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Abstract. In this article we describe methods for improving the RWTH German
speech recognizer used within the VERBMOBIL project. In particular, we present
acceleration methods for the search based on both within-word and across-word
phoneme models. We also study incremental methods to reducethe response time
of the online speech recognizer. Finally, we present experimental off-line results
for the three VERBMOBIL scenarios. We report on word error rates and real-time
factors for both speaker independent and speaker dependentrecognition.

1 Introduction

The goal of the VERBMOBIL project is to develop a speech-to-speech transla-
tion system that performs close to real-time. In this system, speech recognition is
followed by subsequent VERBMOBIL modules (like syntactic analysis and trans-
lation) which depend on the recognition result. Therefore,in this application it is
particularly important to keep the recognition time as short as possible. There are
VERBMOBIL modules which are capable to work with partial results. For these
modules, it is also desirable to have an incremental recognition output.

The RWTH LVCSR system is a continuous Gaussian mixture density speech
recognition system which has been described in detail by Neyet al. (1998). In this
paper we report in detail on:

– acceleration methods for within-word recognition (Section 2),
– search and acceleration methods for across-word recognition (Section 3),
– acceleration methods for vocal tract normalization (Section 4),
– incremental processing methods to reduce the response time(Section 5),

For these methods we report experimental results in terms ofimprovements in
word error rate and real-time (see Section 6). Recognition tests were carried out on
the VERBMOBIL German spontaneous speech development corpus dev99 (scenar-
ios A and B: scheduling of appointments and hotel/travel reservations, speaker in-
dependent recognition). In addition, we present experimental results on the speaker
dependent VERBMOBIL PC remote maintenance task (scenario C) in Section 7.? We would like to thank Andreas Eiden, Stefan Ortmanns, and Lutz Welling for their initial

work on our speech recognizer in the VERBMOBIL project.



2 Baseline System

In this section, we review the techniques used to increase the speed of the integrated
one-pass tree-organized time-synchronous beam search algorithm (Ney et al., 1998):

– hypothesis pruning,
– language model look-ahead,
– phoneme look-ahead,
– fast likelihood computation of continuous mixture densities.

2.1 Hypothesis Pruning

During search we use conventional beam pruning and histogram pruning (e.g. Ort-
manns et al., 1997a) at state and word level. We found that especially histogram
pruning at the word level was capable to reduce the computational effort consider-
ably. The upper bound of the number of word end hypotheses pertime frame was
decreased to roughly 20 without any increase in word error rate. The gain in real-
time factor was 15–25%.

2.2 Enhanced Language Model Look-Ahead

For more efficient pruning during beam search, we distributethe language model
probabilities over the tree using language model look-ahead (Ortmanns et al., 1996a).
We enhanced this look-ahead by incorporating the language model score of the most
probable successor word into the accumulated scorebefore starting a new tree. This
makes language model pruning more efficient. Language modellook-ahead can be
further extended when using across-word models (see Section 3).

2.3 Phoneme Look-Ahead

The idea of phoneme look-ahead is to anticipate the probability of future acous-
tic vectors for a phoneme arc before starting it in detailed search. To estimate the
acoustic probabilities, we use simplified context independent models and perform an
additional pruning step before starting the phoneme arcs. This method is described
in detail in Ortmanns et al. (1996b) and results in an overallspeedup by a factor of
about 2.

2.4 Fast Likelihood Calculation

Without acceleration, the calculations of likelihoods of the continuous mixture den-
sities make up more than 80% of the time required for the wholerecognition process.
We obtained considerable improvements in speed by quantizing the components of
the acoustic means and input vectors in order to calculate the vector distances using
parallelizing SIMD instructions (e.g. MMX on Intel Pentium, VIS on Sun Sparc).



As reported in Kanthak et al. (2000), this leads to an overallspeedup of the recog-
nizer by more than a factor of three without any loss in recognition performance.
Additionally, we accelerated the likelihood calculationsby using projection search
and the preselection VQ method described in Ortmanns et al. (1997b).

Using all these methods, the baseline within-word recognizer as well as the across-
word recognizer can be sped up by more than a factor of 10. As will be seen in
Section 6, the loss in word error rate remains small (e.g. 2 % relative).

