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Abstract. In this article we describe methods for improving the RWTH 1Gan
speech recognizer used within the VERBMOBIL project. Intjgatar, we present
acceleration methods for the search based on both withighand across-word
phoneme models. We also study incremental methods to redaaesponse time
of the online speech recognizer. Finally, we present erpartal off-line results
for the three VERBMOBIL scenarios. We report on word errdgesaand real-time
factors for both speaker independent and speaker depemrdeghition.

1 Introduction

The goal of the VERBMOBIL project is to develop a speechfteech transla-
tion system that performs close to real-time. In this systemeech recognition is
followed by subsequent VERBMOBIL modules (like syntactiambysis and trans-
lation) which depend on the recognition result. Therefarahis application it is
particularly important to keep the recognition time as slagrpossible. There are
VERBMOBIL modules which are capable to work with partial uks. For these
modules, it is also desirable to have an incremental retiogroutput.

The RWTH LVCSR system is a continuous Gaussian mixture tdespeech
recognition system which has been described in detail bydtiey. (1998). In this
paper we report in detail on:

acceleration methods for within-word recognition (Sect),
search and acceleration methods for across-word recogiiffiection 3),
acceleration methods for vocal tract normalization (Sect),
incremental processing methods to reduce the responsé¢Smetion 5),

For these methods we report experimental results in ternmamvements in
word error rate and real-time (see Section 6). Recognitetstwere carried out on
the VERBMOBIL German spontaneous speech development salgnf9 (scenar-
ios A and B: scheduling of appointments and hotel/travedmestions, speaker in-
dependent recognition). In addition, we present experiaieasults on the speaker
dependent VERBMOBIL PC remote maintenance task (scendrilo Section 7.

* We would like to thank Andreas Eiden, Stefan Ortmanns, arid \elling for their initial
work on our speech recognizer in the VERBMOBIL project.



2 Baseline System

In this section, we review the techniques used to increassgbed of the integrated
one-pass tree-organized time-synchronous beam seacoitlahg (Ney et al., 1998):

— hypothesis pruning,

— language model look-ahead,

— phoneme look-ahead,

— fast likelihood computation of continuous mixture deresti

2.1 Hypothesis Pruning

During search we use conventional beam pruning and histograning (e.g. Ort-
manns et al., 1997a) at state and word level. We found thatcesdly histogram
pruning at the word level was capable to reduce the compuiateffort consider-
ably. The upper bound of the number of word end hypothese8merframe was
decreased to roughly 20 without any increase in word eriter. fehe gain in real-
time factor was 15-25%.

2.2 Enhanced Language Model Look-Ahead

For more efficient pruning during beam search, we distri¢elanguage model
probabilities over the tree using language model look-d@stmanns et al., 1996a).
We enhanced this look-ahead by incorporating the languagkehscore of the most
probable successor word into the accumulated dugfoee starting a new tree. This
makes language model pruning more efficient. Language niodlelahead can be
further extended when using across-word models (see &&}}tio

2.3 Phoneme Look-Ahead

The idea of phoneme look-ahead is to anticipate the prababii future acous-
tic vectors for a phoneme arc before starting it in detaileaksh. To estimate the
acoustic probabilities, we use simplified context indegemndodels and perform an
additional pruning step before starting the phoneme atuis. ethod is described
in detail in Ortmanns et al. (1996b) and results in an ovegdledup by a factor of
about 2.

2.4 Fast Likelihood Calculation

Without acceleration, the calculations of likelihoodslod tontinuous mixture den-
sities make up more than 80% of the time required for the wiedegnition process.
We obtained considerable improvements in speed by quagtile components of
the acoustic means and input vectors in order to calculateehtor distances using
parallelizing SIMD instructions (e.g. MMX on Intel PentiuIS on Sun Sparc).



As reported in Kanthak et al. (2000), this leads to an ovemdedup of the recog-
nizer by more than a factor of three without any loss in redtmmnperformance.

Additionally, we accelerated the likelihood calculatidnsusing projection search
and the preselection VQ method described in Ortmanns et29.70).

Using all these methods, the baseline within-word recagraz well as the across-
word recognizer can be sped up by more than a factor of 10. Adwiseen in
Section 6, the loss in word error rate remains small (e.g. Blgdive).

