
Investigations on Error Minimizing Traini
Training in Automatic Spee

Wolfgang Macherey, Lars Haferkamp, Ra

Lehrstuhl für Informatik VI, Comput
RWTH Aachen University, 52056

{w.macherey,haferkamp,schluter,ney}@i

Abstract
Discriminative training criteria have been shown to consistently
outperform maximum likelihood trained speech recognition
systems. In this paper we employ the Minimum Classifica-
tion Error (MCE) criterion to optimize the parameters of the
acoustic model of a large scale speech recognition system. The
statistics for both the correct and the competing model are
solely collected on word lattices without the use of N -best lists.
Thus, particularly for long utterances, the number of sentence
alternatives taken into account is significantly larger compared
to N -best lists. The MCE criterion is embedded in an extended
unifying approach for a class of discriminative training criteria
which allows for direct comparison of the performance gain ob-
tained with the improvements of other commonly used criteria
such as Maximum Mutual Information (MMI) and Minimum
Word Error (MWE). Experiments conducted on large vocab-
ulary tasks show a consistent performance gain for MCE over
MMI. Moreover, the improvements obtained with MCE turn out
to be in the same order of magnitude as the performance gains
obtained with the MWE criterion.

1. Introduction
Due to improved optimization procedures and increased com-
putational power, discriminative methods have become an im-
portant means of estimating the parameters of Hidden Markov
Models in many state-of-the-art speech recognition systems.
Since the first successful application of the Maximum Mutual
Information (MMI) criterion to large scale speech recognition
tasks [1], there has been a growing interest in a class of error
minimizing discriminative training criteria, as for example the
Minimum Word Error (MWE) and the Minimum Phone Er-
ror (MPE) criterion [2]. In contrast to the MMI criterion, which
directly maximizes the posterior probability of the training
utterances, MWE and MPE aim at minimizing the expectation
of the word and phoneme error rate on training data. The MWE
and MPE criterion could be shown to significantly outperform
the MMI criterion on many tasks [2, 3].

Another criterion that also ranks among the class of error
minimizing criteria is the Minimum Classification Error (MCE)
criterion, which aims at minimizing a smoothed sentence error
on training data [4, 5]. Although the MCE criterion could
be shown to give consistently better results on small vocab-
ulary tasks compared to the MMI criterion [6, 7, 11], there
are only few publications that investigate the use of MCE on
large vocabulary tasks [8, 9]. One reason is that the MCE
criterion requires the exclusion of the correct class from the
set of all competing classes. In automatic speech recognition
this means that the spoken word sequence has to be removed
from the set of all possible word sequences. However, this
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be difficult if the set of competing word sequences is
ed as a word lattice: since a lattice may contain multiple
ents and pronunciation variants of the spoken utterance,
stituting arcs may not uniquely be assigned to the correct

ompeting sentence without changing the structure of the
. One possible remedy is the use of N -best lists, which
xamined e.g. in [10]. Another alternative is the use of
state machines. Here, for each utterance a corresponding
ucer is to be built that encodes the set of competing
sequences considered for discrimination. The spoken
sequence can then be excluded using standard operations.
ver, in general this is less efficient than directly using a
lattice, since in the worst case the exclusion of a string
transducer may lead to N -best lists.

this paper we propose a new algorithm that directly oper-
n word lattices without changing the lattice structure. The
word lattices for estimating the parameters of the acoustic

l under the MCE criterion was first presented in [11].
h this work already contained the basic principles of the

thm presented here, it still required N -best lists in order to
ll sentence hypotheses in the word graph that correspond
he spoken word sequence. In this paper, the statistics
re necessary in order to train the acoustic model param-
under the MCE criterion are solely extracted from word
s without using information derived from N -best lists.
iments conducted on various settings of the Wall Street
al tasks show significant performance gains of the MCE
on over the MMI criterion. However, while this outcome
have been expected based on the results of experiments
cted on small vocabulary tasks [7, 11], it is much more
sing that, in all settings, the improvements gained by the
criterion are always in the same order of magnitude as the
vements obtained with the MWE criterion.

