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Abstract

This thesis deals with linear transformations at various stages of the automatic
speech recognition process.

In current state-of-the-art speech recognition systems linear transformations are
widely used to care for a potential mismatch of the training and testing data and
thus enhance the recognition performance. A large number of approaches has been
proposed in literature, though the connections between them have been disregarded
so far. By developing a unified mathematical framework, close relationships between
the particular approaches are identified and analyzed in detail.

Mel frequency Cepstral coefficients (MFCC) are commonly used features for auto-
matic speech recognition systems. The traditional way of computing MFCCs suffers
from a twofold smoothing, which complicates both the MFCC computation and the
system optimization. An improved approach is developed that does not use any
filter bank and thus avoids the twofold smoothing. This integrated approach allows
a very compact implementation and needs less parameters to be optimized.

Starting from this new computation scheme for MFCCs, it is proven analytically
that vocal tract normalization (VTN) equals a linear transformation in the Cepstral
space for arbitrary invertible warping functions. The transformation matrix for
VTN is explicitly calculated exemplary for three commonly used warping functions.
Based on some general characteristics of typical VTN warping functions, a common
structure of the transformation matrix is derived that is almost independent of the
specific functional form of the warping function. By expressing VTN as a linear
transformation it is possible, for the first time, to take the Jacobian determinant of
the transformation into account for any warping function. The effect of considering
the Jacobian determinant on the warping factor estimation is studied in detail.

The second part of this thesis deals with a special linear transformation for speaker
adaptation, the Maximum Likelihood Linear Regression (MLLR) approach. Based
on the close interrelationship between MLLR and VTN proven in the first part, the
general structure of the VTN matrix is adopted to restrict the MLLR matrix to a
band structure, which significantly improves the MLLR adaptation for the case of
limited available adaptation data.

Finally, several enhancements to MLLR speaker adaptation are discussed. One
deals with refined definitions of regression classes, which is of special importance for
fast adaptation when only limited adaptation data are available. Another enhance-
ment makes use of confidence measures to care for recognition errors that decrease
the adaptation performance in the first pass of a two-pass adaptation process.





Zusammenfassung

Diese Arbeit befaßt sich mit linearen Transformationen an verschiedenen Stellen des
automatischen Spracherkennungsprozesses.

In modernen automatischen Spracherkennungssystemen sind lineare Transforma-
tionen ein beliebtes Mittel, um einer Diskrepanz von Trainings- und Testdaten ent-
gegenzuwirken und somit die Erkennungsleistung zu steigern. Eine Vielzahl von
Ansätzen ist in der Literatur vorgeschlagen worden, allerdings wurden die Zusam-
menhänge zwischen den Ansätzen bisher vernachlässigt. Durch die Entwicklung ei-
ner vereinheitlichten mathematischen Beschreibung werden enge Zusammenhänge
zwischen den einzelnen Ansätzen aufgezeigt und ausführlich untersucht.

Mel-Frequenz Cepstrum Koeffizienten (MFCC) werden sehr häufig als Merkma-
le in automatischen Spracherkennungssystemen eingesetzt. Der übliche Ansatz zur
Berechnung der MFCC beinhaltet allerdings eine doppelte Glättung, was sowohl
die Berechnung der MFCC als auch die Parameteroptimierung erschwert. Es wird
ein verbesserter Ansatz vorgestellt, der auf eine Filterbank verzichtet und somit die
doppelte Glättung vermeidet. Dieser integrierte Ansatz erlaubt eine sehr kompakte
Implementierung und benötigt weniger zu optimierende Parameter.

Ausgehend von dieser neuen Methode zur Berechnung der MFCC wird analytisch
gezeigt, daß Vokaltraktlängennormierung (VTN) für beliebige invertierbare Verzer-
rungsfunktionen als eine lineare Transformation im Cepstrumraum dargestellt wer-
den kann. Die Transformationsmatrix für VTN wird beispielhaft für drei häufig ver-
wendete Verzerrungsfunktionen explizit berechnet. Basierend auf einigen generellen
Eigenschaften typischer VTN Verzerrungsfunktionen wird eine gemeinsame Struktur
der Transformationsmatrizen abgeleitet, die größtenteils unabhängig von der funk-
tionellen Form der Verzerrungsfunktion ist. Durch die Möglichkeit VTN als lineare
Transformation auszudrücken ist es erstmals möglich die Jacobi-Determinante der
Transformation für beliebige Warpingfunktionen zu berücksichtigen. Die Auswirkun-
gen der Berücksichtigung der Jacobi-Determinante bei der Warpingfaktorschätzung
werden ausführlich untersucht.

Der zweite Teil dieser Arbeit beschäftigt sich mit einer speziellen linearen Transfor-
mation zur Sprecheradaption, des Maximum Likelihood Linear Regression (MLLR)
Ansatzes. Basierend auf dem engen Zusammenhang von MLLR und VTN, der im
ersten Teil gezeigt wurde, wird die generelle Form der VTN-Matrix auf die MLLR-
Matrix übertragen, um diese auf eine Bandstruktur einzuschränken. Dadurch wird
die MLLR Adaption besonders für den Fall von wenigen verfügbaren Adaptionsda-
ten erheblich verbessert.

Schließlich werden mehrere Verbesserungen der Sprecheradaption mittels MLLR
präsentiert. Eine Erweiterung zielt auf eine verbesserte Definition der Regressions-
klassen ab, was speziell für den Fall einer schnellen Adaption mit wenigen Adapti-
onsdaten eine besondere Bedeutung hat. Eine weitere Verbesserung nutzt Konfidenz-
maße, um einer Verschlechterung der Adaptionsleistung durch Erkennungsfehler im
ersten Durchgang eines mehrstufigen Adaptionsprozesses entgegenzuwirken.
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Chapter 1

Introduction

1.1 Statistical Speech Recognition

In recent years the statistical approach to speech recognition has prevailed over other
approaches. Given a sequence of acoustic observations xT

1 = x1, . . . , xT , that word
sequence wN

1 = w1, . . . , wN should be chosen according to Bayes’ decision rule which
maximizes the a-posteriori probability [Bayes 1763]:

[wN
1 ]opt = argmax

wN
1

p(wN
1 |xT

1 )

= argmax
wN

1

{
p(xT

1 |wN
1 ) · p(wN

1 )
}

(1.1)

Eq. (1.1) shows the two basic stochastic models that are involved in automatic
speech recognition: the acoustic model p(xT

1 |wN
1 ), i.e. the probability of observing

the sequence of feature vectors xT
1 given a word sequence wN

1 , and the language
model p(wN

1 ) which provides an a-priori probability for a word sequence wN
1 . The

basic architecture of a statistical speech recognition system is depicted in Figure 1.1
[Ney 90]. The system consists of four main components which will be described in
detail in the following Sections:

• the signal analysis (Section 1.2) module aims at extracting acoustic features
from the input speech signal and provides the speech recognizer with a se-
quence of acoustic vectors xT

1

• the acoustic model (Section 1.3) consists of statistical models for the smallest
sub-words units to be distinguished by the speech recognizer, e.g. phonemes,
syllables or whole words, and a pronunciation lexicon which defines the com-
position of an acoustic model for a given word from the sub-word units

• the language model (Section 1.4) provides the a-priori probability of a hypoth-
esized word sequence based on the syntax, semantics and pragmatics of the
language to be recognized

1



Chapter 1 Introduction

• the search module (Section 1.5) finally combines the two knowledge sources
acoustic model and language model and determines the word sequence that
maximizes Eq. (1.1).

Speech Input

Signal Analysis

      Acoustic Model
* Phoneme Inventory
* Pronunciation Lexicon

Language Model

Global Search:

Maximize

p(w1,...,wN) * p(x1,...,xT | w1,...,wN)

over w1,...,wN

Recognized Word
Sequence w1,...,wN

Acoustic Vectors
x1,...,xT

p(x1,...,xT | w1,...,wN)

p(w1,...,wN)

Figure 1.1: Basic architecture of a statistical automatic speech recognition system.
[Ney 90].

1.2 Signal Analysis

The signal analysis module aims at providing the speech recognition system with a
sequence of acoustic vectors. The acoustic vectors build a parameterization of the
speech waveform observed at the microphone. The signal analysis should remove
as much information irrelevant for the speech recognition process as possible, for
instance intensity and pitch, and retain only the information relevant for the content
of the utterance. Thus the acoustic vectors should fulfill the following requirements:

• be of low dimensionality to allow a reliable estimation of the free parameters
of the speech recognition system,

2



1.2 Signal Analysis

• be independent of the speaker and recording environment, i.e. only dependent
on the contents of the spoken word sequence,

• be characteristic for the sub-word unit to allow an optimal discrimination
between the different acoustic models.

The signal analysis of today’s state-of-the-art speech recognition systems is based
on a short term spectral analysis [Rabiner & Schafer 78], usually a Fourier analysis.
Two procedures for further processing and smoothing are widely used: Mel frequency
Cepstral coefficients (MFCC) [Davis & Mermelstein 80] and perceptual linear predic-
tion (PLP)[Hermansky 90]. In this work the MFCC-based signal analysis front-end
of the RWTH speech recognition is used. The basic steps of the RWTH signal
analysis front-end are shown in Figure 1.2 and described in detail in [Welling 99].

After some preprocessing like preemphasis and windowing, the Fourier power spec-
trum of the speech waveform is computed for each time frame with a frame shift of
10ms and a window length of 25ms. The frequency axis of this power spectrum is
warped according to the Mel frequency scale to adjust the spectral resolution to that
of the human ear [Young 93]. Afterwards, a filter bank is applied and the logarithm
is taken to reduce the dynamic range and a Cepstrum transformation is applied to
the log filter bank coefficients to remove the correlation between the different out-
puts. The dimensionality of the Cepstral vector is reduced by omitting the highest
Cepstral coefficients for smoothing. Mean, variance and energy normalization are
applied subsequently to the MFCCs to reduce a potential mismatch introduced by
different transmission channels and recording environments. An alternative MFCC
computation scheme which integrates the frequency axis warping into the Cepstrum
transform and computes the Cepstral coefficients directly on the log-power spectrum
will be presented in Chapter 7.

A commonly used method to include dynamic information is to augment the
original vector with the first and second derivatives yielding a high dimen-
sional vector. A more general approach is linear discriminant analysis (LDA)
[Fisher 36, Duda & Hart+ 01]. The LDA is a linear transformation which projects
a feature space into a lower dimensional subspace such that the class separability
for distributions with equal variances is maximized. In the RWTH system several
successive feature vectors are augmented (either three vectors containing derivatives
or seven vectors without derivatives, depending on the specific task). This high
dimensional feature space is reduced using LDA to a dimension of typically 25 (tele-
phone data) or 33 (broadband data). It will be shown in Chapter 5 that LDA fits
into a more general framework of linear transformation schemes.

Especially the demand of speaker independence on the acoustic vectors is hard
to meet. The above mentioned MFCC and PLP features are for instance also used
for speaker identification tasks [Doddington & Przybocki+ 00], which means that
there is still a lot of information of the given speaker contained in those features.
Several methods have been developed to cope with the speaker dependence of the

3
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Preemphasis, Windowing

| FFT |

Mel-Frequency Warping

Filterbank

Logarithm

Cepstrum

Mean, Variance, and
Energy Normalization

Time Derivatives

LDA

Speech Waveform

Acoustic Vector

2

Figure 1.2: Scheme of the RWTH signal analysis front end.

acoustic feature vectors: speaker normalization, which tries to reduce the speaker
dependency by transforming the acoustic feature vectors, and speaker adaptation,
which tries to adjust the model parameters of the speech recognition system to the
characteristics of the given speaker1.

1This distinction is not orthogonal as some normalization schemes can be formulated as adaption
and vice versa, c.f. Chapters 4 and 5

4



1.3 Acoustic Modeling

1.3 Acoustic Modeling

The aim of acoustic modeling is to provide a stochastic model p(xT
1 |wN

1 ) for the
realization of a sequence of acoustic vectors xT

1 given a word sequence wN
1 . The

acoustic model is a concatenation, according to a pronunciation lexicon, of the
acoustic models for the basic sub-word units that the speech recognition system
utilizes.

