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ABSTRACT

In this paper, a voiced-unvoiced measure is used as
acoustic feature for continuous speech recognition. The
voiced-unvoiced measure was combined with the standard
Mel Frequency Cepstral Coefficients(MFCC) using linear
discriminant analysis (LDA) to choose the most relevant
features. Experiments were performed on theSieTill
(German digit strings recorded over telephone line) and
on theSPINE(English spontaneous speech under different
simulated noisy environments) corpus. The additional
voiced-unvoiced measure results in improvements in word
error rate (WER) of up to 11% relative to using MFCC alone
with the same overall number of parameters in the system.

1. INTRODUCTION

Standard state-of-the-art automatic speech recognition
systems use spectral (e.g. Mel Frequency Cepstral
Coefficients, MFCC) representation of the acoustic speech
signal. Nevertheless these representation techniques arenot
robust to acoustical variation like background noise, speaker
change etc. Word error rate can increase considerably under
real life conditions.
A possible way to robust speech recognition could be
finding representative features of the speech signal and
corresponding robust extraction methods. We tested a
voiced-unvoiced measure in the combination of MFCC
features with a Hidden Markow Model (HMM) based
recognition system. The first related studies go back to rule
based speech recognition, where voiced-unvoiced detection
was used as one of the different acoustical features, see
chapter The Speech Signal in [1]. The method described
in [2] utilizes the periodicity of the voiced sound and
achieves significant improvement on a Mandarin language
task. Several signal analysis based and statistical solutions
have already been proposed for voiced-unvoiced detection
[3, 4]. A voice onset time based feature is used by [5] in
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a two-pass recognition system to improve letter recognition
accuracy. Recently, articulatory based acoustic modeling
techniques apply the voiced-unvoiced feature among other
articulatory features [6].
In this paper we report on experiments with a voiced-
unvoiced measure for robust speech recognition. Voiced-
unvoiced extraction was implemented based on the
harmonic product spectrum, see chapter Pitch Detection
in [4]. A measure of voicedness is extracted based on
the harmonic product spectrum for each time frame. This
measure is combined with the standard MFCC features
using linear discriminant analysis (LDA). Experiments
showed an improvement of up to 11% relative in word error
rate due to this single feature.
The rest of the paper is organized as follows. In
section 3, the voiced-unvoiced measure will be derived
based on the harmonic product spectrum. Two kinds of
measures expressing the voicedness of a time frame will
be introduced. Experiments will be presented in section 4,
followed by the conclusions in section 5.

2. BASELINE SIGNAL ANALYSIS

In this section, the standard short-term power spectrum
based signal analysis component of our speech recognition
system is described. First we perform a preemphasis of the
sampled speech signal. Every 10 ms, a Hamming window
is applied to preemphasized 25 ms speech segments. We
compute the short-term spectrum by FFT along with zero
padding. The number of FFT points is chosen sufficiently
high to represent the number of samples in a time frame
(e.g. 256 points in case of 8 kHz sampling rate and 25
ms window length). Next, we compute the outputs of
mel scale triangular filters, the number of which depends
on the sampling rate and varies 15 to 20 in our system.
A filter bank is applied to the mel spectrum, in which
each filter has a triangular bandpass frequency response
with bandwidth and spacing determined by a constant mel
frequency interval. For each filter the output is the logarithm
of the sum of the weighted spectral magnitudes. Due to



overlapping filters, filter bank outputs of adjacent filters are
correlated. The filter bank outputs are decorrelated by a
discrete cosine transform. The optimal number of cepstrum
coefficients varies formM = 12 toM = 16 depending on
the number of filters.

Subsequently, a cepstral mean and variance normaliza-
tion is carried out in order to account for different audio
channels. We distinguish two types of normalization:
sentence-wise and session-wise. For sentence-wise
recorded corpora, normalization is performed on whole
sentences. In addition, the zeroth coefficient is shifted
so that the maximum value within every sentence is zero
(energy normalization). Session-wise recorded corpora
consist of recordings containing several sequentially spoken
sentences. For these corpora, normalization is carried out
with a symmetric sliding window of 2 s without energy
normalization. In such way every 10 ms, a vector consisting
of normalized cepstrum coefficients is computed.

3. VOICED-UNVOICED FEATURE

Voiced and unvoiced sounds form two complementary
classes, thus a feature explicitly expressing the voicedness
of a time frame can lead to better discrimination of the
phonemes and consequently to better recognition results.
Our goal was to find an extraction method which produces
a reliable measure of the voicedness of a time frame. For
evaluation, we augmented the standard MFCC with this
measure.

