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ABSTRACT
This paper describes the development of the RWTH Man-

darin LVCSR system. Different acoustic front-ends together
with multiple system cross-adaptation are used in a two stage
decoding framework. We describe the system in detail and
present systematic recognition results. Especially, we com-
pare a variety of approaches for cross-adapting to multiple
systems.

During the development we did a comparative study on
different methods for integrating tone and phoneme posterior
features. Furthermore, we apply lattice based consensus de-
coding and system combination methods. In these methods,
the effect of minimizing character instead of word errors is
compared. The final system obtains a character error rate of
17.7% on the GALE 2006 evaluation data.

Index Terms— Mandarin speech recognition, system com-
bination, multiple feature streams

1. INTRODUCTION

In the course of the GALE project, an Arabic and a Mandarin
LVCSR system have been set up at RWTH. This paper de-
scribes in detail the development of the Mandarin system; a
description of the Arabic system can be found in [1].

We start by introducing the phoneme set and the pronun-
ciation dictionary, which are based on SAMPA-C and the LC-
Star Mandarin pronunciation lexicon [2, 3]. The final system
uses four different acoustic front-ends: MFCCs, PLPs, gam-
matone cepstral coefficients [4], and neural network (NN)
based phoneme posterior features [5]. In addition, a single
tonal feature is used [6]. Section 3 describes the acoustic
front-ends, the tonal feature, and the four acoustic models
used in the final system. It is followed by Section 4 describing
the training and testing corpora.

In Section 5 we show results from the development cycle
of the final system. In particular, we present results on the in-
tegration of the tonal and the NN features with the MFCC
features. In the literature, several ways to combine multi-
ple feature streams are proposed [7, 8, 9]. We compare the
approaches and motivate the integration method used for the
final system. Also, we study lattice based consensus decod-
ing and system combination methods for Mandarin ASR. The
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standard evaluation metric for Mandarin is the character er-
ror rate (CER), whereas the common consensus decoding and
combination methods minimize the word error rate (WER).
We present comparative results for both decision rules.

Section 6 describes our decoding framework. The final
decoder consists of two stages: two parallel 5-pass decoding
paths followed by a 2-pass cross-adaptation path. The choice
of the cross-adaptation method is based on the comparison
of a variety of approaches for cross-adapting to multiple sys-
tems. We present error rates for the GALE 2006 evaluation
and 2007 development corpora. Finally, we give a conclusion
and an outline of our future work.

2. PRONUNCIATION DICTIONARY AND
LANGUAGE MODEL

The RWTH Mandarin LVCSR system follows the common
approach for Mandarin LVCSR systems and use a phoneme
based pronunciation model [7, 10, 11]. The phoneme set is a
subset of SAMPA-C [2] and contains 14 vowels and 26 con-
sonants. Tone information is included following the main-
vowel principle described in [12]. We merge tone 3 and 5 for
all vowels [13]. Furthermore, for the phoneme @’ we merge
tone 1 and 2, because we have only very few observations for
tone 1. The resulting phoneme set consists of 81 tonemes, an
additional garbage phone, and silence.

The main source for our pronunciation dictionary is the
LC-Star Mandarin lexicon [3]. It defines a mapping from
Pinyin to SAMPA-C and it contains pronunciations for 96K
words. In addition, we use the word to Pinyin mappings from
the Hub5/4 Mandarin lexicon (LDC96L15 and LDC97E7)
and from the CEDICT dictionary. Noise, hesitations, laugh-
ter, and unintelligible words are mapped to the garbage word,
which is modeled by the garbage phone. Pronunciations for
words not contained in any of the lexica are produced as
follows: we segment the unknown word into a sequence of
known words by applying a longest-match segmenter and
concatenate the pronunciations of the segmentation result.

All the language models (LMs) used in this work are
kindly provided by the University of Washington (UW) and
SRI. The decoding vocabulary is determined by the language
model. For all recognition experiments we use a pruned
4-gram derived from the full LM; the full LM is only applied
in word graph rescoring. For the final system we use two LMs
sharing the same 60K vocabulary: a 5-gram (LM.v1) and an
improved 4-gram (LM.v2) [14].