Dependent on the amount of training data and the desired model complexity, the
sub-word units are usually build of whole words, syllables, phonemes or phonemes in
context. Smaller units than words enable the speech recognition system to recognize
words which have not been seen in the training data and to ensure that enough
instances of each unit have been observed in training to allow a reliable parameter
estimation. In large vocabulary speech recognition (LVCSR) the most commonly
used sub-word units are phonemes in a context of one or two adjacent phonemes,
so called triphones and quinphones, respectively. Context-dependent phonemes (n-
phones) are used to care for the different pronunciations of a phoneme depending
on the surrounding phonemes.

The acoustic realizations of a sub-word unit differ significantly with the speaking
rate. To model the variations in speaking rate, Hidden Markov Models (HMM)
have been established as de-facto standard for speech recognition systems [Baker 75,
Rabiner 89]. An HMM is a stochastic finite state automaton consisting of a number
of states and transitions between the states. The probability p(xT

1 |wN
1 ) is extended

by an unobservable (hidden) random variable representing the states:

p(xT
1 |wN

1 ) =
∑

sT
1 :wN

1

p(xT
1 , sT

1 |wN
1 )

where the sum is taken over all possible state sequences sT
1 for a given word sequence

wN
1 . Using Bayes’ identity this can be rewritten as

p(xT
1 |wN

1 ) =
∑

sT
1 :wN

1

T∏
t=1

p(xt|xt−1
1 , st

1; w
N
1 ) · p(st|xt−1

1 , st−1
1 ; wN

1 ) .

This equation can be further simplified by applying a first order Markov assumption
[Duda & Hart+ 01]. The probabilities p(xt|xt−1

1 , st
1; w

N
1 ) and p(st|xt−1

1 , st−1
1 ; wN

1 ) are
assumed not to depend on previous observations but only on the states (Markov)
and on the immediate predecessor state only (first order):

p(xT
1 |wN

1 ) =
∑

sT
1 :wN

1

T∏
t=1

p(xt|st; w
N
1 ) · p(st|st−1; w

N
1 ) . (1.2)

Thus the probability p(xT
1 |wN

1 ) is split into the acoustic emission probability
p(xt|st; w

N
1 ), denoting the probability to observe an acoustic vector xt while be-

ing in state st, and the transition probability p(st|st−1; w
N
1 ) for a transition from
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state st−1 to state st. Often the sum in Eq. (1.2) is approximated by the maximum;
this approximation is usually called Viterbi or Maximum approximation [Ney 90]

p(xT
1 |wN

1 ) ≈ max
sT
1 :wN

1

T∏
t=1

p(xt|st; w
N
1 ) · p(st|st−1; w

N
1 ) . (1.3)

The Eqs. (1.2) and (1.3) can be solved efficiently using the forward-backward
algorithm [Baum 72, Rabiner & Juang 86] or dynamic programming [Bellman 57,
Viterbi 67, Ney 84].

An example of an HMM for a part of the word “seven” is given in Figure 1.3.
The topology used in this work has been introduced by Bakis [Bakis 76]: the basic
HMM consists of six subsequent states where each two successive states are identical.
Between the state transitions to the same state (loop), the next state (forward),
and the next state but one (skip) are allowed. Using a frame-shift of 10ms (cf.
Section 1.2) the path through the HMM with forward transitions only amounts to
60ms, which is close to the average duration of phonemes for most languages. This
6-state HMM has a minimum duration of 30ms (only skip transitions). This has
been found to be too long for fast conversational speech, e.g. on the Verbmobil II
corpus [Molau 03]. In this case a 3-state model is used where the two identical states
are merged into a single one, which reduces the minimum length of the HMM.

The emission probabilities p(xt|st; w
N
1 ) of an HMM can be modeled by discrete

probabilities [Jelinek 76], semi-continuous probabilities [Huang & Jack 89] or as
continuous probability distributions [Levinson & Rabiner+ 83]. A commonly used
model for continuous probability distributions are mixture densities made up of a
weighted sum of either Gaussian or Laplacian probability densities; a systematic
comparison of Gaussian or Laplacian probability density functions can be found in
[Chen & Eide+ 99]. For Gaussian mixture densities, which are used in the RWTH
system, the emission probabilities are given as follows:

p(x|s; wN
1 ) =

Ls∑
l=1

cslN (x|µsl,Σ; wN
1 ) (1.4)

where csl denotes the mixture weights with the constraint
∑Ls

l=1 csl = 1 and
N (x|µ,Σ) denotes the normal distribution with mean µ and covariance Σ. In
the RWTH system the covariances Σ are tied over all states2 and are modeled
by a diagonal matrix to care for data sparseness problems and for efficiency rea-
sons. The set of parameters θ = {{µsl}, {csl},Σ} is estimated using Maximum
Likelihood estimation in combination with the Expectation Maximization algorithm
[Dempster & Laird+ 77].

When using n-phones as basic sub-word units the number of states to be modeled
raises exponentially with the context length. Thus a large number of n-phones will

2 i.e. all states share the same variance
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Figure 1.3: 6-state hidden Markov model in Bakis topology for the triphone sehv in
the word “seven”. The HMM segments are denoted by <1>, <2>, and
<3>.

have no or too few observations for a reliable parameter estimation. Therefore several
states are tied together yielding generalized n-phone models [Young 92]. Decision
tree based state clustering is used in almost all LVCSR systems. The main advantage
of this top-down clustering method is that no back-off models have to be trained
and unseen n-phones will be assigned to an appropriate HMM state. Details of the
state clustering in the RWTH system can be found in [Beulen & Ortmanns+ 99]. As
the pronunciation of a phoneme depends on the surrounding phonemes, a phoneme
at a word boundary is pronounced differently dependent on the predecessor and
successor words. This coarticulation effect is modeled explicitly using across-word
n-phones [Hon & Lee 91, Odell & Valtchev+ 94], which take into account the ending
and beginning phonemes of the adjacent words as left and right context, respectively.
Details of the across-word model implementation for the RWTH system can be found
in [Sixtus 03].
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1.4 Language Modeling

The language model p(wN
1 ) provides an a-priori probability for a word sequence

wN
1 = w1, . . . , wN . The syntax, semantics and pragmatics of the language to

be recognized are implicitly covered by this statistical model. Due to the unlim-
ited number of possible word sequences further model assumptions have to be ap-
plied in order to estimate a reliable model. For LVCSR m-gram language models
[Bahl & Jelinek+ 83] have become widely accepted. m-gram language models as-
sume that the word sequence follows an (m − 1)-th order Markov process: the
probability of the word wn depends on the (m − 1) predecessor words only. Thus
the probability p(wN

1 ) can be expressed as

p(wN
1 ) =

N∏
n=1

p(wn|wn−1
1 )

=
model assumption

N∏
n=1

p(wn|wn−1
n−m+1) . (1.5)

The word sequence hn = wn−1
n−m+1 is denoted as history of length m of the word wn

with the definitions h := wn−1
1 if n < m and h := ∅ if n− 1 < n−m + 1, e.g. at the

boundary p(w1|w0
1) = p(w1).

A commonly used measure for the evaluation of language models is the perplexity
PP

PP =

[
N∏

n=1

p(wn|wn−1
n−m+1)

]−1/N

.

The log-perplexity is equal to the entropy of the model and can be interpreted
as average number of choices to continue a word sequence wn−1

n−m+1 at position
n. When using the perplexity as optimization criterion for training the language
model, closed form solutions for p(w|h) can be derived which are equal to the
relative frequency of the word sequence on the training corpus. The number of
possible m-grams increases exponentially with the history length m. Thus, for a
large vocabulary W , a considerable amount of m-grams will be unseen in train-
ing or have too few observations for a reliable estimation of p(w|h), even for very
large training corpora. Therefore smoothing methods have to be applied. The
smoothing is based on discounting in combination with backing-off or interpolation
[Katz 87, Ney & Essen+ 94, Generet & Ney+ 95, Ney & Martin+ 97]. Discounting
subtracts probability mass from seen events which is than distributed over all un-
seen events (backing-off) or over all events (interpolation), usually in combination
with a language model with shorter history. The parameters of the smoothed lan-
guage model can be estimated using a cross-validation scheme like leaving-one-out
[Ney & Essen+ 94]. Details of the language model implementation in the RWTH
system can be found in [Wessel & Ortmanns+ 97].
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1.5 Search

1.5 Search

The search module of the speech recognition system combines the two knowledge
sources acoustic model and language model as depicted in Fig. 1.1. The objective of
the search is to find that word sequence which maximizes the a-posteriori probability
for a given sequence xT

1 of acoustic feature vectors according to Eq. (1.1)

[wN
1 ]opt = argmax

wN
1

p(wN
1 |xT

1 )

= argmax
wN

1

{
p(wN

1 ) · p(xN
1 |wN

1 )
}

.

If the language model is given by an m-gram model (Eq. (1.5)) and the acoustic
model is an HMM as given in Eq. (1.2), the following optimization problem has to
be solved by the search module:

[wN
1 ]opt = argmax

wN
1


[

N∏
n=1

p(wn|wn−1
n−m+1)

]
·

 ∑
sT
1 :wN

1

T∏
t=1

p(xt|st; w
N
1 ) · p(st|st−1; w

N
1 )


∼= argmax

wN
1

{[
N∏

n=1

p(wn|wn−1
n−m+1)

]
·

[
max
sT
1 :wN

1

T∏
t=1

p(xt|st; w
N
1 ) · p(st|st−1; w

N
1 )

]}
.

(1.6)

In the second step the Viterbi approximation has been applied to the HMM, which
significantly reduces the complexity of the optimization problem. Eq. (1.6) can
be solved efficiently using dynamic programming [Bellman 57]. Dynamic program-
ming exploits the mathematical structure and divides the problem in subinstances.
As in all search problems, the search can be organized in two different ways: a
depth-first and breadth-first search. The depth-first strategy is used by the A∗-
search or stack-decoding algorithm. Here the state hypotheses are expanded time-
asynchronously dependent on a heuristic estimate of the cost to complete the path
[Jelinek 69, Paul 91]. The performance of the A∗-search relies strongly on the quality
of this estimate; the convergence to a global optimum is guaranteed if the estimate
is a lower bound of the true costs. Additionally, the search space is minimal if the
estimate is equal to the true costs.
The breadth-first search design is used by the Viterbi search where all state hypothe-
ses are expanded time-synchronously [Vintsyuk 71, Baker 75, Sakoe 79, Ney 84]. In
this approach the probabilities of all hypotheses up to a given time frame are com-
puted and thus can be compared to each other. This allows to reduce the search
space significantly by pruning unlikely hypotheses early in the search process. Espe-
cially in the breadth-first approach an efficient pruning is necessary as the number of
possible word sequences with maximum length N grows exponentially with N . Thus
a full optimization of Eq. (1.6) is only feasible for small vocabulary sizes |W |. For
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large vocabulary sizes approximations have to be made. Instead of finding the exact
optimal solution of Eq. (1.6) the goal is changed to find a sufficiently good solution
with much less effort. In the so-called beam-search, only that fraction of the hypothe-
ses are expanded whose likelihood is sufficiently close to that of the best hypoth-
esis of the given time frame [Lowerre 76, Ney & Mergel+ 87, Ortmanns & Ney 95].
Beam-search does not guarantee to find the globally best word sequence. This opti-
mal sequence may have been pruned at an intermediate search stage due to a poor
likelihood. However, if the pruning parameters are adjusted properly no significant
search errors occur and the search effort is reduced considerably.

Several other methods can be applied to further reduce the computational com-
plexity of the Viterbi or beam-search:

• Lexical prefix tree [Ney & Haeb-Umbach+ 92]: the pronunciation lexicon is or-
ganized as lexical prefix tree. A considerable amount of search effort is spend
on the first few phoneme-models of words that will be pruned away later in
the search process. Since the word identity is not known at the start of a hy-
pothesis any longer, this organization causes some overhead in computational
effort. Thus a lexical prefix tree is only beneficial for beam search and large
vocabulary sizes.

• Look-ahead: these techniques try to incorporate approximated informa-
tion of future search stages. The language model look ahead is used to
overcome some of the overhead caused by the tree organization of the
lexicon [Steinbiss & Tran+ 94, Odell & Valtchev+ 94, Alleva & Huang+ 96,
Ortmanns & Ney+ 96a]: At each node of the tree the probability of the most
likely word reachable from that node is taken into account to make the lan-
guage model pruning more effective. The phoneme look ahead estimates the
acoustic probability of a few future time frames using a simplified acoustic
model (e.g. monophone models instead of triphone models) and thus enhances
the acoustic pruning [Ney & Haeb-Umbach+ 92, Haeb-Umbach & Ney 94,
Ortmanns & Ney+ 96b].

