
SPEECH TRANSLATION BY CONFUSION NETWORK DECODING

Nicola Bertoldi

ITC-irst
Centro per la Ricerca

Scientifica e Tecnologica
I-38050 Povo (Trento), Italy

bertoldi@itc.it

Richard Zens

Lehrstuhl für Informatik 6
Computer Science Department

RWTH Aachen University
D-52056 Aachen, Germany
zens@cs.rwth-aachen.de

Marcello Federico

ITC-irst
Centro per la Ricerca

Scientifica e Tecnologica
I-38050 Povo (Trento), Italy

federico@itc.it

ABSTRACT

This paper describes advances in the use of confusion net-

works as interface between automatic speech recognition and

machine translation. In particular, it presents an implemen-

tation of a confusion network decoder which significantly

improves both in efficiency and performance previous work

along this direction. The confusion network decoder results as

an extension of a state-of-the-art phrase-based text translation

system. Experimental results in terms of decoding speed and

translation accuracy are reported on a real-data task, namely

the translation of Plenary Speeches at the European Parlia-

ment from Spanish to English.

Index Terms— Machine Translation, Speech Translation,

Natural Language Processing

1. INTRODUCTION

Machine translation input currently takes the form of simple

sequences of words. However, there are increasing demands

to integrate machine translation technology in larger informa-

tion processing systems with upstream NLP/speech process-

ing tools (such as named entity recognizers, speech recogniz-

ers, morphological analyzers, etc.). These upstream processes

tend to generate multiple, erroneous hypotheses with varying

confidence. Current MT systems are designed to process only

one input hypothesis, making them vulnerable to errors in the

input.

This work focuses on the speech translation case, where the

input is generated by a speech recognizer. Recently, ap-

proaches have been proposed for improving translation qual-

ity through the processing of multiple input hypotheses. In

particular, better translation performance have been reported

by exploiting N -best lists [1, 2], word lattices [3, 4], and con-

fusion networks [5].

This work improves the confusion network decoder discussed

in [5], by developing a simpler translation model and a more

efficient implementation of the search algorithm.

Finally, the here described decoder was implemented during

the JHU Summer Workshop 2006 as an extension of Moses1,

a factored phrase-based beam-search decoder for machine

translation.

2. SPOKEN LANGUAGE TRANSLATION

From a statistical perspective, SLT can be approached as fol-

lows. Given the vector o representing the acoustic observa-

tions of the input utterance, let F(o) be a set of transcrip-

tion hypotheses computed by a speech recognizers and repre-

sented as a word-graph. The best translation e∗ is searched

among all strings in the target language E through the follow-

ing criterion:

e∗ = arg max
e

∑
f∈F(o)

Pr(e, f | o) (1)

where the source language sentence f is an hidden variable

representing any speech transcription hypothesis. According

to the well established log-linear framework, the conditional

distribution Pr(e, f | o) can be determined through suitable

real-valued feature functions hr(e, f ,o) and real-valued pa-

rameters λr, r = 1 . . . R, and takes the parametric form:

pλ(e, f | o) =
1

Z(o)
exp

{
R∑

r=1

λrhr(e, f ,o)

}
(2)

where Z(o) is a normalization term.

The main advantage of the log-linear model defined in (2) is

the possibility to use any kind of features, regarded as im-

portant for the sake of translation. Currently, better perfor-

mance are achieved by defining features in terms of phrases
ẽ [6, 7, 8] instead of single words, and by searching the best

translation ẽ∗ among all strings of phrases in a defined vocab-

ulary of phrases.

The kind of representation used for the set of hypotheses

F(o) clearly impacts on the implementation of the search al-

gorithm. Here, we assume to have all hypotheses represented

as a confusion network.
1Open source project web site http://www.statmt.org/moses.
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. . .

Fig. 1. Example of confusion network.

3. CONFUSION NETWORKS

A Confusion Network (CN) G is a weighted directed graph

with a start node, an end node, and word labels over its edges.

The CN has the peculiarity that each path from the start node

to the end node goes through all the other nodes. As shown in

Figure 1, a CN can be represented as a matrix of words whose

columns have different depths. Each word wj,k in G is iden-

tified by its column j and its position k in the column; word

wj,k is associated to the weight pj,k corresponding to the pos-

terior probability Pr(f = wj,k | o, j) of having f = wj,k at

position j given o. A realization f = f1, . . . , fm of G is as-

sociated with the probability Pr(f | o), which is factorized as

follows:

Pr(f | o) =
m∏

j=1

Pr(fj | o, j) (3)

The generation of a CN from an ASR word-graph [9] can

also produce special empty-words ε in some columns. These

empty-words permit to generate source sentences of different

length and are treated differently from regular words only at

the level of feature functions.

3.1. Generative translation process
The following process describes how to incrementally gener-

ate a translation from G.

