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ABSTRACT MFCC and main spectral peak features. Combination of PLP and

In this paper, we consider the use of multiple acoustic features ofmodulation spectrogram features is described in [6]. Significant
paper, pie ¢ . : reduction in WER has been achieved by feature combination via
the speech signal for robust speech recognition. We investigate,

the combination of various auditory based (Mel Frequency the acoustic posterior probabilities, determined by an artificial

- ; L neural network (ANN) based acoustic model.
Cepstrum Coefficients, Perceptual Linear Prediction, etc.) and In this work. we have tested a LDA based and a log-
articulatory based (voicedness) features. Features are combineg ' o . 9
. S AT . . Inear based feature combination methods on various feature
by a Linear Discriminant Analysis based and by a log-linear

model combination based techniques. We describe the two featureteygfﬁl'ag);%itgégtt?o?z\{iS:gghpsgmgﬁﬂggiItk;f Ig:]gi;\éogﬁgulary

combination techniques and compare the experimental results.h il h ; L h
Experiments performed on the large-vocabulary teskoMobil and, we will compare the two feature combination met od_s
on the same set of features. On the other hand, we will

Il (German conversational speech) show that the accuracy of ; in which binati f L audi d
automatic speech recognition systems can be improved by theprgsent experiments in which combinations of several auditory an
L . . articulatory based acoustic features have been tested. Experiments
combination of different acoustic features. . - ; .
have yielded improvements in WER up to 7% relative to our best
system optimized on the MFCC feature.
1. INTRODUCTION In the following we will first review the different feature
) . ) extraction methods in Section 2. We will describe the LDA
Most automatic speech recognition systems use auditory baseghased feature combination in Section 3 and the log-linear model
representation of the speech signal, e.g. Mel Frequency Cepstrumompination based feature combination in Section 4. We will

Coefficients (MFCC), Perceptual Linear Prediction (PLP), and present recognition results in Section 5 using LDA based and log-
variations of these methods. There have been also attemptinear based combination of various acoustic features.

at using articulatory information in the acoustic front-end, e.g.

autocorrelation based voicedness feature [1]. In this paper
we investigate the combination of different auditory based and
articulatory based acoustic features.

Combination of acoustic features can be carried out directly
on the level of feature vectors. In [1], liftered cepstral coefficients
derived from all-poles magnitude spectrum has been directly
concatenated with a voicedness feature. Using the concatenate
features, a large relative improvement in word error rate (WER) feature [7] along with its alternative using a Mel scale triangular

has been achieved by applying discriminative training. Significant . ) . .
reduction in WER has been presented using LDA based featuref||ter bank (MF-PLP). Finally, we present an autocorrelation based

combination in [2] when combining MFCCs with a phase feature voicedness feature.
and in [3] when combining MFCCs with a voicedness feature. »
Combination of acoustic features can also be performed by 2-1. Mel Frequency Cepstral Coefficients (MFCC)

log-linear model combination. In [4], different acoustic models |n the first step of the MFCC feature extraction algorithm, we
have been combined by log-linear combination of acoustic and perform a preemphasis of the sampled speech signal. The
language model propapllltles. The combination of 5 acoustic and preemphasized sample#in] are obtained from the original
language models (within-word and across-word acoustic m0d9|5vsamples<s[n} by the differencingi[n] = s[n] — s[n — 1]. Every
bigram, trigram, and fourgram language models) has led 0 a19ms, a Hamming window is applied to preemphasiz2sths
significant improvement in WER, compared to the best pairwise |ong speech segments. We compute the short-term spectrum by
combinations. In [5], significant reduction in WER has been past Fourier Transform (FFT) along with an appropriate zero
achieved by using log-linear model combination to combine paqding. Next, we compute the outputs2sf overlapping Mel

This work was partially funded by the DFG (Deutsche sca.lle triangular filters. Fgr each filter, the ogtput is the sum of the
Forschungsgemeinschaft) under the post graduate program “Softivare f Weighted spectral magnitudes. Logarithm is next applied to the
Kommunikationssysteme” and by the Europian Commission under the filter bank outputs followed by Discrete Cosine Transform which
project TC-Star (FP6-506738). generates6 cepstrum coefficients.