• Fast likelihood computation: a considerable amount of computation time of
an high-performance speech recognition system is spend on computing the
acoustic emission probabilities (cf. Eq. (1.4)). Typical high-performance
speech recognition systems make use of several 100.000 densities. Proposed
approaches to reduce the effort of likelihood computation are based on struc-
turing the search space [Ramasubramansian & Paliwal 92, Fritsch 97], quan-
tization of the feature vectors [Bocchieri 93, Ortmanns & Ney+ 97b] or by
partitioning the feature space [Nene & Nayar 96]. Details of the fast likeli-
hood computation used in the RWTH system can be found in [Ortmanns 98].
Additionally, utilizing the SIMD3 instructions of modern CPUs for a par-

3single instruction, multiple data
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1.5 Search

allelized likelihood computation significantly reduces the computation time
[Kanthak & Schütz+ 00].

Multi-pass search strategies are used either to enhance the accuracy of the speech
recognition system or to speed up the system without significant loss in accu-
racy. In both cases, a preliminary recognition pass is performed and the results are
stored as N-best lists or word graphs for further processing. In N -best lists, the N
most likely word sequences are stored [Schwartz & Chow 90, Schwartz & Austin 91,
Ney & Oerder 93]. A word graph is a directed acyclic graph whose arcs contain the
word labels of word sequence alternatives [Schwartz & Austin 91, Ney & Aubert 94,
Ortmanns & Ney+ 97a]. In systems optimized for accuracy the first pass is per-
formed with fully trained acoustic models gaining high-accuracy word-graphs.
All subsequent passes than restrict the search space to those hypotheses con-
tained in the word graph. The second pass utilizes more complex acoustic mod-
els with a longer context and/or more complex language models like 7-gram
models. Additionally, speaker dependent transformations are estimated on the
results of the first pass to adapt the speech recognition system to the given
speaker. Modern systems make use of five or more passes to obtain the final re-
sult [Schwartz & Colthurst+ 04, Evermann & Chan+ 04].
The approach for systems optimized for runtime speed is a bit different. Here a
very fast first pass is carried out with simplified acoustic and/or language models,
in order to rapidly produce a preliminary transcription or a large word graph for fur-
ther processing [Saon & Zweig+ 03]. Afterwards, a second, refined acoustic model is
adapted in several steps using the recognition results of the first pass. In subsequent
passes, the final output is then obtained using these adapted acoustic models.
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Chapter 2

State of the Art in Speech
Recognition

Linear transformations have a long history in speech recognition research. This
Chapter gives an overview of the most important approaches related to this thesis.

2.1 Feature Space Transformations

One widely used group of feature space transformations are feature space projec-
tions. Feature space projections aim at reducing the dimensionality of the acoustic
feature space in order to find an optimal subspace for discrimination. After the
transformation, the dimensions of the feature space are sorted according to their
importance for class discrimination. The dimensionality of the feature space is then
reduced by omitting those dimensions which contain little class information.

The most common feature space projection is linear discriminant analysis (LDA)
[Fisher 36]. It was first introduced for discrimination of syllables by [Hunt 79]. The
basic concepts of using LDA for speech recognition were presented in [Brown 87].
LDA has been applied for continuous speech recognition for the first time in
[Doddington 89]. A successful application of LDA for large vocabulary has been
reported in [Haeb-Umbach & Ney 92].

The approach of LDA has been extended in [Kumar & Andreou 98] to overcome
the constraint of equal covariances of the class distributions, called heteroscedastic
discriminant analysis (HDA). Additionally, the authors present a general theory for
linear feature space transformations including dimensionality reducing transforma-
tions in a maximum-likelihood framework. It was also shown that the LDA can be
derived from a maximum-likelihood approach and fits well in this general frame-
work. The authors achieved an improvement on the small vocabulary TI-DIGITS
task from 0.67% word error rate with LDA to 0.59% word error rate with HDA using
full covariance matrices and from 2.29% word error rate (LDA) to 1.65% word error
rate (HDA) with diagonal covariance matrices.

Based on that work, both approaches presented in [Gales 97, Gales 99] and
[Gopinath 98] applied an HDA-like transformation, but without dimensionality re-
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duction. In [Gales 97, Gales 99] the approach was called semi-tied covariances, in
[Gopinath 98] maximum-likelihood linear transformation (MLLT). The idea of this
approach is to transform the feature space such that the resulting covariance matri-
ces are as diagonal dominant as possible. In [Gales 99] the author reports consistent
improvements on the 1994 ARPA Hub 1 test set of about 12% rel. In [Gopinath 98]
the same transformation was tested on the 1996 DARPA Hub 4 test set. The author
reports improvements of 8.5% rel. on the F0 subset (planned speech) and of 2.5%
rel. on the F1 subset (spontaneous speech).

The semi-tied covariances or MLLT approach has been extended in
[Olsen & Gopinath 02] by increasing the degrees of freedom of the transformation,
called extended maximum-likelihood linear transformation (EMLLT). The inverse
covariance matrices are taken from a subspace of a chosen number of rank one ma-
trices. The complexity of the (inverse) covariance modeling can be adjusted from
diagonal covariances (which is equal to MLLT) up to full covariance modeling in a
consistent way by choosing the number of rank one matrices which build up the sub-
space to which the inverse covariances are restricted. The authors report recognition
test results on an inhouse car navigation task, the recognition performance could
be improved by 9.5% rel. using MLLT and by 35% rel. using EMLLT. A further
extension to EMLLT has been presented in [Axelrod & Olsen 02]. Instead of using
rank one matrices, the subspace is spanned by a chosen number of arbitrary sym-
metric matrices. Although the overall recognition accuracy could not be improved
compared to full covariance modeling, the authors achieved consistently better re-
sults compared to EMLLT and diagonal covariance modeling given equal number
of parameters. Thus this approach allows for a significant reduction in model com-
plexity (and thus memory requirements and computation time) with only little loss
in recognition accuracy.

2.2 Linear Speaker Adaptation Transformations

One of the first approaches to apply linear transformations for speaker adap-
tation was presented in [Jaschul 82] by means of spectral mapping. In
[Choukri & Chollet+ 86] a method was presented based on canonical correlation
analysis. Here, both the reference data as well as the test data from the new speaker
are transformed into a common feature space by estimating two different transforma-
tions. These spectral mapping approaches have been applied in an HMM framework
by [Class & Kaltenmeier+ 90] for an isolated word task.

An approach which is used in virtually all state-of-the-art speech recognition sys-
tems is called Maximum Likelihood Linear Regression (MLLR) and was proposed
in [Leggetter & Woodland 95a]. An affine transformation is applied to the mean
vectors of the acoustic emission probabilities of the HMM. Usually, several HMM
states are grouped into adaptation classes which share the same transformation ma-
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trix. The adaptation classes are defined manually based on broad phonetic classes or
data driven by clustering adjacent mean vectors of the HMM emission probability.
In [Leggetter & Woodland 95a] the authors used a data driven approach with a pre-
determined number of adaptation classes. The authors report improvements of 21%
rel. using one adaptation class and achieved the best result with an improvement
of 37% rel. using 15 adaptation classes on the medium vocabulary ARPA Resource
Management task. The use of regression class trees for the definition of the adap-
tation classes has been proposed in [Leggetter & Woodland 95b]. The recognition
performance could be improved by 20% rel. using a regression class trees compared
to one global adaptation matrix. A comparison with the data driven approach used
in [Leggetter & Woodland 95a] was not given. A detailed comparison of regression
class trees is reported in [Haeb-Umbach 01]. If the number of adaptation data is
small, the estimation of the regression matrix is unstable and the regression ma-
trix tends to be singular [Leggetter & Woodland 95a]. A possible solution is the
introduction of a threshold for a minimum number of adaptation utterances. In
[Neumeyer & Sankar+ 95] a block-diagonal structure of the transformation matrix
was suggested, which decreases the number of parameters to be estimated. The
authors achieved an improvement on the WSJ Spoke 3 test set of 8% rel. compared
to a full transform and 15% rel. compared to a diagonal transform.

The transformations presented so far only affected the mean vectors of the proba-
bility distribution. An approach to also transform the variances has been presented
in [Gales & Woodland 96]. The variances of the Gaussian probability distributions
were transformed using a second linear transformation. Using a diagonal transfor-
mation, the authors achieved improvements on different corpora ranging from 1.5%
to 4.3% relative reduction in word error rate when adapting mean and variances
compared to adapting the means only. These additional improvements of adapting
the variances in addition to the means are quite small compared to the improve-
ments of adapting the mean vectors only, which range from 9.8% to 13.1% relative
reduction in word error rate compared to the baseline with no adaptation.

Another way of adapting the variances is to use the same transformation as for
the mean vectors. This has been proposed in [Digalakis & Rtischev+ 95] for diag-
onal transformations and later in [Gales 98] for the general case. This approach
is named constrained MLLR, (C-MLLR); the term constrained is used because the
transformation matrices for the mean vectors and the variances are forced to be equal
in contrast to the usual (unconstrained) MLLR where the transformation matrices
for the mean vectors and variances are independent of each other. The C-MLLR
approach is equivalent to transforming the feature vectors instead of the model pa-
rameters, which allows an efficient implementation for the case of using one global
transformation only, i.e. no regression classes. The comparison of C-MLLR with
the MLLR approach presented in [Gales & Woodland 96] revealed little differences
in terms of the recognition accuracy.

The adaptation schemes presented above were applied to given model parameters
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in test only, the training part was unaltered. An approach to use linear transfor-
mations during the training of the speech recognition system has been presented
in [Anastasakos & McDonough+ 96] and is called speaker adaptive training. This
approach estimates the model parameters together with appropriate MLLR trans-
formations for the training speakers. The authors achieved improvements of 8.9%
and 11.4% relative reduction in word error rate for the 20k WSJ H1 and the 5k
WSJ S0 test sets, respectively. Despite this improvements, a major drawback of
speaker adaptive training is a substantial increase in complexity in terms of time
and memory requirement and therefore speaker adaptive training is not as common
as MLLR adaptation in state-of-the-art speech recognition systems. However, in
[Gales 98] the author applied the C-MLLR approach also in training. As C-MLLR
can be formulated as transformation of the feature vectors, the estimation formula
for the model parameters remain almost unchanged. The gains obtained by speaker
adaptive training with C-MLLR are similar to those obtained by MLLR given above.

One important problem when applying speaker adaptation in an unsuper-
vised mode are the recognition errors of the first pass. This becomes even
more important on tasks with a high word error rate, for instance auto-
matic recognition of conversational speech. Confidence measures have been
investigated to aid the adaptation process dealing with faulty transcripts
[Zeppenfeld & Finke+ 97, Anastasakos & Balakrishnan 98, Nguyen & Gelin+ 99,
Wallhoff & Willet+ 00]. In all these works the confidence measures have
been used to mark possible recognition errors and to exclude those words
from the adaptation process. The results reported are inconsistent and rely
very much on the specific confidence measure ranging from only marginal
improvements [Anastasakos & Balakrishnan 98, Nguyen & Gelin+ 99] to 3.3%
[Zeppenfeld & Finke+ 97] and 4.1% [Wallhoff & Willet+ 00] relative improvement
in word error rate, respectively.

A major drawback of using confidence measures in the manner described above
is the reduction of adaptation data. Therefore a word graph has been used to col-
lect the statistics needed for the adaptation process [Padmanabhan & Saon+ 00,
Uebel & Woodland 01]. This approach uses a weighted sum of the alternative hy-
potheses represented in the word graph rather than discarding parts with low con-
fidence. While in both works the difference of confidence-based and lattice-base
MLLR has been shown to be marginal if only one adaptation pass is applied, in
[Uebel & Woodland 01] it has been shown that lattice-based MLLR gives a relative
improvement in word error rate of about 3% if used in several successive recognition
and adaptation iterations.

Another major problem in speaker adaptation is data sparseness, especially for fast
speaker adaptation. To estimate the transformation matrix reliably, several minutes
of speech data are needed. Although MLLR adaptation can be applied iteratively,
the performance is far worse than in a two-pass mode. This problem has been
addressed using prior distributions for the MLLR matrix [Chesta & Siohan+ 99,
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Chou 99]. The authors achieved a relative improvement in word error rate over the
conventional MLLR technique up to 13.5% for limited adaptation data and ended
up with equal performance for the case of many adaptation data.