While there are uncovered source columns:

i. A span of some yet uncovered and contiguous columns

of G is is chosen and marked as covered.

ii. One word per column is chosen. This identifies a spe-

cific source phrase f̃ of the current span.

iii. A target phrase ẽ is chosen among the translation alter-

natives of f̃ and appended to the current translation.

The here presented statistical model could work on lattices,

too; but unfortunately, lattices have a significantly more com-

plex topology than CNs, and an efficient decoding algorithm

for them has not been yet proposed. Main issues to be solved

are related to word reordering and path overlaps:

• as words can be translated in any order, an asyn-

chronous visit of the graph is required

• any path in the WG has to be visited even if there are

many other similar paths, that is corresponding to sim-

ilar transcriptions.

3.2. CN-based log-linear model
The log-linear model adopted for the CN decoder includes the

following feature functions:

i. A word-based n-gram target LM.

ii. A reordering model defined in terms of the distance be-

tween the first column covered by current span and the

last column of the previous span. (In the current imple-

mentation, we did not distinguish between regular and

empty words.)

iii. Four phrase-based lexicon models compute the proba-

bility of f̃ given ẽ and viceversa in two ways: by rela-

tive frequency and through IBM Model 1. These mod-

els remove any empty-word in the source side.

iv. Phrase and word penalty models, i.e. counts of the

number of phrases and words in the target string.

v. The CN posterior probability, see formula (3).

Notice that the above features can grouped into two cate-

gories: those which are expansion-dependent because their

computation requires some knowledge about the previous

step (i, ii), and those which are not (iii, iv, v).

3.3. Decoding algorithm
According to the dynamic programming paradigm, the opti-

mal solution can be computed through expansions and recom-

binations of previously computed partial theories. With re-

spect to translating a single input hypothesis, translating from

a CN requires, in principle, exploring all possible input paths

inside the graph. A key insight is that, due to their linear

structure, CN decoding is very similar to text decoding. Dur-

ing the decoding, we have to look up the translation options

of spans, i.e. some contiguous sequence of source positions.

The main difference between CN and text decoding is that

in text decoding there is exactly one source phrase per span,

whereas in confusion network decoding there can be multiple

source phrases per span. In fact, in a CN the number of source

phrases per span is exponential in the span length, assuming

its minimum depth is larger than one.

The decoding algorithm can be made much more efficient

by pre-fetching translations for all the spans and by applying

early recombination.

3.4. Early recombination
At each expansion step a span covering a given number of

consecutive columns is generated. Due to the presence of

empty-words, different paths within the span can generate

the same source phrase, hence the same translations. The

scores of such paths only impacts on the CN posterior feature

(v). Additionally, it might happen that two different source

phrases of the same span have a common translation. In this

case, not only the CN posterior feature is different, but also
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the phrase translation features (iii). This suggests that ef-

ficiency can be gained by pre-computing all possible alter-

native translations for all possible spans, together with their

expansion-independent scores, and to recombine these trans-

lations in advance.

3.5. Pre-fetching of translation options
Concerning the pre-fetching of translations from the phrase-

table, an efficient implementation can be achieved if we use a

prefix tree representation for the source phrases in the phrase

table and generate the translation options incrementally over

the span length. So, when looking up a span (j1, j2), we can

exploit our knowledge about the span (j1, j2 − 1). Thus, we

have to check only for the known prefixes of (j1, j2 − 1) if

there exists a successor prefix with a word in column j2 of

the CN. If all the word sequences in the CN also occur in

the phrase table, this approach still enumerates an exponen-

tial number of phrases. So, the worst case complexity is still

exponential in the span length. Nevertheless, this is unlikely

to happen in practice. In our experiments, we do not observe

the exponential behavior. What we observe is a constant over-

head compared to text input.

4. N -BEST DECODER

An alternative way to define the set F(o) is to take the N
most probable hypotheses computed by the ASR system, i.e.

F(o) = {f1, . . . , fN}. By taking a maximum approximation

over F(o), and assuming that Pr(ẽ, f | o) = Pr(f | o) Pr(ẽ |
f), we get the search criterion:

ẽ∗ ≈ arg max
n=1,..,N

Pr(fn | o) max
ẽ

Pr(ẽ | fn) (4)

In the equation above we can isolate N independent transla-

tion tasks (rightmost maximization), and the recombination

of their results (leftmost maximization). Hence, the search

criterion can be restated as:

ẽ∗n = arg max
ẽ

Pr(ẽ | fn) n = 1, . . . , N (5)

ẽ∗ ≈ arg max
n=1,..,N

Pr(fn | o) Pr(ẽ∗n | fn) (6)

In plain words: first the best translation ẽ∗n of each transcrip-

tion hypothesis fn is searched; then, the best translation ẽ∗ is

selected among {ẽ∗1, . . . , ẽ∗N} according to its score weighted

by the ASR posterior probability Pr(fn | o).
A log-linear model for the N -best decoder is employed which

is very similar to the CN decoder. Specifically, feature

(v) is replaced with two features corresponding to the log-

probability of the acoustic and language model scores pro-

vided by the ASR system.