3 Across-Word Models and Search

It is well known (Alleva et al., 1992; Woodland et al., 1994; Beyerlein et al., 1997)
that the word accuracy can be improved significantly by the use of across-word
phoneme models.

In addition to within-word contexts, the across-word models capture also tri-
phone dependencies across word boundaries. The triphone contexts across word
boundaries cannot be determined from the pronunciation lexicon alone, they also
depend on the surrounding words hypothesized during search. This drastically in-
creases the complexity of the search.

In this section, we briefly describe the principle of the RWTHone-pass across-
word recognizer and discuss methods for coping with the increase in complexity.
The training of the across-word models is presented in Beulen et al. (1999).

3.1 Across-Word Search

The search is organized in a similar way as described in Aubert (1999) and Beulen
et al. (1999). The across-word models are integrated into a word-conditioned tree
search. Since the successor word is not known at a word end hypothesis, all possible
right contexts have to be hypothesized in separate fan-out arcs. These fan-out arcs
are treated in a dynamic way, i.e. for each word end we compilea proxy arc into the
static representation of the lexical prefix tree. Whenever such a word end arc is to
be activated during the search the set of fan-out arcs for allpossible right contexts
is integrated dynamically into the active search space.

Figure 1 shows a word transition between the fan-out of word end w and the
first generation of the successor tree. Depending on the hypothesized fan-out arc,
we activate those arcs in the successor tree whose central phoneme corresponds to
the right across-word context of the fan-out arc. The left across-word context of
these arcs corresponds to the central phoneme of the fan-outarcs. We call this kind
of transition “word transitionwith coarticulation”.

If the silence portion between two adjacent words is longer than a preselected
threshold, we assume no coarticulation and therefore do notuse the correspond-
ing across-word model. We allow for this case by providing a fan-out arc with a
special right context, which is denoted by the symbol$ in Figure 1. Since there is
no dependence assumed between the words, phoneme arcs with all possible central
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Figure 1. Transition between word endw and the successor tree using across-word mod-
eling: The arcs of the word transition with coarticulation are recombined with the arcs
of the word transition without coarticulation after the first phoneme generation.

phonemes have to be activated in search. In Figure 1 the left contexts of these arcs
are denoted by the$ symbol as well.

The word transition affects only the final triphone of the predecessor word and
the first triphone of the successor word. Thus, the arcs that were activated via the
transitionwith coarticulation can be recombined with the arcs of the transition with-
out coarticulation (see Figure 1). More details about this recombination step are
given in Sixtus et al. (2000).

3.2 Enhanced Language Model Look-Ahead

As mentioned in Section 2, we use the language model look-ahead to make the
pruning during beam search more efficient. As described in Aubert (1999) and Ort-
manns et al. (1999), the language model look-ahead can be extended when using
across-word models.

The set of successor words that may follow a word end hypothesis w with a
particular right across-word context� is constrained to those words whose first
phoneme is�. When activating the fan-out arc ofw with the right context�, we
anticipate the language model score of the most probable successor word and incor-
porate it into the accumulated score. Then, in addition to the conventional pruning



techniques,fan-out pruning can be applied to the fan-out arcs. Since the potential
search space is mainly increased by the fan-out arcs (40 to 50additional arcs per
word end) when using across-word models, this additional pruning step is essential
for efficient search. Informal experiments have shown that the computational effort
can be reduced by a factor of two by applying fan-out pruning.

3.3 Compressing the Lexical Prefix Tree

The acoustic models of the recognizer consist of 3-state HMMtriphone models.
The states of the triphones are tied using a decision tree. Therefore, there are many
triphones which share the same state sequence. When constructing the lexical pre-
fix tree, arcs of acoustically equivalent triphones are merged if they have the same
predecessor arc. In particular, the number of fan-out arcs whose triphones differ in
the right context only can be reduced substantially by this merging step.

Merging the fan-out arcs results in single fan-out arcs withseveral correspond-
ing right contexts. Thus, in the following successor treeall those subtrees have to
be activated that correspond toeach of the right contexts attached to the fan-out arc.
Similarly, the enhanced language model look-ahead has to take care of the merged
fan-out arcs since the number of possible successor words ofa fan-out arc is in-
creased if there are several contexts attached to this arc.
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Figure 2. Transition between word endw and the successor tree without regarding the
right context.