2. SIGNAL ANALYSIS

In this section, we present the feature extraction methods used
in our speech recognition system. First we describe the Mel
Frequency Cepstrum Coefficients (MFCC), followed by its variant
erived from all-poles magnitude spectrum. In the next group
f features, we describe the Perceptual Linear Predictive (PLP)




Subsequently, a cepstral mean normalization is applied inthe Mel scale triangular filter bank are taken from the MFCC
order to account for different audio channels. Normalization is algorithm. The only difference here is that the filter bank is applied
carried out with a symmetric sliding window 8§. In this manner, to the power spectrum instead of the magnitude spectrum. The
every10ms a feature vector consisting 6 normalized cepstrum  last steps generating the cepstrum coefficients are taken from the

coefficients is computed. PLP algorithm. The20 filter bank outputs are modified by the
intensity loudness law. This cepstrum coefficients are calculated
2.2. MFCC Derived from All-Poles Magnitude Spectrum from the output of the intensity loudness law via the all-poles

approximation as described in Section 2.3. Finally, cepstral mean
In this method, MFCCs are derived from the all-poles magnitude normalization is applied as described in Section 2.1.
spectrum estimate instead of the magnitude spectrum estimated
by using Fast Fourier Transform. Thus the only step changed in
the data flow of the MFCC algorithm is the way of calculating
the magnitude spectrum. In the all-poles estimate, the magnitudevoicedness feature is a measure representing the state of the
spectrun1Xt(w)| of a time frame tis assumed to have the form of vocal cords. The measure describes how periodic the speech
signal is in a given time framé. We use the autocorrelation
function to measure periodicity. Autocorrelati:ﬁﬁ(r) expresses
the similarity between the time framé(u) and its copy shifted by
7. We have used the unbiased estimate of autocorrelﬁ()t):

2.5. Voicedness Feature
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where g° is called the gaing;, is a autoregressive coefficient,

and M is number of autoregressive coefficients. Gain and " 1 Tt ¢ ¢

the autoregressive coefficients can be directly calculated from R(7) = T—- Z z(v)z (v+71) 2
the autocorrelation coefficients by applying the Levinson-Durbin T =

recursion. M controls the smoothing of the magnitude spectrum. . . . .
In our experimentsM is empirically set tol8. We calculate whereT is the length of a time frame. Autocorrelation of periodic

512 points of the all-poles magnitude spectrum and carry out the Signals with frequenq’{ attains its maximun?z*(0) not only at

rest of the MFCC algorithm. Finally, this cepstrum coefficients 7 = O butalso atr = & k = 0,+£1,£2, ... integer multiples of
derived from the all-poles magnitude spectrum are normalization the period. Therefore, a peak in the range of natural pitches with a

by cepstral mean normalization as described in Section 2.1. value close td%t(O) is a strong indication of periodicity.
In order to produce a bounded measure of voicedness,
2.3. Perceptual Linear Predictive Analysis (PLP) autocorrelation is divided by!(0). The resulting function

has values mainly in the intervgl-1..1] although because
The motivation of PLP feature extraction is similar to the one of of the unbiased estimate, theoretically any value is possible.
the MFCC method but there are major differences in the data flow. The voicedness measutd is thus the maximum value of the
In the first step, everylOms, Hamming window is applied  normalized autocorrelation in the interval of natural pitch periods
to the 20 ms long speech segments. Short-term spectrum is [2 5ms.12.5ms):
calculated by applying the FFT along with an appropriate zero

padding. In the next step, a filter bank 26 equally spaced max Rt(T)
overlapping Bark scale trapezoid filters is applied to the power ol = 25MSfaSTS12.5MS fo 3)
spectrum. The filter bank is extended by an output at the frequency Rt(o)

0 and by another output at sample-rate / 2 by copying their right

and respectively left neighbor. Equal loudness preemphasis isyhere f, denotes the sample rate. Values:btlose tol indicate

applied to the22 filter bank outputs followed by the application  yojcedness, values close @ indicate voiceless time frames.

of the intensity loudness law. The autocorrelation function is determined evéyns on speech
In the next stage of the algorithm, the cepstrum coefficients are segments ofloms length. By applying (3) to the autocorrelation,

not directly derived from the output of the intensity loudness law 5 one dimensional voicedness feature is generated ¢0ery.
but from the all-poles approximation of it. First, autocorrelation

coefficients are calculated by applying the Inverse Discrete Fourier

Transform to the output of the intensity loudness law. Next, the 3. LDA BASED FEATURE COMBINATION

17 autocorrelation coefficient are transformed to the gain and to ) o )