3 Across-Word Models and Search

It is well known (Alleva et al., 1992; Woodland et al., 1994\®rlein et al., 1997)
that the word accuracy can be improved significantly by the efsacross-word
phoneme models.

In addition to within-word contexts, the across-word madedpture also tri-
phone dependencies across word boundaries. The triphariext® across word
boundaries cannot be determined from the pronunciatiandexalone, they also
depend on the surrounding words hypothesized during se@hit drastically in-
creases the complexity of the search.

In this section, we briefly describe the principle of the RWaik-pass across-
word recognizer and discuss methods for coping with thecgme in complexity.
The training of the across-word models is presented in Beetl@l. (1999).

3.1 Across-Word Search

The search is organized in a similar way as described in Ah889) and Beulen
et al. (1999). The across-word models are integrated intorawonditioned tree
search. Since the successor word is not known at a word eraitisgis, all possible
right contexts have to be hypothesized in separate fanrost &hese fan-out arcs
are treated in a dynamic way, i.e. for each word end we comal®xy arc into the
static representation of the lexical prefix tree. Wheneuehs word end arc is to
be activated during the search the set of fan-out arcs fgromiible right contexts
is integrated dynamically into the active search space.

Figure 1 shows a word transition between the fan-out of waordiwe and the
first generation of the successor tree. Depending on thethgpiaed fan-out arc,
we activate those arcs in the successor tree whose centnaépte corresponds to
the right across-word context of the fan-out arc. The lefoas-word context of
these arcs corresponds to the central phoneme of the faarasitWe call this kind
of transition “word transitiomith coarticulation”.

If the silence portion between two adjacent words is lonbanta preselected
threshold, we assume no coarticulation and therefore dais®tthe correspond-
ing across-word model. We allow for this case by providinga-6ut arc with a
special right context, which is denoted by the symbat Figure 1. Since there is
no dependence assumed between the words, phoneme arcH pitssible central



Figure 1. Transition between word endw and the successor tree using across-word mod-
eling: The arcs of the word transition with coarticulation are recombined with the arcs
of the word transition without coarticulation after the first phoneme generation.

phonemes have to be activated in search. In Figure 1 thedefekts of these arcs
are denoted by th& symbol as well.

The word transition affects only the final triphone of theq@eessor word and
the first triphone of the successor word. Thus, the arcs teat &ctivated via the
transitionwith coarticulation can be recombined with the arcs of the ttenmsivith-
out coarticulation (see Figure 1). More details about this nelgimation step are
given in Sixtus et al. (2000).

3.2 Enhanced Language Model Look-Ahead

As mentioned in Section 2, we use the language model loo&ehb® make the
pruning during beam search more efficient. As described ineft(1999) and Ort-
manns et al. (1999), the language model look-ahead can baded when using
across-word models.

The set of successor words that may follow a word end hypisthesvith a
particular right across-word context is constrained to those words whose first
phoneme isy. When activating the fan-out arc af with the right contexty, we
anticipate the language model score of the most probabtessor word and incor-
porate it into the accumulated score. Then, in addition éocitnventional pruning



techniquesfan-out pruning can be applied to the fan-out arcs. Since the potential
search space is mainly increased by the fan-out arcs (40 ta8iional arcs per
word end) when using across-word models, this additionalipg step is essential
for efficient search. Informal experiments have shown thattomputational effort
can be reduced by a factor of two by applying fan-out pruning.

3.3 Compressing the Lexical Prefix Tree

The acoustic models of the recognizer consist of 3-state Hiviphone models.
The states of the triphones are tied using a decision tresrefdre, there are many
triphones which share the same state sequence. When atimgjrilne lexical pre-
fix tree, arcs of acoustically equivalent triphones are reéifjthey have the same
predecessor arc. In particular, the number of fan-out atasse triphones differ in
the right context only can be reduced substantially by thésgimg step.

Merging the fan-out arcs results in single fan-out arcs \séheral correspond-
ing right contexts. Thus, in the following successor taethose subtrees have to
be activated that corresponddach of the right contexts attached to the fan-out arc.
Similarly, the enhanced language model look-ahead haskéocare of the merged
fan-out arcs since the number of possible successor wordsfari-out arc is in-
creased if there are several contexts attached to this arc.
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Figure 2. Transition between word endw and the successor tree without regarding the
right context.