In the experiments on the VERBMOBIL corpus, we obtained a reduction of the
number of fan-out arcs by 45 % which reduced the computational effort by roughly
25 %. We tested a similar compression for the within-word recognizer, but there was
no gain in real-time performance.

3.4 Considering Left Across-Word-Contexts Only

The main part of the increase in complexity is caused by the right across-word con-
texts represented by the fan-out arcs. On the other hand, theleft contexts result in a
small overhead only, since in a word conditioned tree searchthe predecessor word
and thus its last phoneme is known. We studied how much we loose in recognition
performance if we disregard the right across-word contextsand consider the left
across-word contexts only. A similar approach is describedin Alleva et al. (1992).

Figure 2 shows a word transition, where only the left contextof the successor
tree is considered. The right context of the predecessor word w is represented by a
dummy symbol#. As can be seen in Section 6, nearly 40 % of the improvements
achieved by across-word models can be retained if only the left across-word contexts
are considered.

4 Vocal Tract Normalization (VTN)

The idea of VTN is to remove speaker dependencies caused by variations in the
length of the vocal tract by scaling the frequency axis. In this section, we shortly de-
scribe the principles of VTN. Then, we discuss a text-independent Gaussian mixture
based approach for fast warping factor estimation (fast VTN). Finally, we describe
the method for incremental estimation of warping factors.

4.1 VTN Principles

The baseline VTN algorithm has been described in detail in Welling et al. (1999).
In speaker-adaptive training, the warping factor�̂i for each training speakeri is
obtained by exhaustive search in the range0:88; : : : ; 1:12 with step size0:02:�̂i = argmax� Pr(X�i j�;Wi):
In this equation, the HMM emission probabilityPr(X�i j�;Wi) is computed by a
Viterbi alignment of the warped acoustic vectorsX�i for the HMM parameter set�
and the spoken word sequenceWi:

So-called normalized references are obtained by training the parameters of the
emission distributions on warped acoustic vectors, i.e. the vectors are normalized
using the optimal speaker dependent warping factors (Welling et al., 1999).

In recognition a similar procedure is applied. Since the spoken utteranceWi is
unknown, a preliminary transcription̂Wi is obtained in a first recognition pass with
no vocal tract normalization. Then the factor�̂i is determined which maximizes



the likelihood usingŴi. Finally, the acoustic vectors are warped using�̂i, and a
second recognition pass is performed using the normalized references. Recognition
tests have shown that a significant performance improvementis obtained by this
two-pass method. However, the computation time is more thandoubled. UsingŴi
instead of the actually spoken, but unknown transcriptionWi does not degrade the
recognition performance even if the preliminary transcription has a large word error
rate in the order of 20 to 30% (Welling et al., 1999).
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Figure 3. Mixture based warping factor approach using unwarped acoustic vectorsX
and one single mixture model�� for each warping factor.

4.2 Fast VTN

For real-time performance, a two-pass recognition approach is virtually prohibitive.
To estimate the warping factor of the test speaker without a preliminary recogni-
tion pass, Lee et al. (1996) and Welling et al. (1999) suggested a text-independent
method using Gaussian mixture models. The approach used here relies on a separate
emission distributionPr(X j��) for each warping factor�, whereX denotes the se-
quence of acoustic vectors and�� denotes the�-dependent distribution parameters.
For each�, the parameters�� are trained only on thoseunnormalized acoustic vec-
tors which are assigned to this warping factor. Since the training data is distributed
over different models, only a fraction of the corpus is available for each model. To
increase the robustness we tie the variance over all single mixture models.

