a window of fixed length are considered. Following
[2] we set the window length to half the average reference
section length. In tables 1 and 2 we give the “co-occurence
agreement error rate COAER”, defined as1− PD.

The Word Labeling Error Rate(WLER) is defined by
a word-by-word comparison of the automatically assigned
topic and the reference topic. One error is counted for
each incorrectly labeled word, and the errors are divided
by the text lengthN . This simple metric assesses both
segmentation and labeling decisions.

Finally, we used an error metric that judges the
correctness of the hypothesized sequence of topics: the
Topic Levenshtein Error Rate(TLER). For every report, the
reference and automatic segmentation each yield a topic
sequence. TLER is defined as the Levenshtein editing
distance between the two topic sequences, divided by the
number of sections in the reference segmentation. This error
metric allowed for interpretation of topic detection errors in
terms of insertions, deletions, and substitutions.

The three error rates provided the basis for a versatile
evaluation of our algorithm.

7. BASIC SYSTEM CONFIGURATION

The topic transition probabilitiesp(t|t′) were trained on
the level of complete sections. Each report in the training
corpus was converted to its topic sequence (out of 51 topic
labels). An additional fictitious topict0 was added to
represent the beginning and the end of each report. The
probabilitiesp(t|t0) and p(t0|t), respectively, were used
for initialization and final maximization in the dynamic
programming algorithm. The perplexity of the topic
sequence of the training corpus with respect to a topic
transition bigram was 6.5.

The available training data was insufficient to train
section length probabilitiesp(∆n|t) for each topict. We
thus grouped all topics into several length classes and
estimatedpooled section length models from aggregated
histograms for each length class.

In the basic configuration of our system, we used topic-
specific word unigram probabilitiesp(w|t) independent of
the word’s section internal position.

First evaluation experiments showed that the algorithm
performs significantly better on the sentence level than on
the word level. The error rates for the basic configuration



Table 1. Performance comparison of the simulated
generative approach of [5] and our section-level Markov
model with explicit optimization over section boundaries
in its basic and final configuration. Error rates in %, see
section 6.

TEST SET A
ERROR RATES (%): COAER WLER TLER

implicit length modeling
(simulation of [5]) 14.6 41.6 60.4

explicit length modeling
(basic configuration) 12.0 40.4 47.9

explicit length modeling
(final configuration) 5.0 27.6 25.6

of the system (sentence-level segmentation) are given in
Table 1, line 2. For comparison, the first line in table 1
gives results for an algorithm without explicit section length
modeling, described in the following section.

8. EVALUATION OF EXPLICIT SECTION
LENGTH MODELING

A contrast experiment was performed to support the
statement that the inclusion of explicit length modeling and
explicit optimization over section boundaries outperforms
the basic approach introduced in [5] on our database. We
simulated this sentence-by-sentence labeling approach by
estimating the topic transition probabilities̃p(t|t′) on the
level of sentences (i.e. each topic indext appeared as
many times in the training corpus as there are sentences
in the section labeled witht). Instead of using pooled
topic-loop and switch probabilities as in [5],̃p(t|t′) is
modelled individually for each topic pair. We replaced
our explicit length modelsp(∆n|t) by (p̃(t|t))∆b−1, where
∆b is defined as the number of sentences containing
the ∆n words. This reflects the accumulated topic-loop
probabilities.

The results of this simulation show significantly larger
error rates than those obtained with explicit length models
(compare lines 1 and 2 in table 1). The monotonous
implicit length distributions favor short topics and result
in an increased topic insertion rate (reflected in TLER).
In contrast, even in its basic configuration, the section-
level Markov model avoids erroneous insertions of short
sections to a large extent. This can be attributed to the
low probabilities for too short sections from our explicit
length models. Moreover, our approach allows to explicitly
model typical section start phrases allowing strong further
performance improvements (line 3 in table 1), as explained
in the next section. On test set B, similar results were
observed.

9. WORD EMISSION PROBABILITIES

One observation in our first experiments was that simple
topic-specific word unigrams did not always provide
sufficient information for correct segmentation and labeling
decisions. First, we lack a mechanism to place boundaries
immediately before an indicative start phrase since the
words’ distances from the boundary are not considered by a
simple unigram. Second, some words were so indicative of
a certain short topic that their occurrence within a longer
topic immediately triggered an erroneous topic switch.
Solutions to these two problems are presented below.