2.3 Vocal Tract Normalization

The idea of scaling the frequency axis of the speech signal to deal with gender spe-
cific variations has been proposed first in [Wakita 77] for isolated vowel recognition.
The idea has been picked up later in [Acero 90, Acero & Stern 91] for small vocab-
ulary speech recognition with an improvement of 10% relative reduction in word
error rate using a bilinear transformation function. For large vocabulary, vocal
tract normalization (VTN) has been proposed in [Eide & Gish 96, Lee & Rose 96,
Wegmann & McAllaster+ 96]. In [Eide & Gish 96], several warping functions have
been compared showing little differences in recognition performance. The warping
factor has been estimated using the median position of the third formant. The im-
provements range from 8% to 6% relative reduction in word error rate for 5 hours
and 63 hours of training data, respectively. A maximum likelihood estimation of
the warping factors has been suggested in [Lee & Rose 96] together with an iterative
scheme to estimate the warping factors on the training speakers. The estimation of
the warping factors in test is either done by a forced alignment using a preliminary
recognition pass or is based on a text-independent Gaussian mixture model without
the need of a first recognition pass. The recognition performance could be improved
by 15% relative reduction in word error rate using the one-pass approach and by
20% using a preliminary recognition pass. A similar approach has been presented in
[Wegmann & McAllaster+ 96], where a piece-wise linear warping function has been
applied yielding improvements of 12% relative reduction in word error rate.

The transformation functions used by then were either convex or concave. In
[McDonough 98] all-pass transforms have been proposed as transformation function,
which are an extension to bilinear functions. The word error rate could be lowered by
7% relative for the bilinear transformation and by 8% for the more flexible all-pass
transform. Additionally, it was shown that VTN amounts to a linear transformation
in the Cepstrum domain when using the all-pass transform. This was previously
shown in [Acero 90, p.119] for the case of a bilinear transformation.

The relationship between VTN and linear transformations, especially MLLR,
has been investigated in [Pye & Woodland 97], showing that improvements ob-
tained by unconstrained MLLR and VTN are largely additive. However, in
[Uebel & Woodland 99] it has been shown that for the case of C-MLLR there is
no additional improvement from VTN, indicating that both approaches may not be
independent of each other.

Several approaches have been proposed to realize VTN as a linear transforma-
tion of MFCC. In [Cox 00], the author used a tri-diagonal transformation matrix
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to transform the MFCC features with the restriction of all elements on one (sec-
ondary) diagonal being equal, thus the matrix consists of only three free parame-
ters. Phoneme recognition test results with a supervised adaptation yielded only
moderate improvements. The linearity of VTN for the case of a bilinear transfor-
mation function was utilized in [Emori & Shinoda 01], where the authors calculated
the transformation matrix approximatively for small values of the warping parame-
ter. The computational cost of estimating the warping factor could be lowered while
maintaining the recognition performance.

Based on considerations of the effect of frequency warping on the filter bank, band-
diagonal matrices have been proposed to enhance MLLR adaptation with limited
adaptation data [Uebel & Woodland 99, Afify & Siohan 00]. In [Afify & Siohan 00],
the authors have proposed to constrain the MLLR matrix to a band-diagonal matrix,
a structure which had previously been been observed in [Uebel & Woodland 99].
Applying this restriction to the MLLR matrix, the recognition performance could
be improved significantly on the non-native Spoke3 test set of the Wall Street Jour-
nal task for various amounts of adaptation data and different numbers of bands
[Afify & Siohan 00]. The same approach has later been repeated on a Chinese iso-
lated word task with similar results in [Ding & Zhu+ 02].

2.4 Summary

In summary, the following conclusions can be drawn from the previous work:

• Linear transformations have been shown to improve recognition accuracy at
various stages of the recognition process.

• Feature space transformations have been investigated extensively to define sub-
spaces for the acoustic models, resulting in a wide variety of approaches which
are often closely related or even equivalent (for instance semi-tied covariances
and MLLT).

• Linear transformations have been proven very successful for speaker adap-
tation and have become a quasi-standard in up-to-date speech recognition
systems.

• In connection with the problem of recognition errors in an unsupervised two-
pass adaptation mode, confidence measures and lattice-based adaptation have
been studied with inconsistent results.

• Vocal tract normalization provides an effective and online capable method to
deal with speaker-specific variations.

18



2.4 Summary

• Several efforts have been made to represent vocal tract normalization as linear
transformation in the Cepstral domain, but no exact interrelationship could
be derived.

• No clear picture has emerged on the use of C-MLLR vs. MLLR.

• There is some evidence that C-MLLR and vocal tract normalization are not
independent of each other.
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Chapter 3

Scientific Goals

Speaker adaptation and normalization techniques play an important role in cur-
rent state-of-the-art automatic speech recognition systems. Although widely used,
no clear picture has emerged from literature on the connection of the various ap-
proaches. In particular, the interconnection of vocal tract normalization and linear
transformations has been addressed but has not been understood sufficiently.

The following topics will be studied in this thesis:

1. Although speaker adaptation and normalization techniques are widely used, no
consistent framework has been developed. In fact, speaker adaptation and nor-
malization are oftenly considered as different approaches to reduce the speaker
specific variability in the acoustic signal. In this thesis a common mathemati-
cal framework to describe both speaker adaptation and normalization will be
developed in the context of Bayes’ decision rule. Moreover, it will be proven
that from the conceptual point of view both techniques are equivalent if Gaus-
sian mixture distributions are used as emission probabilities of the hidden
Markov model.

Using this common framework, a unified view of most linear transformations
used in speech recognition will be discussed and similarities and differences of
the approaches will be identified and analyzed.

2. The standard Mel frequency Cepstral coefficients (MFCC) features make use
of a twofold smoothing: one is provided by the filter bank and the other by
omitting higher coefficients of the subsequent Cepstrum transformation. This
twofold smoothing is disadvantageous because the optimal numbers of filter
banks and Cepstral coefficients have to be optimized again for each new appli-
cation. A new approach will be introduced that does not make use of a filter
bank and the smoothing is provided solely by the Cepstrum transformation.

3. Using this enhanced MFCC computation scheme, it will be derived analytically
that vocal tract normalization can always be expressed as a linear transforma-
tion of the Cepstral coefficients for arbitrary invertible warping functions. The
transformation matrix will be explicitly calculated for three common warping
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functions. Based on some general characteristics of typical warping functions,
the shape of the matrices for different warping functions will be investigated.

4. Based on the structure of the transformation matrix for vocal tract normaliza-
tion, a restriction of the maximum likelihood linear regression (MLLR) matrix
will be investigated, which allows a more robust estimation for the case of
limited adaptation data.

5. By representing VTN as linear transformation, the Jacobian determinant can
now, for the first time, be taken into account for any warping function. So far,
the Jacobian determinant has been simply omitted or taken into account only
for very special warping functions. In this work the influence of the Jacobian
determinant on the warping factor estimation and thus the performance of
vocal tract normalization will be studied exemplary for a piece-wise linear
warping function.

6. Word posterior probabilities have been proven to provide a good confidence
measure. It will be shown that using word posterior probabilities as a confi-
dence measure can significantly help to solve the problem of recognition errors
in a two-pass adaptation scheme.

7. Regression classes are commonly used to enhance the MLLR adaptation per-
formance. However, the use of regression classes needs a substantial amount
of adaptation data to gain improvements. In this thesis several approaches
will be presented to benefit from regression classes even in the case of limited
adaptation data.

The remainder of this thesis is organized as follows: in Chapter 4 a common
framework of adaptive acoustic modeling will be developed. Afterwards, a unified
view of linear transformations used in speech recognition will be given in Chapter 5.
Based on a modified signal analysis, which will be described in Chapter 6, it will
be shown in Chapter 7 that vocal tract normalization amounts to a linear transfor-
mation in the Cepstral space. Due to this linearity, the transformation matrix and
thus the Jacobian determinant can be calculated. The effect of incorporating the
Jacobian determinant for vocal tract normalization will be discussed in Chapter 8.
In Chapter 9, several improvements of the MLLR adaptation will be presented, in
particular a refined modeling of adaptation classes, the use of confidence measures
for enhanced MLLR adaptation and a restriction of the MLLR matrix based on the
results of Chapter 7. This thesis will be concluded by a summary of the scientific
contributions in Chapter 10 and an outlook in Chapter 11. Details on some more
complex calculations as well as details on the speech corpora and recognition settings
used in the experimental evaluations will be given in the Appendix.
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Chapter 4

Adaptive Acoustic Modeling

4.1 Introduction

A speaker independent automatic speech recognition (SI-ASR) system has to cope
with a lot of variability in the acoustic signal. For example, varying transmission
channels, noise, speakers, and speaking styles are sources of such variabilities. Most
of these variabilities are irrelevant for the speech recognition process and are actu-
ally sources of degraded recognition performance [Sankar & Lee 96]. From a more
general perspective, this can be viewed as mismatch between training and testing
condition of the ASR system. The training material of an SI-ASR system is usually
chosen to contain a wide range of different acoustic conditions, for instance

• different speakers, speaking styles and accents,

• different transmission channels and room acoustics

• different types of microphones (close talking, far-field, headset)

• different levels and sources of ambient and channel noise

This collection of acoustic conditions in the training material is necessary to enable
the ASR system to cope with the different conditions. On the other hand, this variety
of acoustic conditions broadens the models trained from these training data. A given
test utterance usually contains a specific combination of the acoustic conditions (i.e.
one speaker with a specific vocal tract length and speaking style using a particular
microphone with a particular noise level).

Examples of degraded performance caused by such mismatch are:

• speaker dependent systems significantly outperform speaker independent sys-
tems

• gender-dependent systems generally obtain better recognition results (on the
corresponding gender) than gender-independent systems
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Chapter 4 Adaptive Acoustic Modeling

• systems trained on data recorded over a mobile phone in a car perform sig-
nificantly better on the same test environment than systems trained on data
collected in an office using a microphone

A schematic view of these mismatches between training and test conditions is de-
picted in Fig. 4.1. The left side refers to the feature space of the acoustic vectors
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Figure 4.1: Schematic view of mismatch in training and test.

xT
1 = x1, . . . , xT and the right side to the model space of the corresponding acoustic

models with model parameters θ. Three abstract data levels are distinguished:

• The training data (XTrain, first level), which contain a collection of different
conditions. The model parameters θTrain are estimated on the set XTrain during
training. θTrain covers, to a certain degree, the conditions represented in the
training data XTrain.

• A particular test utterance (XTest, third level), which usually contains one
specific condition only. In general, this exact condition has not been part of
the training data, e.g. the specific speaker or background noise. If the acoustic
model (θTest) had been trained on this specific test condition, there would have
been no mismatch. This implies on the other hand a strong mismatch if feature
vectors XTest are to be recognized with an acoustic model θTrain.
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4.2 Adaptation and Normalization

• An (ideal) intermediate level (X̃). At this level it is assumed that the variation
in the acoustic signal caused by different conditions is removed by a transfor-
mation of the original feature vectors, e.g. Cepstral mean normalized feature
vectors to eliminate different transmission channels, or vocal tract normalized
feature vectors to eliminate the variations caused by different vocal tracts of
the individual speakers. This level is an idealized view because the variations
in the acoustic signal cannot be removed completely in practice.

Using this framework, speech recognition can be viewed as combination of feature
vectors and acoustic models from those specific data levels. A mismatch is given
if both spaces do not belong to the same level. For instance, in the case of non-
adaptive acoustic modeling there is a strong mismatch between the test data XTest

and the acoustic model θTrain.

4.2 Adaptation and Normalization

Besides training condition-dependent acoustic models, several approaches have been
developed to compensate for the mismatch described in the last Section. A schematic
overview of adaptive acoustic modeling is depicted in Fig. 4.2. Again, this picture
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Figure 4.2: Overview of normalization (left side) and adaptation (right side)
schemes.

shows the three abstract data levels as in Fig. 4.1 together with approaches to
overcome the mismatch that is given for a combination of feature vectors X and
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Chapter 4 Adaptive Acoustic Modeling

acoustic models θ from different levels. The mismatch can be reduced in the feature
space (normalization) or in the model space (adaptation):

• In normalized acoustic modeling the variations in the acoustic signal caused
by a specific source (e.g. different vocal tracts of individual speakers) are tried
to be removed during signal analysis, yielding normalized acoustic vectors X̃.
As can be seen from Fig. 4.2, normalization approaches have to be applied to
both the training (XTrain) and test data (XTest) to gain maximum performance.
If applied to only one of both, a slight mismatch remains (between XTest and
θ̃ if the training data are normalized only or between X̃ and θTrain if the test
data are normalized only).