In order to determine the optimal̂� for an observed sequenceX of acoustic
vectors during recognition, we use the following equation (see Figure 3):�̂ = argmax� Pr(X j��):
Using this approach, the vocal tract normalization is significantly accelerated. The
signal analysis has to be carried out twice (unwarped and warped with�̂), and there
is no need for two recognition passes. Tests have shown that the fast VTN performs
almost as well as the baseline two-pass VTN, but is twice as fast (Sixtus et al., 2000).
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Figure 4. Signal analysis with fast VTN and incremental warping factor estimation with-
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4.3 Incremental Estimation of Warping Factors

The time required by VTN can be further improved by reducing the time delay
caused by the estimation of the warping factor. For this purpose, we investigated a
frame incremental warping factor estimation for fast VTN. As shown in Figure 4,
the signal analysis following FFT is always carried out twice. The acoustic vector
warped with the currently best warping factor is used for recognition. The unwarped
acoustic vector is immediately evaluated with the text-independent mixture models
and the scoresPr(X j��); � = 0:88; : : : ; 1:12 are computed by accumulation over
time. As long as not enough time frames have been collected (200 time frames, i.e.
2 seconds of speech), the warping factor is set to 1.0. After afew seconds, the best
warping factor does not change anymore.

Tests have shown that incremental warping factor estimation can be carried out
without any delay at the cost of only little performance degradation in the first few
seconds of a new speakers’ utterance.



5 Incremental Processing for Online Recognition

In this section, we focus on integrating the recognizer intothe online environment
with subsequent processing steps of the VERBMOBIL system. The time delay in-
troduced by the recognizer should be as small as possible since all postprocessing
steps depend on the recognition output. To this purpose, we incorporated the fol-
lowing concepts:

– reducing the time delay of the recognizer by performing cepstral mean subtrac-
tion not on the whole sentence but on a sliding window with constant length,

– reducing the response time of the system by incrementally preparing recogni-
tion results,

– reducing the density of word graphs in order to reduce the processing time of
following steps.

The constraint which all these concepts should satisfy is not to increase the word
error rate.
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Figure 5. Signal processing steps and associated time delays.

5.1 Recognition Preprocessing

The time delay introduced by the signal analysis and featureextraction of the rec-
ognizer is shown in detail in Figure 5. We consider two types of cepstral mean
subtraction: the cepstral mean can be either computed on thewhole sentence or on
a running window. As we will see, the minimum window length�tCMS of the
cepstral mean subtraction is in the order of several hundred10-ms time frames.
Therefore, the cepstral mean subtraction contributes mostto the overall time delay.
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Figure 6. Word error rate as a function of time delay�tCMS for cepstral mean subtrac-
tion using symmetric (left) and asymmetric (right) windows. For the asymmetric case,
the window length was kept fixed at 200 time frames.

In several experiments, we found that for the German VERBMOBIL recognition
task a symmetric running window of at least 2-seconds lengthresults in exactly the
same word error rate as sentence-wise normalization while reducing the time delay
to 1 second (Figure 6 left). By using an asymmetric window of the same length, the
delay can be further reduced to 250 ms without any loss in recognition performance
(Figure 6 right).

5.2 Incremental Recognition Output

The output of the two main recognition results, the single best word sequence and
the word graph, is usually delayed until the end of the utterance. Nevertheless, the
subsequent modules could already start working if there were partial results avail-
able from the recognizer. The approach to output partial first best word sequences
and word graphs is based on search space decisions and was inspired by Spohrer et
al. (1980).

The idea is to trace back the currently active state hypotheses in order to deter-
mine a single word end node shared by all paths. Once we have found such a word
end node we can already report the first best word sequence up to this node because
in the future it will not change anymore. This partial traceback is performed only
after a sufficiently long silence segment has been recognized.

Since the paths of the currently active hypotheses share a single node in the
resulting word graph, too, partial word graphs can be generated in a similar fashion.
Using this method it is guaranteed that the single best word sequence is still in the
word graph.



5

10

15

20

25

30

0 20 40 60 80 100 120 140 160

word graph density

w
or

d 
gr

ap
h 

er
ro

r 
ra

te

forward pruning

forward backward pruning

Figure 7. Comparison of forward- and forward-backward word graph pruning. The
WER of the single best word sequence was 23.0 %.

5.3 Forward-Backward Word Graph Pruning

To keep the computational effort for the subsequent VERBMOBIL modules as low
as possible, it is desirable to generate compact word graphswith low word graph
density (the total number of word graph arcs divided by the number of spoken
words) and lowgraph error rate (the minimum WER of all sentences represented
by the word graph) (Ortmanns et al., 1997a).