3.1. Harmonic Product Spectrum

The implemented voiced-unvoiced extraction method is
based on the quasi periodic oscillation of the vocal cords.
The amplitude spectrum of voiced sounds shows sharp
peaks that occur at integer multiples of the fundamental
frequency. This fact serves as the basis of the method
harmonic product spectrum [4]. The harmonic product
spectrumP (n) is the product ofR frequency compressed
replicas of the amplitude spectrumjX(ejn�!)j, where�!
is the resolution of the discrete Fourier transform:P (n) = Rvuut RYr=1 jX(ejn�! r)j
The motivation for using the product spectrum is that
for periodic signals, compressing the frequency scale by
integer factors should cause the harmonics to coincide at
the fundamental frequency and at its nearby harmonics.
Since the amplitude spectrum of a periodic signal is
zero between the harmonics, the product of compressed
amplitude spectra cancels out all the harmonics falling
between two harmonics of the fundamental frequency.
In ideal case the harmonic product spectrum gives high

peaks at the fundamental frequency and at its nearby
harmonics and it is zero otherwise. Since speech analysis
is based on short-time Fourier analysis and even voiced
sounds are only quasi periodic, the harmonic product
spectrum is not zero between the harmonics of the
fundamental frequency and its peaks are not always
obvious.

3.2. Measure of Voicedness

The aim of the voiced-unvoiced extraction is to produce a
normalized value describing how voiced the current time
frame is. We developed two kinds of measures that evaluate
the peak structure of the harmonic product spectrum. The
measures evaluate the highest point of the harmonic product
spectrum. Voiced time frames exhibit a sharp maxima.
Sounds with low fundamental frequency can have the
maximum point positioned on an obvious peak at the first
harmonic frequency. Unvoiced time frames have no clear
peak structure and the maxima of the harmonic product
spectrum is typically flat. The two kinds of measures
capture two different aspects of a peak: height and width.

3.2.1. Height Measure

The height measurevheight describes the peak of the
harmonic product spectrum by considering only the
amplitude of the peak. It is defined as the ratio of the
maximum amplitude value at the frequency positionnmax
and the geometric mean of the neighboring amplitudes
without the maximum value:v = P (nmax)2WrQn P (n) ;

wherenmax is the position of the maximum amplitude
and the product overn goes through the neighborhood ofnmax from nmax � W to nmax + W excludingnmax.
The size of the neighborhood is chosen to avoid the peak
of the first harmonic being included in the average. The
minimum pitch and thus the minimum distance between two
harmonics is about 80 Hz.W is set such that the size of
the neighborhood in both directions is half of the minimum
distance between two harmonics,40Hz=�!.
Typically we have1 � v < 3. Valuesv > 2 are cut to2
since they obviously indicate a voiced segment:vheight = minf2; vg:
3.2.2. Width Measure

A method based on the frequency axis could decouple the
measure from the changing loudness and signal to noise
ratio of the speech signal. The width measurevwidth
captures the peak of the harmonic product spectrum on
the frequency axis. The definition of the width measure



is similar to the notion of bandwidth of transfer functions,
namely the widthw of the peak on the frequency axis at a
height of75% of the maximum amplitude:w = minfw0 : 8n > w0 P (nmax � n) < 0:75P (nmax)g:

A clear peak gives a value of 1. Peaks wider than an
upper boundU are cut to the upper bound. The upper
bound is chosen to a value which is surely in the range of
the unvoiced time frames,40Hz=�!. The extracted width
values are normalized with the upper bound:vwidth = minfw;UgU :
3.3. Experimental Setup

The details of generation of the harmonic product spectrum
are summarized in this section. Every 10 ms, a Hamming
window is applied to the speech signal. The length of
the window is in this case larger than for MFCC, 40 ms.
To increase the frequency resolution and thus to increase
the number of amplitude values between two harmonics,
a 2048-point FFT is computed with zero padding. The
harmonic product spectrum is composed of the maximum
number of compressed amplitude spectra (R). Amplitude
spectra can be shrunk up to a width of 400 Hz, since the
pitch is lower than 400 Hz. (E.g. by a sampling rate of 8000
HzR = 10.)

4. EXPERIMENTAL RESULTS

Experiments were performed on the small vocabulary
corpusSieTill and on the large vocabulary corpusSPINE.
The voiced-unvoiced measure is handled in both cases in
the same way. The normalized MFCC feature vectors are
augmented with the voiced-unvoiced measure. LDA is
applied to choose the most relevant features and to extract
the time dependencies. 11 successive augmented vectors of
the sliding windowt � 5; t � 4; :::; t; :::; t + 4; t + 5 are
adjoined to form a large input vector. The LDA matrix
projects this vector onto a smaller dimension subspace by
reserving the most relevant classification information. The
resulting acoustic vectors are used for recognition.
The baseline experiments apply LDA in the same way. The
only difference is in the size of the LDA input vector and
thus in the size of the LDA matrix. The resulting feature
vector has the same size to ensure comparable recognition
results.
TheSieTill corpus was recorded with 8 kHz sampling rate
resulting in 15 mel scale filters and 12 cepstrum coefficients.
LDA projects the 11 adjoined feature vectors on a 25-
dimensional subspace.
The differences in theSPINEcorpus are due to the different
sampling rate (16 kHz). The wider bandwidth enables
20 mel scale filters and 16 cepstrum coefficients. The 11

adjoined feature vectors are projected by LDA on a 33-
dimensional subspace.