3. ACOUSTIC MODELING

The final system consists of four independent subsystems la-
beled s1-s4. They differ in their acoustic front-ends similar to
the systems described in [15]. Acoustic training is performed
independently for each of the systems.

3.1. Acoustic Features

The acoustic front-end of System s1 consists of MFCC fea-
tures. The features are normalized by segment-wise mean and
variance normalization and are fed into a sliding window of
length nine. All feature vectors in the window are concate-
nated and projected to a 45 dimensional feature space by ap-
plying a linear discriminative analysis (LDA). Finally, a tonal
feature and its first and second derivatives are augmented to
the feature vector. Tonal information is crucial for Mandarin
ASR systems, because tonal patterns play an important role
in distinguishing phonemes and words in the Mandarin lan-
guage. The tonal feature used is described in [6].

System s2 and s3 are equal to s1 beside the base features:
instead of MFCCs, s2 uses PLPs and s3 uses gammatone
cepstral coefficients. The gammatone features are described
in [4] and were shown to be competitive to standard features
like the MFCCs or PLPs.

System s4 starts with the same acoustic front-end as s1,
but the features are augmented with phoneme posterior fea-
tures produced by a neural network. The input of the net are
multiple time resolution features (MRASTA) [5]. The output
layer corresponds to the phonemes in the phoneme set used.
It is trained on a phoneme alignment which is produced by
System s1. We use a single net with one hidden layer. The
dimension of the phoneme posterior features is reduced by a
principal component analysis (PCA) to 24 yielding an overall
feature dimension of 72.

3.2. Acoustic Training

The acoustic models for all systems are based on triphones
with cross-word context. They are modeled by a 3-state left-
to-right hidden Markov model (HMM). A decision tree based
state tying is applied resulting in a total of 4,500 generalized
triphone states. We use Gaussian mixture distributions with a
globally pooled diagonal covariance matrix. Due to the rigor
variance modeling our systems require many Gaussians and
we use up to 2M Gaussians for maximum likelihood (ML)
trained acoustic models. For computational reasons, we re-
strict the number to about 1M for discriminative training.

The filterbanks of the MFCC and PLP feature extraction
are normalized by applying a 2-pass vocal tract length nor-
malization (VTLN). The warping factors are estimated by a
grid search in the range of 0.8 - 1.2. For the gammatone cep-
stral coefficients in s3 we do not apply VTLN.

We compensate for speaker variations by using con-
strained maximum likelihood linear regression speaker adap-
tive training (SAT/CMLLR) for all systems. Additionally, in
recognition MLLR is applied to the means of the acoustic
models.

Discriminative training is performed to refine the ML
trained acoustic models. In order to improve the models

Table 1. Acoustic data for training and testing
Training Data
440h 870h 1230h

total data 465h 872h 1230h
# segments 500K 850K 1.1M

# running words 4.6M 8.9M 12.6M
# distinct words 50K 49K 51K

Development and Testing Data
dev04 eval04 eval06 dev07

total data 0.48h 0.96h 2.15h 2.35h
# segments 283 560 1302 1701

# running words 4.8K 9.2K 22K 28K
# distinct words 1.8K 2.8K 5.3K 5.3K

we use the discriminative minimum phone error (MPE) cri-
terion [16]. For the MPE training of the different sys-
tems we generate word-conditioned word graphs with the s4
SAT/CMLLR system in combination with a bigram language
model. System dependent alignments within the word bound-
aries are produced for the accumulation. These alignments
are kept fixed during the training iterations. The optimal num-
ber of training iterations is determined by recognition on the
development corpus.

4. CORPORA DESCRIPTION

We use data from the Hub4 and TDT4 corpora which only
contain broadcast news (BN), whereas the corpora taken from
the GALE project contain a mix of broadcast news and broad-
cast conversations (BC). We take the speech data from the
quarterly releases of the first year and the first two releases of
the second year (P1R-4, P2R1-2) to set up the training ma-
terial. The 440 hours consist of the Hub4 corpus, the TDT4
corpus, and the GALE releases P1R1 and P1R2. The Hub4,
TDT4, and P1R1-4 data yield the 872 hours of speech. In
order to build the last corpus the 358 hours from P2R1 and
P2R2 are added to the 872 hours. Table 1 gives detailed statis-
tics for the corpora used. The silence ratio is about 13% for
all the corpora.