An Extended Unifying Approach for a
ss of Discriminative Training Criteria

a unifying view for a class of discriminative training
a was presented that allowed for directly comparing the
mance gains obtained with the MMI and MCE criterion.
s section this approach will be extended such that it also
rises the MWE and MPE criterion. Let r = 1, ..., R
e the training utterances, each consisting of a sequence Xr

oustic observation vectors xr1, ..., xrTr and the corre-
ing word sequence Wr = wr1, ..., wrNr . The emission
e language model probability are denoted by pθ(Xr|Wr)
(Wr). The language model probabilities are supposed
given. Hence the parameter θ comprises the set of all
eters of the acoustic model. Finally, let Mr denote a set



of word sequences which are considered for discrimination in
utterance r. A class of discriminative training criteria F can
then be defined by:

F(
θ; f, α,G, {Mr}

)
= (1)

1

R

R∑
r=1

f


log




∑
W

pα
θ (Xr|W ) · pα(W ) · G(W, Wr)

∑
W∈Mr

pα
θ (Xr|W ) · pα(W )




1/α



The choice of the set of alternative word sequences together
with the optional smoothing function f , the weighting ex-
ponent α, and the gain function G determine the particular
criterion. Table 1 lists some of the criteria included in this
approach. All criteria except MWE and MPE discriminate the
spoken word sequence, which is expressed by the choice of
the Kronecker function δ for the gain function. In contrast to
this, the numerator in the MWE criterion considers the sum
over all possible word sequences weighted with a measure for
accuracy A. Note that all criteria are to be maximized, which
cause the negative sign in the smoothing function of the MCE
criterion, its maximum approximation, the Falsifying Training,
the Diversity Index, and the Jeffreys criterion. The derivative of
the unified criterion wrt. to the parameter set θ yields the well
known re-estimation equations, which can be found e.g. in [6]
for the MMI and MCE criterion, and in [2] for the MWE an
MPE criterion.

For the special case � = 1/2 and α = 1 the MCE cri-
terion directly minimizes the expectation of the sentence error,
i.e. the sum over 1 − p(Wr|Xr) for all training utterances r.
Smaller values of � smooth the sentence error, and thus, the
criterion minimizes an approximated error rate. This often
improves robustness towards outliers in the training data [11].
The same holds for the Diversity Index, which, in the case of
setting � = 1, is equivalent to the Gini criterion. In contrast
to both the Diversity Index and the MCE criterion, the MWE
and MPE criterion minimize the expectation of an unsmoothed
error rate. A possible extension would therefore be to integrate
a smoothing term into the gain function of the MWE/MPE
criterion, which might help to further reduce the error rate on
unseen data.

3. MCE on Word Lattices
Using the MCE criterion, the set of competing hypotheses
comprises all word sequences W that are represented in a word
graph, except the spoken sequence Wr . In order to determine
the word probabilities on word graphs similar to the MMI
criterion, the spoken word sequence has to be excluded from
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result in an increased lattice size, because particular
of the spoken word sequence might be part of other

nces, too. Therefore, the sum over all word sequences in
rd graph (represented by Mr) including the spoken word

nce is performed first, which afterwards is subtracted
the probability of the spoken word sequence. Thus the
bility q of hypothesizing a word w within the time frames
] under the MCE criterion can be written as [7, 11]:

te](w|Xr) =

∑
{W∈Mr|W �=Wr

∧w[tb,te]∈W}

pα
λ(Xr, W )

∑
{V ∈Mr|V �=Wr}

pα
λ(Xr, V )

∑
{W∈Mr|
[tb,te]∈W}

pα
λ(Xr, W ) −

∑
{W∈Mr|W=Wr

∧w[tb,te]∈W}

pα
λ(Xr, W )

∑
V ∈Mr

pα
λ(Xr, V ) −

∑
{V ∈Mr|V =Wr}

pα
λ(Xr, V )

(2)

es the best time alignment of the spoken word sequence, a
graph may contain further copies of the spoken sequence
ay vary in boundary times and pronunciation variants.

ally, the scores of these copies differ only marginally from
ore of the best alignment. Hence, for MCE training it
essary to detect and label all alignments of the spoken
sequence occurring in the word graph so that the sum
he joint probabilities of these sentence hypotheses can be
cted afterwards from the word probabilities (cf. Eq. (2)).