16 autoregressive coefficients by the Levinson-Durbin recursion. The Linear Discriminant Analysis (LDA) based approach
Instead of regenerating the smoothed, all-poles approximation ofcombines directly the different acoustic feature vectors. In
the output of the intensity loudness law, we can directly compute [8], LDA has been used successfully to find an optimal linear
zeroth cepstrum coefficient is explicitly set to the logarithm of the the following steps, we describe a straightforward way to use this
Square of the gain' Fina”y’ Cepstra' mean norma"zation iS app“ed method fOr fea.ture Comb|nat|on. In the fll’St Step, feature vectors

to the cepstrum coefficients as described in Section 2.1. extracted by different algorithms{'i are concatenated for all time
framest. In the second ste@L + 1 successive concatenated
2.4. PLP Derived from Mel scale Filter Bank (MF-PLP) vectors are concatenated again for all time framesich makes

up the large input vector of LDA. Witl, = 5 and withF = 3
In this method, the MFCC and PLP techniques are merged into different features, size of the LDA input vector grows upal00
one algorithm. The first steps until generating the output of components. Finally, the combined feature vegtois created by



projecting the large input vector on a smaller 80 dimensional)
subspace:

xftl—L
fr

Ty_p,

y=[V"] (4)

where the matrix V is determined by LDA such that it conveys
the most relevant classification informationga The resulting
acoustic vectors are used as well in training and as in recognition.

feature a separate acoustic model feature function, the Bayes’
decision rule for log-linear feature combination can be written as:

Af

Wopt = argmax P(W)*™ H B, (Xf"’|W) i (8)
w i

Acoustic training of the combined system consists of two steps:
independent training of each acoustic modg| (Xfi\W) and
training of the language model weight, and the acoustic model
weights A¢,. In this work, we have run a standard maximum
likelihood training to estimate the acoustic model parameters.
Model weights have been optimized empirically.

5. EXPERIMENTAL RESULTS

5.1. Baseline Recognition System

Recognition tests have been conducted on the large-vocabulary
corpus VerbMobil 1. The corpus consists of German
conversational speech: 36k training-sentences (61.5h) from
857 speakers and 1k test-sentences (1.6h) from 16 speakers. The

In all our experiments, we have concatenated 11 SUCCESSIV&55eline recognition system can be characterized as follows:

feature vectorsly = 5). The baseline experiments using a single
feature apply LDA in the same way. The only difference is in
the size of the LDA input vector and thus in the size of the LDA

matrix. The resulting feature vector has the same size to ensure

comparable recognition results.
4. LOG-LINEAR MODEL COMBINATION

In this approach, different acoustic features are combined
indirectly via the log-linear combination of acoustic probabilities

B, (Xfi|W) where W denotes a sequence of words andi

denotes a sequence of feature vectors extracted by the algorithng

f;. The basic idea is to modify the modeling of the posterior
probability P(W|X) in Bayes’ decision rule:
Wopt = argmax P(W|X). (5)
w
In the standard case, posterior probability is decomposed into

language model probabiliti#? (177) and acoustic model probability
P(X|W):

_ _ POMPXW)

PR = s v POy

(6)

In the case of log-linear model combination, the posterior
probability has the following form:

2 Xigi (W, X)
e K

P(W|X) = (7)

2 Xigi (W, X)
Y€l
where g; is a so called feature function which is an arbitrary
function of the word sequend&” and the feature vector sequence
X, and)\; is the corresponding log-linear weight. Applying the
log-linear modeling approach to speech recognition, the basic
feature function types are negative logarithm of probabilities:

e language modelgi" (W, X) = —log P;(W),
e acoustic modelygt™ (W, X) = —log P;(X|W).
Finally, in order to combine different acoustic features, we

introduce a separate acoustic mOH’ﬁJ(Xf* |W) for each feature.
Using a single language model feature function and for each

e recognition vocabulary of 10157 words;
3-state Hidden Markov Model topology with skip;
2501 decision tree based within-word triphone states
including noise plus one state for silence;
237k gender independent Gaussian densities with global
pooled diagonal covariance;
class-trigram language model, test set perplexity: 62.0;

e 33 acoustic feature components after applying LDA.
In Table 1, we summarize results achieved by our recognition
ystem optimized for different acoustic features: MFCC, vocal
tract length normalized MFCC (MFCC-VTLN), MFCC derived
from all-poles magnitude spectrum (MFCC-AllPoles), PLP, and
PLP coefficients derived from Mel scale triangular filter bank (MF-
PLP).

Acoustic Feature| Error Rates [%)]
Del Ins | WER

MFCC 6.3 24| 23.1
MFCC-VTLN 50 27| 213
MFCC-AllPoles | 6.2 2.7| 24.2
PLP 6.6 23| 23.1
MF-PLP 6.2 27| 23.2

Table 1. Baseline recognition results with different features.
5.2. Comparison of LDA Based and Log-Linear Combination

In this section, we describe experiments in which we combine
several different acoustic features by the LDA based and by the
log-linear based combination method.