• Adaptation schemes modify the parameters of the acoustic model directly in
order to reduce the mismatch. Provided that the applied adaptation scheme
has sufficient degrees of freedom it is capable of reducing the mismatch be-
tween XTest and θTrain by (ideally) transforming θTrain into θTest. Thus adapta-
tion schemes may be applied in recognition only and the additional benefit of
adaptive training is small.

The current adaptation and normalization approaches can be categorized into two
classes: the maximum a-posteriori (MAP) family and the transformation family.

4.2.1 MAP Family

Maximum a-posteriori adaptation (MAP) [Gauvain & Lee 94] follows the principle
of Bayesian parameter estimation [Duda & Hart+ 01]. In contrast to maximum-
likelihood (ML) estimation where the parameter set θ is fixed but unknown, Bayesian
estimation considers the parameters θ themselves as random variable drawn from
a prior distribution p(θ|τ) with so called hyper-parameters τ . Usually the hyper-
parameters τ are estimated on training data {x}. In general, the dependency on θ
has to be treated as hidden variable:

p
(
xT

1 |τ({x})
)

=

∫
dθ p(xT

1 |θ) p
(
θ|τ({x})

)
In MAP adaptation this integral is approximated by the maximum

p
(
xT

1 |τ({x})
)

= max
θ

p(xT
1 |θ) p

(
θ|τ({x})

)
and the adapted recognition is carried out with the MAP estimate

θmap = argmax
θ

p(xT
1 |θ) p

(
θ|τ({x})

)
. (4.1)

used as parameters of the acoustic model:

[wN
1 ]opt = argmax

wN
1

{
p(xT

1 |wN
1 ; θmap) · p(wN

1 )
}

.
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4.2 Adaptation and Normalization

For Gaussian mixture HMM the MAP estimate of the mean µi with prior µi,0 is
given as [Gauvain & Lee 94]

µi,map =
λiµi,0 +

∑T
t=1 γi(t)xt

λi +
∑T

t=1 γi(t)
, (4.2)

where γi(t) is the Gaussian occupation probability for density i at time t and λi is
an adjustable parameter. In other words, the MAP estimate in Eq. (4.2) describes
an interpolation of the prior mean µi,0 and the empirical mean of the data xT

1 .
The advantage of MAP adaptation is that the parameters converge to those of a

speaker-dependent system trained with ML, i.e. a MAP adapted system converges
to a speaker-dependent system as the adaptation data increases. The main disad-
vantage is that MAP adaptation needs large amounts of adaptation data. As this
is a local approach, only those parameters may be adapted which have been ob-
served in the adaptation data. Up-to-date large vocabulary ASR systems make
use of several 100.000 Gaussian densities, hence the number of unobserved pa-
rameters in the adaptation data will be huge for practical amounts of adaptation
data. Several extensions to MAP have been proposed to overcome this disadvantage
[Ahadi & Woodland 97, Shinoda & Lee 97].

4.2.2 Transformation Family

In contrast to directly adapting the parameters of the acoustic model, another ap-
proach is to apply a transformation to the original parameters. The advantage is
that the transformation may depend on a few parameters only and that several (or
even all) densities of the acoustic model may share the same transformation. The
transformations are usually divided into two classes [Leggetter 95]:

• Normalization (left side in Fig. 4.2) tries to transform the feature vec-
tors to a reference condition in which the effect causing the mismatch is
(ideally) removed. An example of such a normalization scheme is vo-
cal tract normalization (VTN) [Wakita 77, Eide & Gish 96, Lee & Rose 96,
Wegmann & McAllaster+ 96]. In a simplified model the human vocal tract is
assumed as a uniform tube. A change in the length of the tube by a factor
α−1 results in a scaling of the frequency axis by a factor α. Accordingly, the
mismatch caused by different vocal tracts of the particular speakers is reduced
by a scaling the frequency axis of the power spectrum (cf. Chapter 7). The
basic idea is as follows: the frequency axis is scaled by a warping function ga

with a transformation parameter α

gα : [0, π] → [0, π] (4.3)

ω → ω̃ = gα(ω) ,
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Chapter 4 Adaptive Acoustic Modeling

where ω denotes the original frequency and ω̃ the warped frequency. The
warping function gα is assumed to be invertible, i.e. strictly monotonic and
continuous (see Fig. 4.3). The frequency ω = π corresponds to the Nyquist
frequency and the domain and co-domain are chosen to conserve bandwidth
and information contained in the original spectrum.

πω

ω~

α=0

π

α>0

α<0

Figure 4.3: Example of a VTN warping function ω̃ = gα(ω) for different values of
the warping parameter α.

All typical VTN approaches have in common that the warping function
depends only on a few free parameters which control the amount of the
frequency distortion. Even with only one free parameter (the warping factor
α) to model the mismatch, VTN performs very well in a variety of recognition
tasks. On the other hand, a few parameters allow to be estimated reliably on
very little data which makes VTN a good choice for on-line speech recognition
systems. More details on VTN warping are given in Chapter 6

• Adaptation (right side in Fig. 4.2) denotes the transformation of the parame-
ters of the acoustic model, typically the parameters of the emission probability.
An example of an adaptation approach is Maximum Likelihood Linear Regres-
sion (MLLR) [Leggetter & Woodland 95a] in which the mismatch is reduced
by an affine transformation of the mean vectors of the emission probability
distribution of the HMM model:

µ̂s,r = As,r µs + bs,r (4.4)

where s denotes the HMM state and r the speaker. The matrix As,r is es-
timated via maximum likelihood, given adaptation data (xT

1 , wN
1 ) or using a

preliminary transcription w̃N
1 of a first recognition pass (which usually will

contain recognition errors).
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4.3 Mathematical Framework for Adaptive Acoustic Modeling

An overview of current adaptation and normalization schemes is given in
[Woodland 01]. Adaptation approaches work very well if applied in recognition
only, i.e. without modifying the training part of the ASR system as they change
the parameters θtrain trained on the collection of training conditions straightly to
the parameters θtest that are suitable for the specific test condition. Minor addi-
tional improvements can be obtained if adaptation schemes are also used in train-
ing (speaker adaptive training SAT) [Anastasakos & McDonough+ 96]. In contrast,
normalization schemes give best results if applied both in training and test. If
used in recognition only, a minor mismatch between the normalized feature vec-
tors x̃test and θtrain remains, which lowers the recognition performance. Applying
normalization or adaptation only in training is disadvantageous as the resulting
acoustic models do not contain enough flexibility to cope with unseen conditions
[Welling & Kanthak+ 99, Gales 01].

4.2.3 Text Dependency

Besides the distinction of the space the transformation is applied to, the dif-
ferent approaches may be classified according to their text or class dependency.
Some approaches need a (word level) transcription or class labeling of the adap-
tation data (i.e. the data where the parameters are estimated on). Examples
of such text dependent approaches are MLLR and MAP. VTN may be applied
text-dependent like the common 2-pass approach as described in [Lee & Rose 96],
where a word-level transcription is needed to estimate the parameter α, or text-
independent, where α is estimated using text-independent Gaussian mixture mod-
els (fast-VTN, [Wegmann & McAllaster+ 96, Welling & Haeb-Umbach+ 98]). Typ-
ical text-independent approaches to reduce the mismatch are Cepstral mean and
variance normalization, stochastic feature space matching [Sankar & Lee 95] or his-
togram normalization [Molau & Keysers+ 02].

4.3 Mathematical Framework for Adaptive Acoustic
Modeling

Adaptation and normalization are commonly viewed as different techniques to re-
duce the mismatch between training and testing conditions, e.g. in [Woodland 01],
and have so far been treated separately. In fact, the terms adaptation and normal-
ization are not orthogonal and the approaches can be described together in the same
mathematical framework. In this Section a common mathematical framework will
be developed and it will been shown that in terms of Bayes’ decision rule there is
no difference between these two approaches. However, the terms normalization and
adaptation will be used throughout this work as in practice there maybe still some
differences.
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According to Eq. (1.2) the acoustic model distribution p(xT
1 |wN

1 ) in an HMM
framework is given as

p(xT
1 |wN

1 ; θ) =
∑

sT
1 :wN

1

T∏
t=1

p(xt|st; w
N
1 ; θ) · p(st|st−1; w

N
1 ) ,

where θ denotes the (set of) parameters of the emission probability distribution,
e.g. mean vector and covariance matrix for Gaussian distributions. To model the
mismatch between different acoustic conditions described in the last Section a new
condition-dependent parameter set α is introduced1:

p(xT
1 |wN

1 ; θ) → p(xT
1 |wN

1 ; θ, α) . (4.5)

Typical examples of such condition-dependent parameter sets are the warping fac-
tor used in VTN (cf. Section 5.2.4) as a single parameter or the elements of the
transformation matrix used in MLLR adaptation (cf. Section 5.2.1). For simplicity
only a single parameter will be considered in the following, the extension to a set of
parameters is obvious. In the HMM framework, the adaptation is typically applied
to the parameters of the emission probability distribution only:

p(xT
1 |wN

1 ; θ, α) =
∑

sT
1 :wN

1

T∏
t=1

p(xt|st; w
N
1 ; θ, α) · p(st|st−1; w

N
1 ) . (4.6)

As the condition-dependent parameter is usually unobserved, it is considered as
hidden variable:

p(xT
1 |wN

1 ; θ) =

∫
dα p(xT

1 , α|wN
1 ; θ) (4.7)

=

∫
dα p(α|wN

1 ; θ) · p(xT
1 |wN

1 ; θ, α) . (4.8)

Thus, Bayes’ decision rule with adaptive acoustic modeling using the language model
p(wN

1 ) becomes

[wN
1 ]opt = argmax

wN
1

{
p(wN

1 ) ·
∫

dα p(α|wN
1 ; θ) · p(xT

1 |wN
1 ; θ, α)

}
.

Often the integral is approximated by the maximum

p(xT
1 |wN

1 ; θ) ∼= max
α

{
p(α|wN

1 ; θ) · p(xT
1 |wN

1 ; θ, α)
}

1the same symbol p are for simplicity, although the functional form may change as well
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and in this case Bayes’ decision rule reads

[wN
1 ]opt = argmax

wN
1

{
p(wN

1 ) ·max
α

{
p(α|wN

1 ; θ) · p(xT
1 |wN

1 ; θ, α)
}}

. (4.9)

The prior distribution p(α|wN
1 ; θ) is often assumed to be non-informative (i.e. uni-

form) and is hence neglected.
To obtain a model for practical applications, the exact dependence of the model

on the parameter α must be specified. The aim of adaptive acoustic modeling is
to move from model p(xT

1 |wN
1 ; θ) with mismatch to a model p(xT

1 |wN
1 ; θ, α) with

reduced (ideally removed) mismatch by means of the mismatch parameter α. In
virtually all approaches the functional form of the probability density function is
kept fixed and the dependence on the parameter α is realized via transformations2.
These transformations can be applied in two ways:

• Transformation of the observations xT
1 (normalization):

xT
1 → xα

T
1 = fα(xT

1 ) (element wise)

p(xT
1 |wN

1 ; θ, α) = p(fα(xT
1 )|wN

1 ; θ) ·
∣∣∣∣dfα(xT

1 )

dx

∣∣∣∣ (4.10)

where the last term is the Jacobian determinant of the transformation. A
prototypical example of a transformation of the observation vector is VTN.
The Jacobian determinant can be omitted if no direct comparison of proba-
bility values is carried out with differently “normalized” distributions. In a
typical VTN approach the warping factor α is chosen by comparing the scores
obtained by a forced alignment of the same utterance warped with a set of
discrete warping factors. Hence, the Jacobian determinant needs to be taken
into account [Sankar & Lee 96].
Often the Jacobian determinant is assumed to be flat as function of α. Thus
it is approximated to be independent of α and neglected. In virtually all
experimental studies of VTN the Jacobian determinant has been neglected
since it can hardly be calculated in the usual VTN technique with explicitly
warping the frequency axis of the spectrum during signal analysis. Whether
this approximation is justified has not been analyzed in detail so far. In
[McDonough 00] it was shown that for the case of all-pass transforms the Ja-
cobian determinant is important. With the approach presented in this work it
is now possible to calculate the Jacobian determinant for VTN (see Chapter 8)
and to investigate the importance of the Jacobian determinant for general
warping functions.