4. Experimental Results
iments were conducted on three settings of the Wall Street
al (WSJ) corpora [12, 13]. The three tasks differ in the
nt of training data and the vocabulary sizes. Table 2
arizes some corpus statistics.
he WSJ0 recognition system uses 2000 decision-tree
gender independent within-word triphone states plus one
or silence. The states are assigned to Gaussian mixture
utions with a total of 149k densities sharing one common

nal variance vector. The observation vectors consist of 16
al features together with the first derivatives and the sec-
erivative of the energy. Each five adjacent input frames
ncatenated (including derivatives: 5 × 33 = 165 input
es) and reduced to 33 output features via a linear discrimi-
nalysis (LDA). The baseline recognizer applies Maximum
hood (ML) training using the Viterbi approximation and
Table 1: A class of discriminative training criteria contained in the extended unifying approach.
criterion smoothing function alternative word sequences exponent gain function

f(z) Mr α G(W, Wr)

Maximum Likelihood z ∅ -
Maximum Mutual Information all (recognized) 1
Corrective Training

z
best (recognized) ∞

Minimum Classification Error all without Wr free δ(W, Wr)
Falsifying Training

− 1
1 + e2�z best (recognized) �= Wr ∞

Diversity Index −1
� (1 − e�z) all (recognized) free

Jeffreys − z
1 − z all (recognized) 1

Minimum Word/Phone Error exp(z) all (recognized) 1 A(W, Wr)



Table 2: Corpus statistics and vocabulary sizes on the Wall
Street Journal (WSJ0) task and the North American Busi-
ness (NAB) corpus.
corpus WSJ0 NAB-20k / NAB-65k

train dev eval train dev eval
acoustic data [h] 15:17 0:46 0:40 81:23 0:48 0:53
# speakers 84 10 8 284 20 20
# sentences 7240 410 330 37474 310 316
# running words 130976 6784 5353 642074 7387 8193

# lexicon words 10133 5007 15013 64735

achieves a word error rate (WER) of 4.14% on the combined
development1 plus the evaluation set (cf. Tab. 4).

The Nov. ’94 North American Business (NAB) training
corpus consists of the 84 speakers of the WSJ0 corpus plus
200 additional speakers from the WSJ1 corpus. Tests were
performed on the NAB Nov. ’94 Hub-1 development and eval-
uation corpus. Both the 20k and the 65k recognition system
use 7000 decision-tree based gender independent across-word
triphone states plus one state for silence. The system employs
Gaussian mixture distributions with a total of 412k densities and
one globally pooled diagonal variance vector. As in the WSJ0
setting, 16 cepstral features together with their first derivatives
and the second derivative of the energy are used. Each three
consecutive observation vectors are concatenated and projected
onto a 32 dimensional feature vector via a LDA. The ML trained
recognizer achieves a WER of 11.47% for the 20k system and
9.28% for the 65k system on the combined development and
evaluation corpus (cf. Table 4).

In all discriminative experiments, the ML trained system
was used to generate high density word lattices for both the
numerator and the denominator model. The numerator lattices
were merged into the denominator lattices at which hypothe-
ses that were newly added to the denominator lattice or that
matched a denominator hypothesis were tagged with the label
”correct” in order to identify them for the MCE training. To
reduce the computational costs during discriminative training,
the lattice sizes were reduced via a forward-backward pruning.
The resulting word graph densities are shown for the WSJ0
corpus in Table 3. For all iterations of the discriminative
training the hypotheses encoded in the word lattices were re-
aligned within their boundary times (the Viterbi segmentation
points) as determined in the initial recognition phase. For MCE
training the smoothing constant � was set to 0.04. Since MWE
is reported to give slightly better results than MPE on the WSJ