LDA based method combines the different feature vectors
directly, generating a single feature. Using the single combined
feature stream, a standard acoustic model is trained under the
settings given in Section 5.1. When using log-linear model
combination, a separate acoustic models is trained for each feature.
The different acoustic models are trained as well under the settings
described in Section 5.1. This implies that each training includes
the estimation and the application of an LDA matrix. In these
cases, LDA does not combine different features but it finds an
optimal linear combination of successive vectors of the same
feature stream. The number of acoustic feature components after



LDA Log-Linear
Combined Features Error Rates [%)] Combined Features Error Rates [%)]
Del Ins | WER Del Ins | WER
MFCC + Voice 57 28| 224 MFCC + \Voice 6.1 27| 23.0
MFCC + LDA(MFCC + \oice) 59 27| 222
MFCC-VTLN + Voice 51 26| 20.8 MFCC-VTLN + LDA(MFCC + \oice) 53 23| 203
MFCC + MFCC-VTLN + Voice | 5.1 25| 20.7 || LDA(MFCC + Voice)+LDA(MFCC-VTLN + \oice) | 5.3 2.2| 19.9

Table 3. Recognition results of combining MFCC, vocal tract length normalized MFCC (MFCC-VTLN), and voicedness features (Voice).

On the left, features are combined by LDA, on the right by log-linear model combination. LDA(MFCC + \oice) denote an acoustic model

trained on the LDA based combination of MFCC and voicedness features.

Combined Features Error Rates [%)]
Del Ins | WER

MFCC 6.3 24| 231

MFCC + MFCC-AllPoles| 5.8 25| 22.6
MFCC + MF-PLP 6.0 26| 229
MFCC + MF-PLP + PLP| 5.6 2.6| 22.1

Table 2. Recognition results of combining state-of-the-art features
(MFCC, MFCC derived from all-poles magnitude spectrum, MF-
PLP, and PLP) by using log-linear model combination.

applying the LDA matrix is set in case of MFCC, PLP, or in
case of one of their variants 88 components and in case of the
voicedness feature tbcomponent. After the training of acoustic
models, the log-linear weights are optimized empirically using
a simple grid search. Additionally, a useful option is to reuse

features combined by LDA as a separate feature stream in the log-

linear combination method.
Results of experiments combining state-of-the-art, auditory

based features are summarized in Table 2. In spite of their common

basic data flow, the log-linear based combinations of different
auditory based features yield significantly better word error rates
when compared to systems optimized on a single feature.

Table 3 summarizes the experimental results of combining
MFCC, MFCC-VTLN, and voicedness features. Results show
that the LDA based feature combination outperforms the log-linear
model combination on small dimensional features, e.g. MFCCs
combined with a single voicedness feature. Nevertheless we
achieve significant improvements in WER if we reuse the LDA

based combination of small dimensional features nested into the[4]

log-linear model combination. As shown in Table 3, we can reuse
the acoustic models trained on the LDA based combination of
the voicedness feature on the one hand with the MFCC feature
and on the other hand with the MFCC-VTLN feature. The
log-linear combination of the resulting acoustic models yields
a significant improvement in WER over the pure LDA based
combination of the three concerned features. One possible
interpretations of the results is that with increasing number of

features, the constant amount of training data become insufficient

to robustly estimate the heavily enlarged within- and between-
class scatter matrices. This may lead to numerical instability when
solving the generalized eigenvalue problem. Another possibility
for interpretation is that since we keep the number of output
coefficients of the LDA constant, applying a single LDA matrix
on increasing number of different feature vectors cannot convey
as many classification information as the LDA matrices applied in
the separate acoustic models of log-linear model combination.

6. SUMMARY

In this paper, we have analyzed two aspects of acoustic feature
combination. On the one hand, we have compared an LDA based
feature combination method and a log-linear model combination
based method. Experiments have shown that LDA based
combination nested into the log-linear model combination yields
the best recognition result. On the other hand, we have performed
experiments in which we have combined several different acoustic
features. Despite their common basic structure, the combination
of different state-of-the-art auditory based features resulted
significant improvements in WER. The combinations of auditory
based and articulatory based features have yielded up to 7%
relative improvements in WER over the optimized single feature
systems. Our future work includes extending the number of
combined acoustic features and systematically analyzing the
presented feature combination techniques.
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