In the experiments on the VERBMOBIL corpus, we obtained aicédn of the
number of fan-out arcs by 45 % which reduced the computdteffat by roughly
25 %. We tested a similar compression for the within-worégeizer, but there was
no gain in real-time performance.

3.4 Considering Left Across-Word-Contexts Only

The main part of the increase in complexity is caused by tijie ecross-word con-
texts represented by the fan-out arcs. On the other hant&fttentexts result in a
small overhead only, since in a word conditioned tree setivelpredecessor word
and thus its last phoneme is known. We studied how much we lmoecognition
performance if we disregard the right across-word contarts consider the left
across-word contexts only. A similar approach is describedleva et al. (1992).

Figure 2 shows a word transition, where only the left contdxhe successor
tree is considered. The right context of the predecessad wads represented by a
dummy symbokt. As can be seen in Section 6, nearly 40 % of the improvements
achieved by across-word models can be retained if only thadeoss-word contexts
are considered.

4 Vocal Tract Normalization (VTN)

The idea of VTN is to remove speaker dependencies causedrlationas in the
length of the vocal tract by scaling the frequency axis. Ia section, we shortly de-
scribe the principles of VTN. Then, we discuss a text-inaelgat Gaussian mixture
based approach for fast warping factor estimatfast VTN). Finally, we describe
the method for incremental estimation of warping factors.

4.1 VTN Principles

The baseline VTN algorithm has been described in detail ilivgeet al. (1999).
In speaker-adaptive training, the warping fact@rfor each training speakéris
obtained by exhaustive search in the raf @8, . . ., 1.12 with step size).02:

a; = argmax Pr(X |, W;).

In this equation, the HMM emission probabilifyr (X |u, W;) is computed by a
Viterbi alignment of the warped acoustic vectofg for the HMM parameter sgt
and the spoken word sequeriég.

So-called normalized references are obtained by traitiagparameters of the
emission distributions on warped acoustic vectors, i.e.Méctors are normalized
using the optimal speaker dependent warping factors (higeét al., 1999).

In recognition a similar procedure is applied. Since thekspautterancév; is
unknown, a preliminary transcriptidii’; is obtained in a first recognition pass with
no vocal tract normalization. Then the faci®y is determined which maximizes



the likelihood usingi¥;. Finally, the acoustic vectors are warped usif)gand a
second recognition pass is performed using the normalefedences. Recognition
tests have shown that a significant performance improveimesiitained by this
two-pass method. However, the computation time is more doarbled. UsingWi
instead of the actually spoken, but unknown transcriptigndoes not degrade the
recognition performance even if the preliminary trangiiphas a large word error
rate in the order of 20 to 30% (Welling et al., 1999).

Pr(X| Aq,)

X Pr(X|Aq, ) |———=| MAX

Pr(X|ha,)

Figure 3. Mixture based warping factor approach using unwaiped acoustic vectorsX
and one single mixture model\, for each warping factor.

4.2 FastVTN

For real-time performance, a two-pass recognition apgréeacirtually prohibitive.
To estimate the warping factor of the test speaker withoutedirpinary recogni-
tion pass, Lee et al. (1996) and Welling et al. (1999) suggkattext-independent
method using Gaussian mixture models. The approach useddies on a separate
emission distributiolPr (X |\, for each warping factor, whereX denotes the se-
quence of acoustic vectors aihg denotes ther-dependent distribution parameters.
For eachy, the parameters,, are trained only on thosgnormalized acoustic vec-
tors which are assigned to this warping factor. Since thnitrg data is distributed
over different models, only a fraction of the corpus is adalié for each model. To
increase the robustness we tie the variance over all sinigkeira models.

In order to determine the optimal for an observed sequencé of acoustic
vectors during recognition, we use the following equatsse(Figure 3):

& = argmax Pr(X|\,).

Using this approach, the vocal tract normalization is digantly accelerated. The
signal analysis has to be carried out twice (unwarped andedaritha), and there
is no need for two recognition passes. Tests have showrhih&st VTN performs
almost as well as the baseline two-pass VTN, but is twicesig&ixtus et al., 2000).
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Figure 4. Signal analysis with fast VTN and incremental warpng factor estimation with-
out time delay.