For the final system we use the GALE 2006 evaluation
corpus (eval06) as tune set and the GALE 2007 development
corpus (dev07) for testing. As shown in Table 1 the eval06
corpus contains 2.15 hours of BN and BC data and the dev07
corpus 2.35 hours.

During the development cycle we use a second tune
and test set: the RT04 development (dev04) and evaluation
(eval04) corpora containing 0.5 hours and 1.0 hours of Man-
darin broadcast news. In contrast to dev06 and eval07, the
RT04 corpora include a large amount of English words: 3%
for dev04 and 0.6% for eval04. Since our decoding vocabu-
laries contain almost no English words, all the English words
in the recognition corpora directly cause insertion errors.

The training transcripts are pre-processed by UW-SRI as
described in [17]. As well, UW supplies the acoustic segmen-
tation for all corpora. For eval06 and dev07 they provide two
segmentations, seg.v1 and an improved seg.v2 [14].



Table 2. Progress of the RWTH Mandarin LVCSR System.
Log-linear integration of tone and NN features for 30h and
100h, integration via concatenation for 440h and 870h.

CER[%]
Setup dev04 eval04
30h (Hub4) 8.5 19.2
100h (Hub4 + 70h from TDT4) 8.5 19.0
440h (Hub4 + TDT4 + GALE P1R1-2) 8.0 17.5
870h (Hub4 + TDT4 + GALE P1R1-4) 8.5 16.7

5. DEVELOPMENT OF THE SYSTEM

In this section we give an overview of the methods we use
during the development cycle of the final system. We start
with an MFCC system trained on the 30 hours of Hub4 data.
The training data is later augmented by 70 hours from the
TDT4 corpus. Both setups use 107 phonemes and a 49K
decoding vocabulary. We train a first neural net on the 100
hours and produce 42 dimensional NN based phoneme pos-
terior features for both systems. With these systems we give
a comparative study on different approaches for integrating
tone and NN features, see 5.1.

For the 440 hours system the phoneme set is reduced to 81
phonemes and we switch to the LM.v1 with a 60K decoding
vocabulary. On the 440 hours we train a new MFCC model
and the neural network as described in Section 3.

The final system is based on the 870 hours setup. From
this setup we train the four Systems s1-s4. The NN features
used by s4 are produced by the net trained on the 440 hours.
Using this setup, we compare word graph and character graph
based consensus decoding and system combination, see 5.2.

Recently, we got an additional 358 hours of acoustic train-
ing data. We use them in order to re-train the s4 MPE model
by performing another ten iterations of MPE training on the
complete 1230 hours.

Table 2 shows recognition results for the different setups.
All presented results are obtained with MFCC based models
and VTLN.

5.1. Acoustic Feature Combination

All our subsystems use two or three feature streams: cep-
stral features (MFCCs, PLPs, or gammatones), the tone fea-
ture, and optionally the NN based phoneme posterior features.
The literature contains several ways to combine these fea-
ture streams. The most simple approach is to concatenate
the individual feature vectors [7, 11]. An alternative is to
feed the feature streams into a single LDA [8, 10]. The third
approach investigated is to perform the integration in a log-
linear model [9]. A similar method is proposed in [18].

Table 3 summarizes the results for the different integra-
tion methods. In the case of concatenation and log-linear
model combination, the three feature streams are the LDA
transformed MFCCs, the tonal feature and its first and sec-
ond derivatives, and the PCA transformed NN features. In
the LDA approach we estimate a single LDA on the MFCC
feature vector augmented with the tonal feature.

Table 3. Integration of tone and NN based phoneme posterior
features with MFCC features.

CER[%]
Features Integration dev04 eval04
30h training (Hub4)
MFCC + tone concatenated 9.3 20.5
MFCC + tone log-linear 8.7 20.0
MFCC + tone LDA 9.3 20.0
MFCC + tone + NN log-linear 8.5 19.2
100h training (Hub4 + 70h from TDT4)
MFCC + tone concatenated 8.3 19.5
MFCC + tone log-linear 8.7 19.2
MFCC + tone + NN log-linear 8.5 19.0
870h training (Hub4 + TDT4 + GALE P1R1-4)
MFCC + tone concatenated 8.3 16.8
MFCC + tone log-linear 8.2 16.9
MFCC + tone + NN concatenated 8.5 16.7
MFCC + tone + NN log-linear 8.0 16.7

For the concatenation and the LDA approach we train a
single acoustic model from the resulting features. In contrast,
for the log-linear model combination we train separate models
for each feature stream. In the latter case, the single models
are estimated from the same fixed alignment. We optimize
the log-linear weights for the individual models on the devel-
opment set by word graph rescoring. The initial alignment
and the word graphs are obtained from a system trained on
concatenated features.