5. EXPERIMENTAL RESULTS

Experiments were carried on one of the TC-STAR project

tasks, namely the translation from Spanish to English of

Spanish English

Train Words 37 M 36 M

Vocabulary 143 K 110 K

Phrase Pairs 83 M

Phrases 48 M 44 M

Dev Utterances 2,643

Words 20,384 20,579

Vocabulary 2,883 2,362

Test Utterances 1,073

Words 18,890 18,758

Vocabulary 3,139 2,567

Table 1. Statistics of the EPPS speech translation task. Word

counts of dev and test sets sets refer to human transcriptions

(Spanish) and the first reference translation (English).

speeches from the European Parliament Plenary Sessions

(EPPS). Statistics about the training, development and test-

ing data are reported in Table 5. In particular, training of the

lexicon models (phrase table) was performed with the Moses
training tools, while training of the 4-gram target LM was per-

formed with the IRST LM Toolkit. Sentences in the develop-

ment and test sets are provided with two reference translations

each.

5.1. Data preparation
Word lattices were kindly provided by CNRS-LIMSI, France.

CNs and N -best lists were extracted by means of the

lattice-tool package included in the SRILM Toolkit

[10]. The resulting CNs have an average depth of 2.8 words.

The consensus decoding [9] transcriptions were also extracted

from the CN, by taking the most probable words of each col-

umn. Table 2 shows on its left side the average Word Error

Rate (WER) of the oracle transcriptions of the CNs and the

word lattices, of the consensus decoding transcriptions, and

of the oracle transcriptions of various N -best lists.

5.2. Parameter tuning
Feature weights of all presented models were estimated by ap-

plying a minimum-error-rate training procedure which tries to

maximize the BLEU score over the dev data. A special proce-

dure was used for tuning the weights of the N -best translation

system. First, a single best decoder was optimized over the

dev set. Then M -best (M=100) translations were generated

for each N -best input of the dev set. Hence, all NxM trans-

lations were merged and a new log-linear model including the

ASR additional features was trained.

5.3. Results
Table 2 reports BLEU score, position-independent error rate

(PER) and WER achieved by the decoder under different
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Input Output

type WER BLEU PER WER

verbatim 0.0 48.00 31.19 40.96

wg-oracle 7.48 44.68 33.55 43.74

cn-oracle 8.45 44.12 34.37 44.95

cn 8.45 39.17 38.64 49.52

cons-dec 23.30 36.98 39.17 49.98

1-best 22.41 37.57 39.24 50.01

5-best 18.61 38.68 38.55 49.33

10-best 17.12 38.61 38.69 49.46

Table 2. Performance achieved with different inputs.

Input Output

type WER BLEU

[5] [11] Moses
verbatim 0.0 40.84 44.64 48.00

1-best 14.61 36.64 39.67 42.84

cons-dec 14.46 36.54 39.65 42.92

cn 11.61 37.21 40.00 43.51

Table 3. Comparison between Moses and previous imple-

mentations described in [5] and [11].

input conditions. Scores achieved on the textual inputs –

i.e. verbatim, wg-oracle, cn-oracle, 1-best, and

cons-dec– shows a strong correlation between WER and

MT automatic scores. CN translation (cn) outperforms 1-best

and consensus-decoding translations with respect to all trans-

lation metrics. CN decoding also performs better, in terms of

BLEU score, than N -best decoding, which is significant given

that all systems were trained to optimize the BLEU score.

From the point of view of decoding speed, the advantage of

CN decoding becomes even more important. With respect to

1-best decoding, CN decoding time is just 2.1 times higher

(87.5 vs 42.5 seconds per sentence), i.e. it is comparable to

2-best decoding.

In Table 3, performance of Moses are compared against a

previous implementation of a CN-decoder [5] and against

a more recently developed decoder [11] which ranked top

in the TC-STAR 2006 Evaluation Campaign. [5] uses only

one phrase-based lexicon model, and a weaker recombination

criterion than Moses. These additional experiments were

conducted on the same task but exploited word lattices with

smaller WERs and pruned CNs. It is evident that Moses out-

performs all previous implementations of CN-decoder, which

are also significantly slower (18 time factor with respect to

1-best decoding).

6. CONCLUSIONS

This work presented a new implementation of a phrase-based

decoder for speech translation. The decoder exploits confu-

sion networks as interface between speech recognition and

machine translation. Confusion networks from one side per-

mit to effectively represent a huge number of transcription

hypotheses, from the other side they lead to a very efficient

search algorithm for statistical machine translation. Com-

parisons against previous implementations showed significant

gains in translation performance and decoding speed. The

new implementation is part of an open source decoder, named

Moses.
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