4.3 Incremental Estimation of Warping Factors

The time required by VTN can be further improved by reducing time delay
caused by the estimation of the warping factor. For this psepwe investigated a
frame incremental warping factor estimation for fast VTN ghown in Figure 4,
the signal analysis following FFT is always carried out ®vighe acoustic vector
warped with the currently best warping factor is used fooggition. The unwarped
acoustic vector is immediately evaluated with the texejpehdent mixture models
and the score®r(X|\y),a = 0.88,...,1.12 are computed by accumulation over
time. As long as not enough time frames have been collec@@it{ghe frames, i.e.
2 seconds of speech), the warping factor is set to 1.0. Aftewaseconds, the best
warping factor does not change anymore.

Tests have shown that incremental warping factor estimatim be carried out
without any delay at the cost of only little performance @efation in the first few
seconds of a new speakers’ utterance.



5 Incremental Processing for Online Recognition

In this section, we focus on integrating the recognizer theoonline environment
with subsequent processing steps of the VERBMOBIL systeme.time delay in-

troduced by the recognizer should be as small as possilide alhpostprocessing
steps depend on the recognition output. To this purposeneeporated the fol-
lowing concepts:

— reducing the time delay of the recognizer by performing ttepmean subtrac-
tion not on the whole sentence but on a sliding window withstant length,

— reducing the response time of the system by incrementadiggring recogni-
tion results,

— reducing the density of word graphs in order to reduce thegssing time of
following steps.

The constraint which all these concepts should satisfy igmancrease the word
error rate.

Speech Waveform Time Delay
¢ [time frames]
Single Frame +1
Signal Preprocessing (MFCC)
v
Cepstral Mean Subtraction (CMS) +At
Variance Normalization CMS
v
Derivatives +3
v
LDA +1
v

Acoustic Vector

Figure 5. Signal processing steps and associated time detay

5.1 Recognition Preprocessing

The time delay introduced by the signal analysis and feauteaction of the rec-
ognizer is shown in detail in Figure 5. We consider two typésepstral mean
subtraction: the cepstral mean can be either computed omftbke sentence or on
a running window. As we will see, the minimum window lengftt ;s of the

cepstral mean subtraction is in the order of several hunti€eths time frames.
Therefore, the cepstral mean subtraction contributes tadke overall time delay.
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Figure 6. Word error rate as a function of time delay Atcss for cepstral mean subtrac-
tion using symmetric (left) and asymmetric (right) windows For the asymmetric case,
the window length was kept fixed at 200 time frames.

In several experiments, we found that for the German VERBMOBcognition
task a symmetric running window of at least 2-seconds lereghlts in exactly the
same word error rate as sentence-wise normalization wénleaing the time delay
to 1 second (Figure 6 left). By using an asymmetric windowhefsame length, the
delay can be further reduced to 250 ms without any loss ing@ition performance
(Figure 6 right).

5.2 Incremental Recognition Output

The output of the two main recognition results, the singlst beord sequence and
the word graph, is usually delayed until the end of the utteeaNevertheless, the
subsequent modules could already start working if thereeypartial results avail-
able from the recognizer. The approach to output partidl fiest word sequences
and word graphs is based on search space decisions and wiaedrsy Spohrer et
al. (1980).

The idea is to trace back the currently active state hypethigsorder to deter-
mine a single word end node shared by all paths. Once we hawel &uch a word
end node we can already report the first best word sequencethig hode because
in the future it will not change anymore. This partial traaebk is performed only
after a sufficiently long silence segment has been recodnize

Since the paths of the currently active hypotheses sharegéesnode in the
resulting word graph, too, partial word graphs can be gaeéiia a similar fashion.
Using this method it is guaranteed that the single best wegdience is still in the
word graph.
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Figure 7. Comparison of forward- and forward-backward word graph pruning. The
WER of the single best word sequence was 23.0 %.

5.3 Forward-Backward Word Graph Pruning

To keep the computational effort for the subsequent VERBMQBodules as low
as possible, it is desirable to generate compact word gnagthdow word graph
density (the total number of word graph arcs divided by the numberpaken
words) and lowgraph error rate (the minimum WER of all sentences represented
by the word graph) (Ortmanns et al., 1997a).