tasks [3], we used the MWE criterion for the comparison.
Figure 1 depicts the evolution of the WER on the combined

development and evaluation set of the WSJ0 corpus in the
course of the iteration process for the MMI, the MCE, and
the MWE criterion. The relatively large number of training
iterations that were necessary in order to find the best parameter
set (wrt. test set performance) is contrary to what is reported
in literature. Usually, it requires 4-8 iterations only before
discriminative training starts to overfit the training data and,
hence, deteriorates test set performance [2]. However, in this
setting, the effect is caused by using a pooled variance vector.
Since in discriminative training convergence speed is usually
adjusted under a positive variance constraint, using state or
density specific variances provides much more constraints in
order to chose the ”correct” step size, which often results in
faster convergence [14].

1 Since the official WSJ0 corpus does not provide a development set,
the 410 sentences were extracted from 10 new speakers of the North
American Business task.
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1: Evolution of the word error rate (WER) on the
ined development plus evaluation set of the WSJ0 corpus
course of the iteration process for the Maximum Mututal
ation (MMI), Minimum Classification Error (MCE), and
um Word Error (MWE) criterion.

able 4 shows the word error rates for the discriminative
a MMI, MCE, and MWE. Compared with the ML trained
, the MMI criterion results in a word error rate of 3.85%,
is a relative improvement of 7%. Compared to this, the

and the MWE criterion result in 3.75% WER, which is a
e improvement of 10% compared to the ML baseline, and

performance gain in comparison with the MMI result.
isingly the MWE criterion does not seem to be superior

MCE criterion for this setting. Though both criteria
o a consistent reduction in terms of WER compared to
MI criterion, the performance gain might be less caused
irect minimization of a loss function but by the stronger

tness of MCE and MWE towards outliers in the training
Moreover, MWE directly minimizes the expectation of
rd error, although the decision in recognition is made on a
ce level. Thus, MWE would potentially outperform MCE
bination with Bayes Risk minimizing decision rules [15].

he experiments conducted on the NAB-20k and NAB-65k
(cf. Table 4) show similar results. Though the absolute
vement of MCE compared with MMI is only marginal,
gives consistently good results on both the development
e evaluation set. As in the experiments conducted on the
corpus, the smoothing constant was set to 0.04. Note
e NAB-65k system uses the same acoustic models as the

20k system, yet with an extended pronunciation lexicon
duces the number of unknown words on test data from
to 0.7%. In both settings the MWE criterion leads to

ly yet not significant increases in terms of WER compared
I. The improvements observed range in the same order

gnitude as the performance gains reported in [3, p. 114].

3: Word graph densities on the training, development, and
tion set of the WSJ0 corpus together with the respective
error rates (GER).
s WSJ0

train dev eval dev+eval
#arcs per spk. word 210.86 237.32 261.89 248.28
#arcs per rec. word 159.84 189.13 202.64 195.15
#arcs per frame 99.89 81.07 78.42 79.83
[%] 0.0 0.22 0.09 0.16



5. Conclusions
In this paper we investigated the use of the Minimum Classi-
fication Error (MCE) criterion for training the acoustic model
parameters of a large scale speech recognition system. In con-
trast to other studies, all statistics necessary for re-estimating
the model parameters under the MCE criterion have been deter-
mined on word lattices for both the correct and the competing
model. Thus, particularly for long utterances, the number of
sentence alternatives taken into account in training is signifi-
cantly larger compared to N -best lists.

The investigations were carried out within an extended uni-
fying framework for discriminative training criteria that, besides
MCE, also includes the Maximum Mutual Information (MMI)
and the Minimum Word Error (MWE) criterion. While MCE
showed consistently better results compared to MMI of up to
4% relative on the Wall Street Journal task, its performance
in terms of word error rate (WER) turned out to be in the
same order of magnitude as MWE. Compared to a Maximum
Likelihood trained system, the MCE criterion lead to relative
improvements of between 4% and 10% in terms of WER.
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