2in this sense even MAP may be viewed as transformation of the parameters of the prior distri-
bution, cf. Eq. (4.2)
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• Transformation of the model parameters θ (adaptation):
adapting the model parameters can often be formulated as an inverse trans-
formation applied to the acoustic vectors (cf. Chapter 5). To simplify the
notation, the same functional form fα is used for both transformations:

θ → θα = f (−1)
α (θ)

for which the probability distribution becomes

p(xT
1 |wN

1 ; θ, α) = p(xT
1 |wN

1 ; f (−1)
α (θ)) . (4.11)

In this case the random variable xT
1 is not altered and thus no Jacobian deter-

minant is required. A prototypical example of this transformation is a linear
transformation of the model parameters with a matrix A(α) (MLLR):

fα : θ → θα = A(α) · θ

In summary, adaptation and normalization can be described in the same mathe-
matical framework. A schematic overview is depicted in Fig. 4.4. Although adapta-

non-adaptive modeling adaptive modeling
strong mismatch reduced mismatch

p(xT
1 |wN

1 ; θ) p(xT
1 |wN

1 ; θ, α)

observation −−−−−−−−→ normalized observation

xT
1

x xα
T
1 = fα(xT

1 )

mismatch parameter αy
parameter −−−−−−−−→ adapted parameter

θ θα = f
(−1)
α (θ)

Figure 4.4: Schematic overview of adaptive acoustic modeling. Note simplification:
the same functional form fα(·) has been used for both transforming the
observations xT

1 and parameters θ.

tion and normalization are equivalent according to this framework, both presented
ways of dealing with mismatch are relevant in practice. First it is necessary to find
a suitable transformation function fα for a given mismatched condition. Often it is
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easier to formulate an appropriate transformation function either in the feature or
in the model space. In some cases, the corresponding inverse transformation func-
tion may be hardly formulated. In practical applications it is relevant to estimate
the condition dependent (sets of) parameters α reliably on limited amounts of data,
which often is easier in one space.
It will be shown later that there is a strong interdependence of two widely used nor-
malization (VTN) and adaptation (MLLR) techniques if Gaussian emission proba-
bilities are used (cf. Section 7.7).

4.4 Summary

In this Chapter normalization and adaptation approaches, which have so far been
treated separately, have been presented for the first time in a unified view. It has
been shown that, in terms of Bayes’ decision rule, both adaptation and normalization
are interchangeable. Based on that, a consistent common mathematical framework
for adaptive acoustic modeling could be achieved.

Additionally, the most important adaptation/normalization families together with
typical representatives have been briefly introduced.
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Chapter 5

Unified View of Linear
Transformations and Vocal Tract
Normalization

5.1 Motivation

The application of linear transformations to either the acoustic feature vector or
the parameters of the acoustic model has a long tradition is speech recognition. For
instance, an approach to use a linear transformation of the acoustic feature vectors
to enhance the separability of syllables has already been proposed in [Hunt 79].
The approaches described in [Jaschul 82] and [Class & Kaltenmeier+ 90] led to the
nowadays widely used MLLR speaker adaptation [Leggetter & Woodland 95a] (cf.
Section 9).

A confusing abundance of linear transformations has been proposed by now.
Examples of speaker independent transformations are linear discriminant analy-
sis (LDA) [Brown 87, Doddington 89], heteroscedastic discriminant analysis (HDA)
[Kumar & Andreou 98], semi-tied covariances (STC) [Gales 99], maximum likeli-
hood linear transformations (MLLT) [Gopinath 98] or extended MLLT (EMLLT)
[Olsen & Gopinath 02]. Another group of transformations contains the speaker de-
pendent transformations MLLR [Leggetter & Woodland 95a], variance adaptation
[Gales & Woodland 96], “constrained” MLLR (C-MLLR), feature space MLLR (F-
MLLR) [Gales 98] or vocal tract normalization [Eide & Gish 96, Lee & Rose 96],
which will be shown in Chapter 7 to be a linear transformation as well.

While the individual approaches have been studied in great detail in literature, the
relationship between them has been neglected and never been discussed thoroughly.
As a matter of fact, there exist close connections between the approaches listed
above, both within and between the two groups.

This Chapter will start with a review of the most important linear transforma-
tions in speech recognition and it will be shown that all these linear transformations
can be formally described in a common framework. A unified view of linear
transformations will be presented. Based on that common framework, the manifold
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links between the approaches will be elaborated and some approaches will turn out
to be a special case of another or are even mathematically equivalent.

Hidden Markov Models (HMM) have been established as de-facto standard for
state-of-the-art speech recognition systems [Baker 75, Rabiner 89]. In most systems
the emission probabilities are modeled by mixtures of Gaussian probability distri-
butions

p(x|s) =
Ls∑
l=1

csl p(x|µsl,Σs) , (5.1)

where x denotes the observation vector, s the HMM state and csl the weight of
the mixture component l. A transformation of the mixture weights is seldomly
used in speech recognition systems, so the following discussion will focus on the
transformation of the mean and/or covariances of the single Gaussian probability
distributions:

µ̂ = A µ + b Σ̂ = H ΣH> (5.2)

where A and H are n × n transformation matrices and n is the dimension of the
acoustic feature vector. Thus, the transformed Gaussian emission probability for
the HMM state s becomes

p(x|µs,Σs;A, b, H) =

1√
| det(2πH Σs H>)|

exp

(
−1

2
(x−A µs − b)>

(
H Σs H>)−1

(x−A µs − b)

)
(5.3)

In the following two Sections the linear transformations will be introduced and
motivated as presented by the original authors. A unifying view and the intercon-
nection between them will be discussed thereafter.

The linear transformations can be divided into speaker dependent and speaker
independent transformations. The main difference is the data on which the trans-
formations are estimated.

5.2 Speaker Dependent Transformations

Speaker dependent transformations are mostly used to adapt a speaker-independent
system to a new speaker. The transformations are estimated on a certain amount
of data from the new speaker and the so obtained transformations are applied to
the speaker-independent model parameters, yielding a speaker-dependent, or better
speaker-adapted system. The adaptation data may be collected beforehand or the
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data to be recognized itself may be used in a two-pass recognition approach or by
iterative adaptation.

The most flexible transformation approach would estimate an individual transfor-
mation for each HMM state. Due to usually limited amount of data to estimate the
parameters on, regression classes c = 1, . . . , C are defined for which the transforma-
tions are estimated [Gales 96]. Thus several HMM states share the same transforma-
tion. The granularity of these regression classes is dependent on the actual amount
of adaptation data. In order to simplify the equations, the presentation starts with
one transformation for each state and regression classes will be considered later.

Using a maximum likelihood parameter estimation, the speaker dependent trans-
formations are obtained by maximizing Eq. (5.3) for each speaker r = 1, . . . , R:

(Aopt
s,r , bopt

s,r , Hopt
s,r ) = argmax

(As,r,bs,r,Hs,r)

{
Tr∑
t=1

S∑
s′=1

γs′(t)

[
log

(
1

| det Hs′,r Σs′ H
>
s′,r|

)

−
(
(xt −As′,r µs′ − bs′,r)

> (Hs′,r Σs′ H
>
s′,r

)−1
(xt −As′,r µs′ − bs′,r)

)]}
(5.4)

Some specific realizations have been studied in literature and will be discussed in
the following.

5.2.1 Maximum Likelihood Linear Regression

Maximum likelihood linear regression (MLLR) [Leggetter & Woodland 95a] denotes
an affine transformation of the means of the emission probability, estimated by
maximum likelihood:

µ̂s,r = As,r µs + bs,r . (5.5)

The covariances are left unchanged, i.e. the transformation matrix H is set to
H = 1. For notational convenience the affine transformation of Eq. (5.5) is rewritten
in the form

µ̂s,r = W s,r ξs (5.6)

where ξs denotes the extended mean vector

ξs = [1 µ>s ]> (5.7)

and W s,r is the n× (n + 1)-matrix [bs,r As,r]. The adaptation matrix W s,r is esti-
mated by maximum likelihood, given adaptation data (xr

T
1 , wr

N
1 ) consisting of the

sequence of observation vectors xr
T
1 and the word sequence wr

N
1 for speaker r:

W ML
s,r = argmax

W s,r

p(xr
T
1 |µs,Σs, W s,r; wr

N
1 ) (5.8)
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The word sequence wr
N
1 may be either the true spoken sequence (supervised adap-

tation) or been obtained by a previous recognition pass (unsupervised adaptation).
The latter will usually contain recognition errors and thus supervised adaptation is
usually superior to unsupervised adaptation.

The maximization of Eq. (5.8) is carried out using the expectation-maximization
(EM) algorithm [Dempster & Laird+ 77] by maximizing the auxiliary function

Q(λ, λ̄) =
∑

sT
1 :wr

N
1

p(xr
T
1 |wr

N
1 , λ) log p(xr

T
1 |wr

N
1 , λ̄) (5.9)

where λ denotes the original set of model parameters and λ̄ the updated (i.e.
adapted) model set of the iterative optimization scheme. Omitting terms which
are independent of W , the following equation needs to be solved:

W ML
s,r = argmin

W s,r

{
T∑

t=1

γs(t)(xrt −W s,r ξs)
>Σ−1

s (xrt −W s,r ξs)

}
. (5.10)

When using regression classes, an additional summation must be performed over all
HMM states belonging to the same regression class c. For diagonal covariance mod-
els, which are used in virtually all speech recognition systems due to computational
efficiency and data sparseness problems, a closed-form solution of Eq. (5.4) can be
obtained. Taking the derivative w.r.t. W c,r and equating to zero yields a row-wise
solution for W ML

c,r [Leggetter & Woodland 95a]:

W (i)
c,r = Z(i)

c G(i)
c

−1
(5.11)

with

G(i)
c =

M∑
m=1

1

σ2
sm i

ξsmξ>sm

T∑
t=1

γsm(t) (5.12)

Z(i)
c =

M∑
m=1

T∑
t=1

γsm(t)
1

σ2
sm i

xrtξ
>
sm

(5.13)

where W
(i)
c,r and Z

(i)
c denote the i-th row-vector of W ML

c,r and Zc, respectively, and
σ2

s i is the i-th diagonal element of Σs. The sum over m runs over all states Sc =
{s1, . . . , sm, . . . , sM} which belong to class c. A solution for the full covariance case
is given in [Gales & Woodland 96].

MLLR provides a powerful and easy to implement adaptation technique
which is used in most of today’s state-of-the-art speech recognition sys-
tems, e.g. [Saon & Zweig+ 03, Nguyen & Rigazio+ 03, Evermann & Chan+ 04,
Schwartz & Colthurst+ 04]. Typical improvements of MLLR adaptation range be-
tween 10% and 20% relative reduction in word error rate.
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5.2.2 Variance Adaptation

Variance adaptation [Gales 98] denotes a speaker dependent transformation of the
covariance matrix

Σ̂s,r = Hc,r Σs H>
c,r . (5.14)

Generally, a variance adaptation can be applied independently from a transformation
of the means. In practice, however, both approaches have been always used in
combination. It has been found that transforming the means is more important
than transforming the covariances, which gives only a small additional improvement
[Gales & Woodland 96].

5.2.3 Constrained MLLR

A special combination of mean and variance transformation is constrained MLLR
(C-MLLR), where the transformation matrices A and H are forced to be equal,
i.e. mean and variances are transformed using the same transformation matrix
[Gales 98]. The advantage of this approach is that the transformation is equivalent
to a transformation of the feature vector instead of the model parameters and thus
allows for an efficient implementation:

p(x|µs,Σs; A) =

1√
| det(2πAΣs A>)|

exp

(
−1

2
(x−A µs − b)>

(
AΣs A>)−1

(x−A µs − b)

)

=
| det A|√
| det(2πΣs)|

exp

(
−1

2

(
A−1(x− b)− µs

)>
Σ−1

s

(
A−1(x− b)− µs

))
(5.15)

Therefore C-MLLR is sometimes called feature space MLLR (F-MLLR). Experi-
mental studies have revealed little differences between mean and variance adapta-
tion without constraint, i.e. using different matrices for mean and variance, and
C-MLLR. As C-MLLR can be implemented as simple transformation of the obser-
vation vector this approach has prevailed, especially for speaker adaptive training,
c.f. [Saon & Zweig+ 03, Evermann & Chan+ 04, Schwartz & Colthurst+ 04].