To generate compact word graphs we applyftnevard-backward pruning de-
scribed in detail in Sixtus et al. (1999). This pruning teglue is based on the score
of the global best path through the entire word graph. Foryeaec of the graph
representing a word hypothesis; 7, t), with word identityw, starting timer + 1
and ending time, we compute the overall sco€ w; 7, t) of the best path passing
through the arc. Only arcs with path scores close to the glwds path are kept.

This word graph pruning technique is based on the paradigtheoforward-
backward algorithm sinc€ (w; ,t) is computed by combining the following two
quantities:

1. Theforward score, which is defined as the overall score of the best partial word
sequence that starts at the first time frame of the utteramterds at time in
word arc(w; 7, t);



2. Thebackward score, which is defined as the overall score of best partial word
sequence that starts at the time frame 1 in word arc(w; 7, t) and ends at the
last time frame of the utterance.

Both gquantities are computed by traversing the word grapim fieft to right for-
ward pass) and from right to left backward pass).

As can be seen in Figure 7, at a given GER, forward-backwandipg leads to
much smaller word graphs than the conventional forwardipgialgorithm, where
only the forward score is used as the pruning criterion (@rins et al., 1997a).
Furthermore, using forward pruning the single best wordisage might be pruned
from the word graph while it is preserved when using forwbadkward pruning.

6 Off-line Recognition Results (Scenario A and B)

6.1 Testing Conditions

All experiments presented in this section were performetherspeaker indepen-
dent VERBMOBIL German spontaneous speech scenarios A afti@statistics

of the training and testing set are summarized in Table 1.b8seline recognition
system is characterized by:

— 16 cepstral coefficients with first derivatives and the secterivative of the
energy, 10 ms frame shift;

— linear discriminant analysis on three adjacent vectorgtiaeg in a 33-dimensional
acoustic vector;

— 3-state HMM triphone models with skip, forward and loop sitions;

— decision tree with 2,501 tied states including noise andsileace state;

— gender independent Gaussian mixtures with a total of 17@®d@k densities
and globally pooled diagonal covariance matrix;

— recognition vocabulary of 10,810 words with additional p8énunciation vari-
ants in the pronunciation lexicon;

— trigram language model with a testing set perplexity of 62.0

Table 1. Training (CD 1-41) and testing set (development seif the third integration
1999).

| | training] testing|
acoustic data 61.5h 1.6h
silence portion 13% 11%
# speakers 857 16
# sentences 36,015 1,081
# running words 701,512 14,662
# running phonemes 2,331,927, 60,716
perplexity (trigram LM) - 62.0




In the experiments to be reported (see Tables 2 and 3), weamantipe search
space (active states, arcs, trees after pruning), word eate (WER) and real-
time factor (RTF) of the within-word recognizer (WW), theass-word recognizer
(XW) and the modified across-word recognizer, considerimyg the left contexts
(XW-light). In addition, we combine the WW system and the Xight system with
the implementation of the fast vocal tract normalizatiodf\W VTN, XW-light +
VTN). All experiments were conducted on a Pentium 111 600 MPL2.

6.2 Recognition Experiments

In a first set of experiments we compare the best performistesys without us-
ing phoneme look-ahead, projection search and the preisgiatQ method. Note
that we already use the SIMD instructions to accelerate istartte calculation as
described in Section 2. Results are shown in Table 2. The wouat rate can be
reduced from 24.6 % to 22.3 % (9.3 % relative) using acrossdwodels instead
of within-word models; however, the real-time factor isreased by a factor of
2.8. When disregarding the right contexts of the acrosshwurdels, the word error
rate is decreased from 24.6 % to 23.7 % (3.7 % relative) onlythe increase in
real-time is much smaller.

Table 2. Comparison of the systems optimized for word error ate.

search space word errors [ %]
system states arcs tregsdel-ins WER | RTF
ww 4173 2022 54 5.3-3.8 24.6| 6.7
XW-light 4330 2050 3¢ 6.3-2.6 23.7| 7.8
XW 11118 5289 62 55-2.8 22.3| 185
WW + VTN 3710 1806 49 4.8-3.6 23.0/ 57
XW-light+ VTN | 5180 2480 34 5.6-2.7 22.3| 7.9

Furthermore, combining VTN with within-word models resuilh an improve-
ment from 24.6 % to 23.0 % (6.5 % relative). Combining VTN witie XW-light
system improves the error rate from 24.6 % to 22.3 % (9.3 %ive)eas compared
to the baseline WW system.