To generate compact word graphs we apply theforward-backward pruning de-
scribed in detail in Sixtus et al. (1999). This pruning technique is based on the score
of the global best path through the entire word graph. For every arc of the graph
representing a word hypothesis(w; �; t), with word identityw, starting time� + 1
and ending timet, we compute the overall scoreQ(w; �; t) of the best path passing
through the arc. Only arcs with path scores close to the global best path are kept.

This word graph pruning technique is based on the paradigm ofthe forward-
backward algorithm sinceQ(w; �; t) is computed by combining the following two
quantities:

1. Theforward score, which is defined as the overall score of the best partial word
sequence that starts at the first time frame of the utterance and ends at timet in
word arc(w; �; t);



2. Thebackward score, which is defined as the overall score of best partial word
sequence that starts at the time frame� +1 in word arc(w; �; t) and ends at the
last time frame of the utterance.

Both quantities are computed by traversing the word graph from left to right (for-
ward pass) and from right to left (backward pass).

As can be seen in Figure 7, at a given GER, forward-backward pruning leads to
much smaller word graphs than the conventional forward pruning algorithm, where
only the forward score is used as the pruning criterion (Ortmanns et al., 1997a).
Furthermore, using forward pruning the single best word sequence might be pruned
from the word graph while it is preserved when using forward-backward pruning.

6 Off-line Recognition Results (Scenario A and B)

6.1 Testing Conditions

All experiments presented in this section were performed onthe speaker indepen-
dent VERBMOBIL German spontaneous speech scenarios A and B.The statistics
of the training and testing set are summarized in Table 1. Thebaseline recognition
system is characterized by:

– 16 cepstral coefficients with first derivatives and the second derivative of the
energy, 10 ms frame shift;

– linear discriminant analysis on three adjacent vectors resulting in a 33-dimensional
acoustic vector;

– 3-state HMM triphone models with skip, forward and loop transitions;
– decision tree with 2,501 tied states including noise and onesilence state;
– gender independent Gaussian mixtures with a total of 170k to240k densities

and globally pooled diagonal covariance matrix;
– recognition vocabulary of 10,810 words with additional 136pronunciation vari-

ants in the pronunciation lexicon;
– trigram language model with a testing set perplexity of 62.0.

Table 1. Training (CD 1-41) and testing set (development setof the third integration
1999).

training testing

acoustic data 61.5h 1.6h
silence portion 13% 11%
# speakers 857 16
# sentences 36,015 1,081
# running words 701,512 14,662
# running phonemes 2,331,927 60,716
perplexity (trigram LM) - 62.0



In the experiments to be reported (see Tables 2 and 3), we compare the search
space (active states, arcs, trees after pruning), word error rate (WER) and real-
time factor (RTF) of the within-word recognizer (WW), the across-word recognizer
(XW) and the modified across-word recognizer, considering only the left contexts
(XW-light). In addition, we combine the WW system and the XW-light system with
the implementation of the fast vocal tract normalization (WW + VTN, XW-light +
VTN). All experiments were conducted on a Pentium III 600 MHzPC.

6.2 Recognition Experiments

In a first set of experiments we compare the best performing systems without us-
ing phoneme look-ahead, projection search and the preselection VQ method. Note
that we already use the SIMD instructions to accelerate the distance calculation as
described in Section 2. Results are shown in Table 2. The worderror rate can be
reduced from 24.6 % to 22.3 % (9.3 % relative) using across-word models instead
of within-word models; however, the real-time factor is increased by a factor of
2.8. When disregarding the right contexts of the across-word models, the word error
rate is decreased from 24.6 % to 23.7 % (3.7 % relative) only, but the increase in
real-time is much smaller.

Table 2. Comparison of the systems optimized for word error rate.

search space word errors [%]
system states arcs trees del - ins WER RTF

WW 4173 2022 55 5.3 - 3.8 24.6 6.7
XW-light 4330 2050 36 6.3 - 2.6 23.7 7.8
XW 11118 5289 62 5.5 - 2.8 22.3 18.5

WW + VTN 3710 1806 49 4.8 - 3.6 23.0 5.7
XW-light + VTN 5180 2480 34 5.6 - 2.7 22.3 7.9

Furthermore, combining VTN with within-word models results in an improve-
ment from 24.6 % to 23.0 % (6.5 % relative). Combining VTN withthe XW-light
system improves the error rate from 24.6 % to 22.3 % (9.3 % relative) as compared
to the baseline WW system.