5.2.4 Vocal Tract Normalization

Vocal tract normalization (VTN) is discussed in more detail in Section 4.2.2 and
Chapter 7. VTN has been originally formulated as a warping of the frequency
axis of the power spectrum to compensate for the different vocal tract lengths of
the individual speakers. It will be shown in Chapter 7 that vocal tract normaliza-
tion (VTN) can be expressed as linear transformation of the Cepstral vector. The
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transformation matrix is dependent on a single parameter only, the warping fac-
tor α. Thus, VTN can be viewed as a highly restricted C-MLLR transformation,
i.e. with a C-MLLR matrix Ar(α) with only one free parameter α. This result,
which will be derived analytically in Chapter 7, has been experimentally observed
in [Uebel & Woodland 99], where the authors found that improvements obtained
from VTN and C-MLLR were not additive. Thus, VTN is a special realization of
C-MLLR.

5.2.5 Extensions to MLLR

Several extensions to the MLLR approach have been presented in literature. In
[Chesta & Siohan+ 99] and [Chou 99] the estimation of the transformation matrices
is based on a maximum a-posteriori (MAP) criterion by the use of a prior distri-
bution for the transformation matrices (MAPLR). In [Gunawardana & Byrne 01]
a discounted likelihood optimization criterion has been proposed for estimating
the transformation matrix (DLLR). Both MAPLR and DLLR improve the robust-
ness of the adaptation when only small amounts of adaptation data are available.
Recently, also discriminative techniques have been used as optimization criterion,
e.g. [Wallhoff & Willet+ 00, Gao & Ramabhadran+ 00, Uebel & Woodland 01,
Doumpiotis & Tsakalidis+ 04].

As this work focuses an the general attributes of linear transformations, those
extensions will not be discussed in detail.

5.2.6 Summary

The speaker dependent transformations can be classified according to the following
scheme:

Table 5.1: Overview of speaker dependent linear transformations based on Eq. (5.3).
The subscript r denotes a speaker dependency and the subscript c a
dependency on regression (adaptation) classes.

transformation A H remark
MLLR Ac,r 1
variance adaptation 1 Hc,r

mean & var. adapt. Ac,r Hc,r

C-MLLR/F-MLLR Ar Ar

VTN Ar(α) Ar(α) C-MLLR with restricted matrix
(only one free parameter α)

Usually C-MLLR and VTN are applied using one global transformation whereas
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for MLLR and variance adaptation regression classes are defined for which different
transformation matrices are estimated.

5.3 Speaker Independent Transformations

Speaker independent linear transformations are typically employed to transform the
feature space into a (sub)space where certain model assumptions are more appro-
priate than in the original space. For instance, the well-known LDA transforma-
tion [Fisher 36, Duda & Hart+ 01] finds a subspace in which class separability is
enhanced for globally pooled diagonal covariance modeling and arranges the com-
ponents of the feature vector in the new space according to their importance for
classification.

Two different classes of linear speaker independent transformations are used in
speech recognition systems: One class contains a dimensionality reduction like LDA
[Brown 87, Doddington 89] and HDA [Kumar & Andreou 98]. Those transforma-
tions aim at projecting the feature space into one of lower dimension by selecting
the most important directions in the feature space. The other class of transforma-
tions like STC, MLLT or EMLLT maintains the dimension of the feature space.
The aim of STC for instance is to find a feature space in which the assumption of
diagonal covariance matrices is more appropriate than in the original space. In the
following the differences and similarities between the approaches will be discussed
in detail.

Using a maximum likelihood parameter estimation, the estimation equation is
very similar to that for speaker dependent transformations (Eq. (5.4), presented
in Section 5.2). The only difference is that the transformations are obtained by
maximizing Eq. (5.3) jointly for all data instead of using data from each speaker
separately:

(Aopt
s , bopt

s , Hopt
s ) = argmax

(As,bs,Hs)

{
R∑

r=1

Tr∑
t=1

S∑
s′=1

γs′(t)

[
log

(
1

| det Hs′ Σs′ H
>
s′|

)

−
(
(xt −As′ µs′ − bs′)

> (Hs′ Σs′ H
>
s′

)−1
(xt −As′ µs′ − bs′)

)]}
(5.16)

5.3.1 Semi-tied Covariances and MLLT

The idea of semi-tied covariances (STC) [Gales 97, Gales 99] is to find a global
transformation H such that the resulting covariance matrices Σs of the emission
probabilities are as close to diagonal as possible. The same approach has also been
published in [Gopinath 98] and is referred to as Maximum Likelihood Linear Trans-
formation (MLLT).
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As known from linear algebra, it is always possible to simultaneously diagonalize
two matrices if each matrix can be diagonalized individually (generalized Eigenvalue
problem). With more than two matrices (as usual in today’s speech recognition sys-
tems with about several hundred thousand Gaussian distributions), a simultaneous
diagonalization can be obtained only approximatively. The goal is to find a transfor-
mation such that the error of using diagonal covariance models is minimized. Thus,
the resulting (D ×D) covariance matrix is given as

Σ̂s = H Σdiag
s H> =

D∑
d=1

σs
2
dhdh

>
d (5.17)

where Σdiag
s is modeled as diagonal matrix of size (D×D), D is the dimension of the

acoustic feature vector, σs
2
d is the d-th entry of Σdiag

s and hd is the d-th row vector
of the (D × D)-matrix H , which is not necessarily orthogonal. In other words,
the state-specific covariance matrix Σs is obtained by multiplying the state-specific
diagonal covariance matrix Σdiag

s with the state-independent transformation matrix
H .

Semi-tied covariance modeling has the advantage to overcome the limitation of
diagonal covariance modeling without the enormous increase in the number of pa-
rameters that comes with full covariance modeling.

The transformation Hopt as well as the means µopt
s and covariances Σdiag

s

opt
are

obtained by maximum likelihood estimation. The optimization equation (5.16) reads
for STC modeling

(µopt
s ,Σdiag

s

opt
, Hopt) = argmax

(µs,Σdiag
s ,H)

{
T∑

t=1

S∑
s′=1

γs′(t)

[
log

(
1

| det H Σdiag
s′ H>|

)

−
(
(xt − µs′)

>
(
H Σdiag

s′ H>
)−1

(xt − µs′)
)]}

. (5.18)

The resulting estimation equations can be found in [Gales 99]. STC modeling is
closely related to variance adaptation presented in the previous Section. Comparing
Eq. (5.4) and (5.18) shows that the estimation equations for variance adaptation
and STC are nearly identical. The main difference are the data which are used for
the optimization. While the STC transformation matrix is typically estimated from
the training data, the transformation matrices for variance adaptation are estimated
from speaker specific adaptation data (which is often identical to the test data for
unsupervised adaptation).

5.3.2 EMLLT

Extended Maximum Likelihood Linear Transformation (EMLLT)
[Olsen & Gopinath 02] is an extension to STC/MLLT. For a STC model, the
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covariance matrix for each state Σ̂s has only D independent components (c.f.
Eq. (5.17)):

Σ̂
STC

s =
D∑

d=1

σs
2
dhdh

>
d . (5.17)

Eq. (5.17) describes the composition of the covariance matrix Σ̂
STC

s as a sum of D
(D denotes the dimension of the acoustic feature vector) rank-one matrices hd h>d ,

i.e. Σ̂
STC

s is generated by the basis {hdh
>
d }D

d=1.
The idea of EMLLT is to increase the number of rank-one matrices hdh

>
d , which

build the basis, while keeping the dimension of each vector hd fixed to D:

Σ̂
EMLLT

s =
∆∑

d=1

σs
2
dhdh

>
d with D ≤ ∆ ≤ D(D + 1)/2 . (5.19)

In other words, Σ̂s now consists of ∆ independent components (instead of D for STC
modeling) and the transformation matrix H is now of dimension D×∆. The main
differences of STC and EMLLT covariance modeling are schematically depicted in
Fig. 5.1.

@
@

@
@

@
@

@

H>

(∆×D)

q q

q q

@
@

@@
=

=

H
(D ×∆)

Σdiag
s

(∆×∆)

Σdiag
s

(D ×D)

ΣSTC
s

(D ×D)

ΣEMLLT
s

(D ×D)

H>

(D ×D)
H

(D ×D)

Figure 5.1: Schematic differences of STC and EMLLT modeling. The terms in
parentheses denote the dimensions of the matrices.

EMLLT is equal to a full covariance modeling for ∆ = D(D + 1)/2 if the vectors
hd are chosen in the following way:

hd =

{
ed for d ≤ D

ei + ej for D < d ≤ ∆, with i, j ∈ [1, D] and i < j
(5.20)
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ek denotes the unit vector in direction k. The ML estimate of H is again given by
Eq. (5.16) or Eq. (5.18), respectively. It should be noted that H is not invertible
in this formulation and a rewriting similar to Eq. (5.15) is not possible. After
introducing the HDA approach, it will be shown that there exists a close relationship
between STC, EMLLT and HDA.

5.3.3 HDA and LDA

Heteroscedastic Discriminant Analysis (HDA) [Kumar & Andreou 98] and Linear
Discriminant Analysis (LDA) [Fisher 36, Duda & Hart+ 01] are examples of dimen-
sionality reducing transformations. Dimensionality reducing transformations project
a feature space of dimension D into a lower dimensional one with dimension D < D.
The objective is to reduce the dimensionality of the feature space to care for data
sparseness problems that may occur in high dimensional feature spaces while retain-
ing a maximum of class separability information:

FΘD
: RD → RD (D < D) (5.21)

x̃ → x = ΘDx̃ ,

where ΘD is a (D × D)-matrix. Additionally, the transformation may project the
feature space into a new subspace where certain model assumption, for instance a
diagonal covariance modeling, are more suitable than in the original space.

A restriction of the LDA approach is that the data distributions have to share a
common covariance matrix. The LDA transformation has been extended for het-
eroscedastic data and derived in a ML framework in [Kumar & Andreou 98]. Thus
LDA is a special case of HDA.

The basic idea to formulate the feature space projections in a maximum likelihood
framework is to extend ΘD to a full (D ×D) transformation matrix

Θ =

[
ΘD

ΘD−D

]
(5.22)

where ΘD denotes the first D rows of Θ and ΘD−D the remaining D −D rows, both
consisting of D columns. The basic assumption for the extension of Θ is that the
dimensions above D carry no significant class separability information and are thus
modeled by class independent parameters. The class 1 dependent mean vectors µs

1For notational simplicity, the HMM states are chosen as classes to be separated by the
HDA/LDA, but many other classes are suitable. In fact, in the RWTH system the HMM
states emerged as best choice in terms of word error rate [Zolnay 03].
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and covariances Σs are extended by class independent components µ0 and Σ0:

µ̃s =



µs1
...

µsD

µ01
...

µ0(D−D)


=

[
µs

µ0

]
(5.23)

Σ̃s =

[
Σs 0
0 Σ0

]
(5.24)

where µ0 is a (D−D) dimensional vector and Σ0 a matrix of size (D−D)×(D−D).
Again, the parameters µ̃s, Σ̃s and Θ are estimated using an ML approach:

(µ̃opt
s , Σ̃

opt

s ,Θopt) = argmax
(µ̃s,Σ̃s,Θ)

{
T∑

t=1

S∑
s′=1

γs′(t)

[
log

(
| detΘ|2

| detΣs′|

)

−
(
(Θx̃− µ̃s′)

>Σ̃
−1

s′ (Θx̃− µ̃s′)
)]}

(5.25)

The partition of Θ from Eq. (5.22) results in the following estimates for the mean
and covariances [Kumar & Andreou 98]:

µopt
s = ΘD x̄s s = 1, . . . , S

µopt
0 = ΘD−D x̄

Σopt
s = ΘD W s Θ>

D s = 1, . . . , S

Σopt
0 = ΘD−D T Θ>

D−D

with

x̄s =
1

Ns

Ns∑
n=1

xn with xn ∈ s, s = 1, . . . , S

x̄ =
1

N

N∑
n=1

xn

W s =
1

Ns

Ns∑
n=1

(xn − x̄s)(xn − x̄s)
> s = 1, . . . , S

T =
1

N

N∑
n=1

(xn − x̄)(xn − x̄)>
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The resulting optimization formula for Θopt is given as

Θopt = argmax
Θ

{
− N

2
log | det

(
ΘD−D T Θ>

D−D

)
|

−
S∑

s=1

Ns

2
log | det

(
ΘD W s Θ>

D

)
|

+ N log | detΘ|
}

(5.26)

No closed-form solution of Eq. (5.26) has been found yet and the equation
has to be optimized numerically. For further details the reader is referred to
[Kumar & Andreou 98]. There is a close relationship between HDA and STC or
EMLLT covariance modeling, especially for a full transformation (i.e. D = D),
which is subject of the following Section.