For fewer data, the log-linear model combination gives
some nice improvement over the simple concatenation ap-
proach. But with more training data the benefit declines and
for the 870 hours setup we see no improvement at all.

5.2. Consensus Decoding And System Combination

The common evaluation metric for Mandarin ASR tasks is
the character error rate (CER), instead of the word error rate
(WER) used e.g. for European or Arabic languages. The
RWTH Mandarin recognizer produces word sequences and
word graphs. For Viterbi decoding the best word and charac-
ter sequence are equal, because the minimized cost function
is the sentence error. On the other hand, a confusion network
or a minimum time frame word error rate (min.fWER) [19]
lattice-decoder minimizes the WER instead of the desired
CER. The same holds for system combination techniques like
ROVER [20] or min.fWER lattice-combination [21]. In order
to minimize CER we have to split the arcs of the word graphs
into characters first.

We compare the results of consensus decoding and sys-
tem combination on word and on character graphs. The in-
vestigated methods are min.fWER based consensus decoding,
min.fWER combination, and ROVER with confidence scores.

The min.fWER approaches as well as our confidence score
calculation require word or character graphs with boundary
times. The word graphs produced do contain word boundary
times, but character boundaries have to be computed in a post-
processing step. We test two strategies for assigning start and



Table 4. Consensus decoding and system combination results. For character graphs with “correct times” the character time
boundaries are derived from a forced alignment.

word graphs [CER%] char. graphs [CER%] char. graphs [CER%]
(correct times) (approx. times)

System(s) eval06 dev07 eval06 dev07 eval06 dev07
s1 Viterbi 22.0 19.4 22.0 19.4 22.0 19.4

min.fWER 21.8 19.3 21.8 19.2 21.8 19.2
s2 Viterbi 22.3 19.6 22.3 19.6 22.3 19.6

min.fWER 22.1 19.5 22.2 19.5 22.2 19.5
s3 Viterbi 21.5 19.0 21.5 19.0 21.5 19.0

min.fWER 21.3 18.9 21.4 18.8 21.5 18.8
s1+s2+S3 ROVER 20.2 17.9 20.0 17.7 20.1 17.7

min.fWER 20.1 17.5 20.0 17.5 20.1 17.5
s4(MPE+360h, Viterbi 17.8 14.5 17.8 14.5 17.8 14.5
cross-adapted) min.fWER 17.7 14.3 17.8 14.4 17.8 14.4

end times to characters: for each arc in the word graph we run
a forced alignment and reconstruct the boundaries for each
character. In our second approach, we approximate the char-
acter times by distributing the word duration equally over all
characters. While the first approach needs 0.5 to 1.0 real time
(RT), depending on the graph density, the second approach
needs less than 0.01 RT.

From the results in Table 4 we see that the approximated
character boundary times effectively work as good as the
boundaries derived from a forced alignment. Furthermore,
for almost all experiments we observe no difference in min-
imizing WER or CER. Only ROVER seems to benefit from
switching to characters.

6. DECODING FRAMEWORK

6.1. Multi-Pass Recognition

The first stage of the final decoding framework is divided into
five passes as illustrated in Figure 1. The first four passes are
realized by a fourgram Viterbi decoder, while the fifth pass is
an LM rescoring:

• 1. pass: no adaptation
• 2. pass: 2-pass-VTLN
• 3. pass: SAT/CMLLR
• 4. pass: MLLR
• 5. pass: LM rescoring

In the first pass the ML estimated model with no adapta-
tion is used. From the recognition output we estimate warp-
ing factors for the VTLN of the MFCC and PLP features; for
gammatones we do not apply VTLN. The next two passes use
SAT/CMLLR and MLLR resp., in which adaptation statistics
are collected from the previous recognition result. In pass
four word graphs are produced, which are rescored with the
full LM in the fifth and final pass.