9.1. Topic Start/Continue Models

We extended the word emission modeling by training
separatetopic startandtopic continueunigrams to account
for the fact that some words (e.g. from indicative cue
phrases) are more likely to begin a section, while others
usually represent the internal content of a section. The topic
start modelsps(wn|t) were estimated on the firstθ words of
each section, and the topic continue modelspc(wn|t) on the
remainder of the sections. Correspondingly, our dynamic
programming algorithm predicted the firstθ words in each
assumed section by a start model and the rest of the section
by a continue model:

p(wn|t, n− i) :=
{
ps(wn|t) : n− i ≤ θ
pc(wn|t) : n− i > θ

(4)

Experimentally, the optimalθ was found to be 5. Significant
improvements were observed for this modeling approach:
Most of the start phrases were now used by the algorithm to
predict a correct topic transition.

In a refined version, we introduced a statistical modeling
of θ. This was achieved by introducing amixture modelfor
the emission of the first words in a section, each mixture
encoding a switch from the start to the continue state at
the respective positionm ∈ [0, . . . , θ]. Assuming that
every lengthm of a start phrase is equally probable, we
used uniform prior probabilities for all(θ + 1) paths. This
resulted in further significant performance improvements,
especially regarding the number of topic deletion and
substitution errors. Especially in cases when either no
dictated cue phrases were present in the beginning of a
section or these cue phrases were short, the misleading
influence of the topic start model was strongly reduced.
Thus, we arrived at a flexible modeling approach effectively
utilizing indicative section start phrases, if present.

9.2. Smoothing of Topic Continue Models

In spite of using most of the indicative cue phrases for
placing correct section boundaries and topic labels, we still
observed too many topic insertions significantly exceeding
the number of deletions and substitutions. A manual



inspection revealed that many lenghty sections are still
“broken up” into several shorter topic segments. This
“aggressive” segmentation behavior may be explained by
the following reasoning: In our database, we observed some
more general topics which are discussed in long sections, as
well as highly specific topics which are typically discussed
in short sections involving a highly specific vocabulary.
However, some of these “highly specific” words (e.g.
“education”) might also appear within a longer section
belonging to a more general topic (e.g. “family history”)
and employing a more general, less restricted vocabulary.
Due to this situation, the probability of a word given a
more general topic is much lower than its probability given
a highly specific topic, even if the absolute frequency of
the word is more or less equal in both topics. For such
words, the biasagainst longer and more general topics
is accumulated in the product of emission probabilities as
in (3). This results in favoring many short topics by the
automatic segmentation algorithm.

To overcome this problem, we tested various smoothing
techniques to reduce the specificity (the discriminative
dependency on the topic) of the emission models. In
our system, it makes sense to strongly smooth only the
topic continue models because the topic start models were
introduced especially for “boosting” the influence of topic-
specific start phrases.

Two straightforward smoothing techniques forpc(w|t)
are (1) heavy absolute discounting and interpolation with
the topic-independent language modelp(w) or (2) the linear
interpolation ofpc(w|t) with p(w). Both methods reduced
the topic insertion errors, but at the expense of significant
increases in the deletion and/or substitution errors.

Another approach is to “scale” the product of topic
continue probabilities with an exponentα < 1 in order
to reduce the accumulated bias towards too strong topic
discrimination. With such a scaling, the information about
the text structure (typical topic sequences, section length)
gets more impact and the influence of the observed words
is reduced. We have to keep in mind, however, that in
certain segmentation hypotheses the scaled topic continue
probabilities compete with the unscaled – and thus typically
lower – topic start probabilities for the same words. This
introduces a biasagainst the paths using the start models
which again results in higher topic deletion error rates.

To eliminate the bias, we propose the log-linear
interpolation of each topic-specific continue model with the
topic-independent unigram:

pLOGLINc (w|t) :=
pαc (w|t) · p(1−α)(w)∑
w′ p

α
c (w′|t) · p(1−α)(w′)

(5)

With this approach, the discrimination between topics is
reduced as with the simple scaling, but the bias against
starting new sections is eliminated sincepLOGLINc (w|t) is
of the same order asps(wn|t) due to the interpolation with

p(w) taken to the power of(1− α). We thereby achieved a
good balance between topic insertions and deletions.

The topic segmentation performance of our system in
its final configuration is presented in Table 1, line 3. This
final configuration included the topic transition bigram
p(t|t′), length models, and the optimized emission model
(start and continue models and log-linear interpolation of
the continue models withα = 0.2). In comparison
with the basic configuration, the number of topic insertion
errors was drastically reduced. The section boundaries
are now placed quite exactly, as expressed by the low co-
occurence agreement error rate of 5%. The appearance
of indicative start phrases almost always results in correct
topic segmentation decisions. On the other hand, sections
without indicative start phrases are also detected rather well,
based on the complete content of a section and on structural
information.