Table 3. Comparison of the accelerated systems.

search space word errors [ %]
system states arcs tregsdel-ins WER| RTF
ww 1839 827 19 58-39 251 1.3
XW-light 2363 1198 21 57-3.3 24.2| 1.6
XW 2915 1445 27 5.4-3.0 228 25
WW + VTN 1771 767 17 55-35 235 1.2
XW-light + VTN | 2117 1018 23 55-2.9 228 1.5




In a second series of experiments, we accelerate all systeimg the methods
described in Section 2. Results are shown in Table 3. For bashperforming
system shown in Table 2, there is an accelerated versiorbile BaThe acceleration
parameters are chosen in such a way that the word error rate gpby 0.5 %
absolute. Comparing the WW system and the XW system, we sg¢dhtd WW
system is faster by a factor of 2. The XW-light system, howgsenly 20 % slower
than the WW system.

As can be seen in Table 3, VTN allows for more efficient prunifigus, the
combined WW + VTN system is fastest and was chosen for integrénto the
VERBMOBIL prototype system.

7 Off-line Recognition Results (Scenario C)

All experiments presented in this section are performedhenspeaker dependent
VERBMOBIL PC remote maintenance task scenario C. The iddhisfscenario
was to investigate rapid adaptation to a new domain, largealulary recognition
and speaker dependent recognition. The system uses thie-witihd recognizer as
described in Section 2. The set-up can be summarized as/fllo

— 16 cepstral coefficients with first derivatives and the sdcterivative of the
energy, 10ms frame shift;

— speaker independent linear discriminant analysis on thdggcent vectors re-
sulting in a 33-dimensional acoustic vector;

— 6-state HMM triphone models with skip, forward and loop sitions;

— speaker independent decision tree with 1,001 tied stathsdimg one silence
state;

— speaker dependent Gaussian mixtures with about 7,000ti@srend globally
pooled diagonal covariance matrix;

— recognition vocabulary of 14,342 words with additional §8&nunciation vari-
ants in the pronunciation lexicon;

— trigram language model with an average testing set petyglekil08.

For each of the five test speakers the acoustic models anedrah 30 minutes
of speech. All recognition experiments are conducted ométa 111 600 MHz PC
using 15 minutes of speech for each speaker. Language noottehhead and SIMD
instructions are used for acceleration.

Table 4. Recognition performance for all speakers on the soario C.

search space word errors [ %]
speaker| states arcs tregsdel - ins WER| RTF
CB 2166 584 3 03-03 43| 07
RS 1676 468 3 04-09 42| 0.6
RK 1960 530 3 04-0.9 55| 0.7
uu 2638 703 4 0.6-05 6.3| 0.8
TR 1830 501 3 0.3-05 3.6| 0.6




Results are shown in Table 4. It can be seen that both the woydrate and the
real-time performance are comparable to commercial tetation systems.

During the project the vocabulary has been extended to al8%800 words
and the domain has been shifted in order to ensure propeardgegnodel training.
However, the perplexity of the language model raised froouat00 to 300. Infor-
mal tests have shown that due to the modified domain the wosdrate is between
18% and 20% and not comparable to the results presented allovagh the speed
of the recognizer can mainly be retained.

8 Conclusion

In this paper, we have considered acceleration methodéoRWTH recognizer
of the VERBMOBIL system. We have presented several mettmtiamdle the in-

crease of complexity caused by across-word models. Whettimea performance
is the primary objective, the best trade-off between rettmgnaccuracy and com-
putation time has been found for the within-word system. \&eehsuccessfully
combined the speaker adaptation based on vocal tract naatiah with both the

within-word recognizer and the XW-light version of the agseword recognizer. We
have studied several incremental methods for online spesxignition to reduce
the response time of the recognizer. Finally, we have ptedexperimental results
for both speaker independent and speaker dependent VERBMEaBnarios.
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