The five passes result in an overall reduction in CER of
about 10% relative for eval06 and about 9% for dev07. De-
tailed results for each system and pass are given in Table 5.
The MPE trained models give a further reduction in the CER

no adapt

VTLN

SAT/CMLLR

MLLR

LM-rescore

1. pass:

2. pass:

3. pass:

4. pass:

5. pass:

(a) 5-pass recognition

s4

cross-adapt

LM-rescore

s2 s3

min-fWER

(b) 2-pass cross-adaptation

Fig. 1. Two stage decoding framework: (a) 5-pass stage for
a single system followed by (b) the 2-pass cross-adaptation
stage with multiple systems.

resulting in a 12% to 15% relative decrease over all passes.
Adding the 358 hours of extra data to the MPE training slightly
decreases the CER and the total relative improvement is about
16% for both corpora.

A direct comparison of the results of System s1 and s4
shows that the NN based phoneme posterior features reduce
the CER by about 15% relative. Interestingly, the gains from
VTLN and MLLR are much smaller for s4 than for s1. Ex-
periments with using a fast VTLN warping factor estimator
even give an increase in CER for System s4.

Finally, we see that LM.v2 outperforms LM.v1 by about
0.8% absolute in CER consistently for all systems and passes.

6.2. Cross-Adaptation

Cross-adaptation proved to be a simple and effective way to
combine systems [22]. In particular, it allows to benefit from
systems that show a significantly higher WER or CER than



Table 5. Results for the 5-pass recognition setup.
System 1. pass 2. pass 3. pass 4. pass 5. pass

eval06 CER[%]
LM.v1
s1 ML 24.3 23.8 22.7 22.2 22.0
s2 ML 24.5 24.0 22.9 22.6 22.3

MPE 21.9
s3 ML 24.6 - 23.0 22.5 22.2

MPE 22.1 21.7 21.5
s4 ML 22.7 22.6 20.8 20.7 20.5

MPE 20.0 19.9 19.6
MPE+360h 19.7 19.4 19.3

LM.v2
s4 ML 21.9 21.7 19.9 20.0 19.7

MPE 19.1 19.0 18.7
MPE+360h 18.8 18.7 18.3

dev07 CER[%]
LM.v1
s1 ML 21.1 21.4 19.9 19.6 19.4
s2 ML 21.6 21.5 20.1 19.9 19.6

MPE 19.0
s3 ML 21.6 - 20.1 19.9 19.7

MPE 19.6 19.2 19.0
s4 ML 19.7 19.9 17.7 17.7 17.4

MPE 16.9 16.8 16.6
MPE+360h 16.9 16.7 16.5

LM.v2
s4 ML 19.0 18.9 17.1 17.0 16.7

MPE 16.1 16.0 15.7
MPE+360h 16.0 15.8 15.5

the target system. In our final decoding framework s4 clearly
outperforms s1-s3. Experiments with ROVER give only very
small improvements over s4.

We have tried a variety of approaches to find the best
way to adapt s4 to s1-s3. Our baseline is the best cross-
adaptation result obtained by adapting to the single system
Viterbi hypotheses. An alternative is proposed in [23], where
the authors adapt to the minimum phoneme error hypothesis.
We try a similar approach by applying a modified min.fWER
decoder [19]: we derive the time frame phoneme error rate
(fPER) as an approximation of the PER in the same way as the
fWER. The modified decoder minimizes a linear interpolation
of the fPER and the fWER with weights 0.8 and 0.2. De-
coding remains on the level of words. This is done, because
we want to be able to use the result for cross-adaptation even
in the case that the target system uses a different phoneme
set. The interpolation weights used let the decoder choose the
WER minimizing word sequence in the case that two phoneme
sequences are likely.

For adapting s4 to two or three systems simultanously we
investigate three approaches. In the first approach we average
the adaptation statistics of the individual systems. Techni-
cally, we use each utterance multiple times for adaptation by
concatenating the results from the individual systems. The
second approach is to combine the hypotheses via ROVER.

ROVER tends to produce many deletions which might harm
adaptation. Thus, we optimize ROVER once for minimal
WER (ROVER.1) and once for balanced deletions/insertions
(ROVER.2). Finally, we compare the two ROVER combina-
tions with the min.fWER combination method [21]. Results
are presented in Table 6.