4.1. Small Vocabulary Task

The first tests were performed on theSieTillcorpus [7]. The
corpus consists of German continuous digit strings recorded
over telephone line: approximately 43k spoken digits in
13k sentences in both training and test set. The number of
female and male speakers is balanced.
The baseline recognition system for theSieTill corpus is
built with whole word HMMs using continuous emission
distributions. It is characterized as follows:� vocabulary of 11 German digits including ’zwo’� gender-dependentwhole-word HMMs with every two

subsequent states being identical� for each gender 214 distinct states plus one for silence� Gaussian mixture emission distribution and globally
pooled diagonal covariance matrix� 25 acoustic features after applying LDA� maximum likelihood training using Viterbi approxi-
mation

The baseline system has a word error rate of 1.91% which is
the best reported so far using MFCC features and maximum
likelihood training [7]. In Table 1, the experimental results
are summarized for using the additional voiced-unvoiced
measure. Experiments were performed with single and with
32 Gaussian densities per mixture. In both cases, a relative
improvement in word error rate of 11% is obtained. The
tests applying the height and the width based measures did
not show any significant differences.

Table 1. Word error rates on theSieTill test corpus obtained
for MFCC and for MFCC combined with voiced-unvoiced
measure (V-U). Experimental results are shown for both
measures height and width, as described in section 3.2. #dns
gives the average number of densities per mixture.

#dns acoustic feature error rates [%]
del ins WER

1 MFCC 0.49 0.74 3.84
MFCC + V-U height 0.48 0.41 3.34
MFCC + V-U width 0.48 0.42 3.33

32 MFCC 0.30 0.52 1.91
MFCC + V-U height 0.29 0.35 1.70
MFCC + V-U width 0.29 0.37 1.71

4.2. Large Vocabulary Task

The performance of the voiced-unvoiced measure on a
large vocabulary task was tested on theSpeech In Noise



(SPINE)corpus [8]. The corpus involves human-to-human
interaction on a constrained problem solving scenario under
six different simulated noisy environments: approximately
12k short sentences from 23 female and 17 male speakers in
both training and test set. The baseline recognition system
is characterized by:� recognition vocabulary of 5000 words� 6-state HMM triphone models with every two

subsequent states being identical� decision tree with 1001 tied states including one
silence state� gender independent Gaussian mixture emission
distribution with a total of 80k to 126k densities and
globally pooled diagonal covariance matrix� 33 acoustic features after applying LDA� maximum likelihood training using Viterbi approxi-
mation� trigram language model with a test set perplexity of
28.5

The baseline system has a word error rate of 30.3 %
which has to be compared with word error rates reported by
other groups on the same task [9, 8]. These vary from 25.7%
to 32.8%. Experimental results are summarized in Table 2.
We tested the voiced-unvoiced measure for 80k and 126k
total number of densities. A relative improvement in word
error rate of 3% is achieved by adding the voiced-unvoiced
measure. Differences in the two kinds of measures could
not be found under noisy conditions either.

Table 2. Word error rates on theSPINEtest corpus obtained
for MFCC and for MFCC combined with voiced-unvoiced
measure (V-U). Experimental results are shown for both
measures height and width, as described in section 3.2. #dns
gives the total number of densities for 1001 tied states.

#dns [k] acoustic feature error rates [%]
del ins WER

80 MFCC 7.3 4.0 30.3
MFCC + V-U height 6.9 3.8 29.8
MFCC + V-U width 7.0 3.9 29.8

126 MFCC 7.0 3.9 30.3
MFCC + V-U height 6.6 3.7 29.3
MFCC + V-U width 6.6 3.9 29.4

5. CONCLUSION

In this paper, a voiced-unvoiced measure has been
combined with the standard MFCC using LDA. We
introduced two kinds of measures (height and width based)
of voicedness based on the harmonic product spectrum.

Experiments performed on the small vocabulary taskSieTill
achieved an improvement in word error rate of 11% relative
compared to the baseline word error rate 1.91%. The
large vocabulary tests were performed on theSPINEtask.
The additional voiced-unvoiced measure resulted in an
improvement of 3% relative compared to the baseline word
error rate of 31.1%.
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