10. PERFORMANCE ON AUTOMATICALLY
TRANSCRIBED TEXTS

An important issue for a topic segmentation algorithm
is its performance on automatically transcribed texts.
To this end, we evaluated our section-level Markov
model approach on the output of an automatic speech
recognition (ASR) system and compared its performance
to the simulation of the approach reported in [5] (see
section 8) and a simple cue phrase matching approach (see
below). Experimental results3 are reported on test set B
(table 2). The reference segmentation of the ASR texts was
derived from a Levenshtein alignment with the segmented
manual transcriptions. The word error rate of the ASR
transcriptions on test set B was 24.5%.

10.1. Cue phrase matching approach

For comparison, we evaluated a simple cue phrase matching
approach merely looking for typical section start phrases.
Here, we search for longest phrase matches after sentence
separator symbols using a list of indicative section start
phrases extracted from the training data (each with a
minimum frequency of 5). For our data, this list contained
291 phrases, with an average of 5.7 different phrases
per topic. Note that this method is only able to detect
sections starting with an indicative cue phrase from this list.
Furthermore, this method can produce “false alarms”, if a
phrase from the list (e.g. “education”) appears in running
text without indicating the start of a new section.

10.2. Performance comparison

Table 2 shows evaluation results for the section-level
Markov model (in its final configuration), the simulation
of [5] and the cue phrase matching approach, both for

3As before, all models were trained on the manual transcriptions.



Table 2. Performance comparison of the section-level
Markov model algorithm with the simulated sentence-by-
sentence labeling approach and the cue phrase matching
method (manually / automatically transcribed reports).
Error rates in %, see section 6.

Manual transcriptions of test set B
Error Rates (%): COAER WLER TLER

Section Markov model 6.9 31.8 34.4
Simulation of [5] 16.7 47.7 77.5

Cue phrase matching 6.5 35.3 43.6

ASR transcriptions of test set B
Error Rates (%): COAER WLER TLER

Section Markov model 8.5 35.0 42.2
Simulation of [5] 18.2 48.2 80.4

Cue phrase matching 9.5 49.2 58.0

the reference and the ASR transcriptions. As can be seen
in the upper part of table 2, our segmentation algorithm
outperforms the cue phrase matching method already for
the reference transcriptions. This is due to the inability of
the cue phrase matching method to detect sections with no
indicative start phrase (accounting for more than 15% of
all sections) and to learn the great variety of start phrase
formulations.

As we go to the ASR transcriptions, the phrase matching
method shows a considerable degradation since many
indicative start phrases were not recognized properly and
thus could not be found by a simple string matching.
Therefore, the number of topic deletions increased
dramatically. Under these considerations, the application
of a cue phrase matching method does not seem appropriate
even if the majority of the sections start with an indicative
cue phrase.

Contrary to this severe degradation, the section-level
Markov model showed only a moderate deterioration. This
is remarkable since the ASR error rate was quite high.
These findings support the expectation that the utilization
of several knowledge sources (in particular, of the whole
section content) renders our topic segmentation algorithm
quite robust against recognition errors.

For both the manual and automatic transcriptions, the
simulated sentence-by-sentence tagging method performed
worst on our database, since it does neither utilize indicative
start phrases nor explicit section lengths.

Similar findings were drawn from results on test set A.

11. CONCLUSIONS

We proposed a novel topic segmentation algorithm
effectively utilizing additional knowledge sources related

to section internal structures, like explicit section lengths
and indicative start phrases. In a generative approach,
these knowledge sources were effectively integrated by
performing a (two-dimensional) simultaneous optimization
over the section boundaries and the topic sequence in
the text (“section-level Markov model”), allowing to
utilize statistical information about typical topic sequences,
section lengths and typical text phrases at any position
within a section. On a database consisting of dictated
reports, we obtained strong performance improvements
compared to state-of-the-art algorithms both on manually
and automatically transcribed texts. We showed that this is
due to the flexibility of our algorithm to effectively use the
additional knowledge sources related to section lengths and
typical section start phrases. Moreover, our algorithm was
found to be remarkably robust against recognition errors,
due to the utilization of section contentand typical start
formulations which are modeled in a flexible way.

Our results strongly motivate to exploit all available
statistical information on typical text structures for signif-
icant performance improvements in topic segmentation and
text processing tasks, integrated in a profound theoretical
framework.

We are currently working on extensions of our
algorithm, allowing to include the dependency of a topic on
its absolute positionk into the topic prediction probabilities
p(tk|tk−1, k) and to use a topic trigramp(t|t′, t′′).
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