Table 3. Comparison of the accelerated systems.

search space word errors [%]
system states arcs trees del - ins WER RTF

WW 1839 827 19 5.8 - 3.9 25.1 1.3
XW-light 2363 1198 21 5.7 - 3.3 24.2 1.6
XW 2915 1445 27 5.4 - 3.0 22.8 2.5

WW + VTN 1771 767 17 5.5 - 3.5 23.5 1.2
XW-light + VTN 2117 1018 23 5.5 - 2.9 22.8 1.5



In a second series of experiments, we accelerate all systemsusing the methods
described in Section 2. Results are shown in Table 3. For eachbest performing
system shown in Table 2, there is an accelerated version in Table 3. The acceleration
parameters are chosen in such a way that the word error rate goes up by 0.5 %
absolute. Comparing the WW system and the XW system, we see that the WW
system is faster by a factor of 2. The XW-light system, however, is only 20 % slower
than the WW system.

As can be seen in Table 3, VTN allows for more efficient pruning. Thus, the
combined WW + VTN system is fastest and was chosen for integration into the
VERBMOBIL prototype system.

7 Off-line Recognition Results (Scenario C)

All experiments presented in this section are performed on the speaker dependent
VERBMOBIL PC remote maintenance task scenario C. The idea ofthis scenario
was to investigate rapid adaptation to a new domain, larger vocabulary recognition
and speaker dependent recognition. The system uses the within-word recognizer as
described in Section 2. The set-up can be summarized as follows:

– 16 cepstral coefficients with first derivatives and the second derivative of the
energy, 10ms frame shift;

– speaker independent linear discriminant analysis on threeadjacent vectors re-
sulting in a 33-dimensional acoustic vector;

– 6-state HMM triphone models with skip, forward and loop transitions;
– speaker independent decision tree with 1,001 tied states including one silence

state;
– speaker dependent Gaussian mixtures with about 7,000 densities and globally

pooled diagonal covariance matrix;
– recognition vocabulary of 14,342 words with additional 831pronunciation vari-

ants in the pronunciation lexicon;
– trigram language model with an average testing set perplexity of 108.

For each of the five test speakers the acoustic models are trained on 30 minutes
of speech. All recognition experiments are conducted on a Pentium III 600 MHz PC
using 15 minutes of speech for each speaker. Language model look-ahead and SIMD
instructions are used for acceleration.

Table 4. Recognition performance for all speakers on the scenario C.

search space word errors [%]
speaker states arcs trees del - ins WER RTF

CB 2166 584 3 0.3 - 0.3 4.3 0.7
RS 1676 468 3 0.4 - 0.9 4.2 0.6
RK 1960 530 3 0.4 - 0.9 5.5 0.7
UU 2638 703 4 0.6 - 0.5 6.3 0.8
TR 1830 501 3 0.3 - 0.5 3.6 0.6



Results are shown in Table 4. It can be seen that both the word error rate and the
real-time performance are comparable to commercial text dictation systems.

During the project the vocabulary has been extended to almost 35,000 words
and the domain has been shifted in order to ensure proper language model training.
However, the perplexity of the language model raised from about 100 to 300. Infor-
mal tests have shown that due to the modified domain the word error rate is between
18% and 20% and not comparable to the results presented abovealthough the speed
of the recognizer can mainly be retained.

8 Conclusion

In this paper, we have considered acceleration methods for the RWTH recognizer
of the VERBMOBIL system. We have presented several methods to handle the in-
crease of complexity caused by across-word models. When real-time performance
is the primary objective, the best trade-off between recognition accuracy and com-
putation time has been found for the within-word system. We have successfully
combined the speaker adaptation based on vocal tract normalization with both the
within-word recognizer and the XW-light version of the across-word recognizer. We
have studied several incremental methods for online speechrecognition to reduce
the response time of the recognizer. Finally, we have presented experimental results
for both speaker independent and speaker dependent VERBMOBIL scenarios.
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