We try to increase the effect of cross-adaptation by using
different acoustic segmentation and LMs for the decoding of
s1-s3 and the decoding of the cross-adapted s4. The word
graphs produced by the cross-adapted s4 system are subse-
quently rescored with the full LM. For dev07 we get improve-
ments in CER of about 6% relative, for eval06 only about 3%.
Adapting to multiple instead of the best single system only
gives small improvements. The best way to adapt to multiple
systems is the simplest approach: taking the average of the
individual systems’ adaptation statistics. Using the minimum
phoneme error hypothesis instead of the Viterbi result does
not give any improvements at all. We suspect s1 and s4 to be
too similar for optimal cross-adaptation results because both
systems use the MFCC features. The results support our as-
sumption and we get slightly better error rates when adapting
s4 to s2 and s3 only.

7. CONCLUSIONS AND FUTURE WORK

We presented the current RWTH LVCSR system for Man-
darin. In the development cycle of the final system we stud-
ied the integration of additional feature streams such as tone
and NN-based posteriors and the combination of multiple sys-
tems. The integration of the additional feature streams via a
simple concatenation performs equally well as the more so-
phisticated approaches. For lattice based system combination
we hardly see any improvements in minimizing the character
error rate instead of the word error rate. We compared several
methods for cross-adapting to multiple systems and gain up
to 6% relative in CER by multiple system cross-adaptation in
the final decoding framework.

In order to further improve the RWTH Mandarin system a
new posterior feature estimation using hierarchical NNs is in
progress [24]. We are currently investigating new discrimina-
tive training criteria at the RWTH and plan to integrate them
into the acoustic training of the Mandarin system.
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[9] A. Zolnay, R. Schlüter, and H. Ney, “Acoustic feature com-
bination for robust speech recognition,” in Proc. IEEE Int.
Conf. on Acoustics, Speech, and Signal Processing, Philadel-
phia, PA, USA, Mar. 2005, vol. 1, pp. 457–460.

[10] R. Sinha et. al., “The CU-HTK Mandarin broadcast news
transcription system,” in Proc. IEEE Int. Conf. on Acoustics,
Speech, and Signal Processing, Toulouse, France, May 2006,
vol. 1, pp. 1077–1080.

[11] B. Xiang, L. Nguyen, X. Guo, and D. Xu, “The BBN Man-
darin broadcast news transcription system,” in Proc. European
Conf. on Speech Communication and Technology, Lisboa, Por-
tugal, Dec. 2005, pp. 1649–1652.

[12] C. J. Chen et. al., “Recognize tone languages using pitch in-
formation on the main vowel of each syllable,” in Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing, Salt
Lake City, USA, May 2001, vol. 1, pp. 61–64.

[13] L. Chen, L. Lamel, G. Adda, and J.-L. Gauvian, “Broadcast
news transcription in Mandarin,” in Proc. Int. Conf. on Spoken
Language Processing, Beijing, China, Oct. 2000, vol. 2, pp.
1015–1018.

[14] M.-Y. Hwang et. al., “Advances in Mandarin broadcast speech
recognition,” in Proc. Int. Conf. on Speech Communication
and Technology, Antwerp, Belgium, Aug. 2007, p. accepted
for publication.
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based system combination and a comparison with weighted
ROVER and CNC,” in Proc. Int. Conf. on Spoken Language
Processing, Pitsburgh, PA, USA, Sept. 2006.

[22] D. Guiliani and F. Brugnara, “Acoustic model adaptation
with multiple supervisions,” in Proc. TC-STAR Workshop on
Speech-to-Speech Translation, Barcelona, Spain, June 2006,
pp. 151–154.

[23] J. Ogata and Y. Ariki, “Unsupervised acoustic model adap-
tation based on phoneme error minimization,” in Proc. Int.
Conf. on Spoken Language Processing, Denver, CO, USA,
Sept. 2002, pp. 1429–1432.

[24] F. Valente et. al., “Hierarchical neural networks feature extrac-
tion for LVCSR system,” in Proc. Int. Conf. on Speech Com-
munication and Technology, Antwerp, Belgium, Aug. 2007, p.
accepted for publication.