5.3.4 Relationship between STC, EMLLT and HDA

HDA and LDA transformations are typically formulated as transformation of the
observation vector. By extending the dimensionality reducing transformation ΘD

according to Eq. (5.22), it is possible to rewrite the probability distribution

p(x̃|µ̃s, Σ̃s;Θ) =
| detΘ|2√
| det 2πΣ̃s|

exp

(
−1

2
(Θx̃− µ̃s)

>Σ̃
−1

s (Θx̃− µ̃s)

)
(5.27)

=
| detΘ|2√
| det 2πΣ̃s|

exp

(
−1

2
(x̃− νs)

>
(
Θ−1 Σ̃s Θ−>

)−1

(x̃− ν̃s)

)
(5.28)

with

νs = Θ−1µ̃s (5.29)

Using this relationship it is easy to see that the ML optimization criterion Eq. (5.25)
is again very similar to Eq. (5.4), just as discussed for the STC transformation.
Moreover, a comparison of Eq. (5.28) and Eq. (5.18) reveals that STC is equivalent
(for H = Θ−1) to an HDA without dimensionality reduction (i.e. D = D) and diag-
onal covariances Σs = Σdiag

s in Eq. (5.24). Consequently, EMLLT is also equivalent
to HDA for ∆ = D. For ∆ > D there exits a close relationship between EMLLT
and HDA without dimensionality reduction. Both approaches can be formulated as
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transformation of the covariance matrix:

Σ̂
H

s = Θ−1 ΣH
s Θ−> = HHΣH

s HH> (HH = Θ−1) (5.30)

Σ̂
E

s = HE ΣE
s HE> (5.31)

(5.32)

with

ΣH
s ∈ RD×D

HH ∈ RD×D

ΣE
s ∈ R∆×∆ , diagonal

HE ∈ RD×∆

and D ≤ ∆ ≤ D(D + 1)/2.
The superscripts H and E have been introduced to distinguish between the EMLLT
and the HDA approach, respectively. The main difference between Eq. (5.30) and
Eq. (5.31) is the number of free parameters for the transformation matrix H ,
given an equal number of parameters for Σs. The difference becomes clearer if
the Eqs. (5.30) and (5.31) are rewritten component-wise and using the upper value
∆ = D(D + 1)/2:

(
Σ̂

H

s

)
ij

=
D∑

k,l=1

hH
ik ΣH

s kl h
H
jl (5.33)

=
D∑

d=1

ΣH
s dd hH

dd hH
dd + 2

D∑
k<l=1

ΣH
s kl hH

ik hH
jl (5.34)

(
Σ̂

E

s

)
ij

=
D∑

d=1

(σE
s )

2

d hE
id hE

jd +

D(D+1)/2∑
d=D+1

(σE
s )

2

d hE
id hE

jd (5.35)

Thus

Σ̂
H

s =
D∑

d=1

ΣH
s dd hH

d hH
d

>
+

D∑
k,l=1
k 6=l

ΣH
s kl hH

k hH
l

>
(5.36)

Σ̂
E

s =
D∑

d=1

(σE
s )

2

d hE
d hE

d

>
+

D(D+1)/2∑
d=D+1

(σE
s )

2

d hE
d hE

d

>
(5.37)

where hk denotes the appropriate column vector of H . A comparison of Eqs. (5.36)
and (5.37) shows that both approaches HDA (without dimensionality reduction)
and EMLLT are not only equivalent for ∆ = D, but also for ∆ = D(D + 1)/2. Σ̂s
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is expressed in terms of rank-one basis matrices h•h
>
• in Eqs. (5.36) and (5.37). The

difference for D < ∆ < (D + 1)/2 is as follows: In the HDA approach these basis
matrices are made up from only D vectors as the outer product hkh

>
l , 1 < k, l < D.

Thus, the basis matrices are restricted to the subspace which is spanned by building
all possible products hkhl. On the other hand, the basis matrices for the EMLLT
approach are unrestricted. The difference occurs if the number of free parameters
∆ in ΣH

s ij or ΣE
s ij is restricted to be less than D(D + 1)/2, which is equal to

restricting the number of basis matrices in the set {h•h>• }. Eqs. (5.36) and (5.37)
show that the diagonal elements (the first sum in the respective equation) remain
unaffected. For the HDA approach the off-diagonal elements have to be generated
by rank-one matrices which are build by the same vectors used for the diagonal
elements, but only in different combinations. In the EMLLT approach on the other
hand, the rank-one matrices generating the off-diagonal elements may be completely
independent of those generating the diagonal elements of ΣE

s . Therefore the HDA

approach represents a smaller amount of possible matrices Σ̂
H

s with ∆ independent
parameters because of the restricted freedom in building the basis matrices. In the

EMLLT approach, the number of parameters for the basis matrices hE
d hE

d
>

is larger
compared to the HDA approach, given an equal number of parameters ∆.

In summary, EMLLT is equivalent to HDA without dimensionality reduction for
∆ = D and ∆ = D(D + 1)/2. For D < ∆ < D(D + 1) the degree of freedom in the
choice of possible subspaces for the covariance matrices Σ̂s is larger in the EMLLT
approach, thus allowing a more flexible modeling of the covariance matrices.
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5.3.5 Summary

The speaker independent transformations can thus be classified as follows:

Table 5.2: Overview of speaker independent linear transformations based on
Eq. (5.3). The subscript s denotes a dependency on the HMM states.

transformation H Σ remark

MLLT H ∈ RD×D Σdiag
s ∈ RD×D

EMLLT H ∈ RD×∆ Σdiag
s ∈ R∆×∆ D ≤ ∆ ≤ D(D + 1)/2

HDA H ∈ RD×D
(
Σs 0
0 Σ0

)
Σs ∈ RD×D

Σ0 ∈ R(D−D)×(D−D)

D < D

LDA H ∈ RD×D
(
Σdiag 0

0 Σ0

)
Σdiag globally pooled

• LDA is a special case of HDA

• STC is equivalent to HDA without dimensionality reduction and diagonal
covariance modeling

• EMLLT is equivalent to HDA without dimensionality reduction and diagonal
covariance modeling for for ∆ = D and ∆ = D(D + 1)/2, but allows for a
more flexible covariance modeling for D < ∆ < D(D + 1)

• HDA, STC and EMLLT are closely related to variance adaptation (c.f. Sec-
tion 5.2.2)

5.4 Conclusion

In this Chapter the numerous linear transformations that are used in today’s state-
of-the-art speech recognition system have been presented in a unified view. While
the original publications addressed the details of each individual approach, this
Chapter has highlighted the strong interrelationship between the approaches.

Although motivated differently by the original authors, the linear transforma-
tions presented in the last Sections can be described in a unified way: All those
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Chapter 5 Unified View of Linear Transformations and Vocal Tract Normalization

transformations can be derived from Eq. (5.3).

p(x|µs,Σs;A, b, H) =

1√
| det(2πH Σs H>)|

exp

(
−1

2
(x−A µs − b)>

(
H Σs H>)−1

(x−A µs − b)

)
(5.3)

The transformations are estimated using the maximum likelihood optimization func-
tion Eq. (5.4):

(Aopt, bopt, Hopt) = argmax
(A,b,H)

{
T∑

t=1

S∑
s=1

γs(t)

[
log

(
1

| det H Σs H>|

)

−
(
(xt −A µs − b)>

(
H Σs H>)−1

(xt −A µs − b)
)]}

(5.38)

The differences in the approaches result from different realizations of the transfor-
mation matrices, different modelings of the covariance matrix or the use of different
data to estimate the transformation. For example, STC is closely related to vari-
ance adaptation: for STC the sum over t in Eq. (5.38) includes all time frames
of the training data, whereas for variance adaptation the sum over t includes only
the adaptation data2 from one specific speaker. Close relationships have also been
shown between STC, EMLLT and HDA. Another strong correlation exists between
C-MLLR and VTN. As VTN can be expressed as linear transformation of the fea-
ture vector in the Cepstral domain (c.f. Chapter 7), VTN is in fact a C-MLLR with
a highly restricted specific transformation matrix.

2or test data in case unsupervised adaptation
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Chapter 6

Improved Signal Analysis

The signal analysis front end which is used in most of today’s automatic speech
recognition systems use some sort of either Mel-frequency Cepstral coefficients
(MFCCs) [Davis & Mermelstein 80] or perceptual linear predictive (PLP) coding
[Hermansky 90] signal analysis front end. A typical MFCC signal analysis front end
was described in Section 1.2. The current Section focuses on the steps between the
Fourier transform and the Cepstrum transform which are depicted in Fig 6.1, includ-
ing vocal tract normalization (VTN) (c.f. Section 4.2.2). After some preprocessing

2| FFT |

VTN WARPING

Mel−Frequency Warping

Filterbank

Logarithm

Cepstrum

Figure 6.1: Typical MFCC signal analysis front end.

like preemphasis and windowing, the Fourier power spectrum of the speech wave-
form is computed for each time frame. The frequency axis of this power spectrum
is warped by a warping function. When a VTN approach is used, the frequency
axis is usually warped using a piece-wise linear or bilinear warping function with a
speaker dependent warping factor which adjusts the amount of frequency warping.
A Mel frequency warping [Davis & Mermelstein 80] is applied to adjust the spectral
resolution to that of the human ear. Afterwards a filter bank is applied and the
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Chapter 6 Improved Signal Analysis

logarithm is taken. In a last step a Cepstrum transformation, which is identical to
a discrete cosine transformation for symmetric functions like the power spectrum,
is applied to the log filter bank coefficients to remove the correlation between the
different outputs. The dimensionality of the Cepstral vector is reduced by omitting
the highest Cepstral coefficients for smoothing.

Mel frequency warping and VTN frequency warping are quite similar from the sig-
nal analysis point of view. They differ mainly by the specific choice of the warping
function, which is in addition speaker dependent in case of VTN. Thus in the follow-
ing paragraph only Mel frequency warping will be considered, but the statements
hold for VTN as well. Frequency warping followed by a filter bank may be imple-
mented in two different ways, which are shown in Fig. 6.2. One method is to explic-

Original Frequency

M
el

-F
re

qu
en

cy

ω

ω~

Figure 6.2: Basic principle of different filter bank implementations. The filters may
either be uniformly distributed in the Mel-frequency domain (ordinate)
or non-uniformly distributed in the original frequency domain (abscissa).

itly warp the frequency axis of the magnitude spectrum and apply uniformly shaped
and spaced filters to the explicitly warped spectrum [Wegmann & McAllaster+ 96].
A disadvantage of this approach is that the Mel-warped spectrum has to be obtained
by interpolating from the original spectrum. This may introduce interpolation errors
due to the large dynamic range of the magnitude spectrum. Another approach is to
apply non-uniformly placed and shaped filters to the original magnitude spectrum
[Lee & Rose 96]. This approach avoids explicitly warping the frequency axis and
applies the Mel-warping implicitly. However, this approach is vulnerable to quan-
tization errors if the spectral resolution is not appropriate. The lowest filter may
cover a few spectral lines only and the maximum of a filter may fall between two
spectral lines. In addition, this approach is problematic if an additional frequency
warping is applied, for instance when using VTN [Lee & Rose 96, Chu & Jie+ 97].
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6.1 Integrated Frequency Axis Warping

Experiments at the RWTH have also shown that in combination with VTN the first
approach is superior.

The Cepstrum transformation is used to smooth the signal by omitting the higher
Cepstral coefficients, which mainly describe the pitch. Due to the overlapping fil-
ters the different filter channels are correlated which leads to a covariance matrix
of approximately Toeplitz structure. The Cepstrum transformation is applied to
decorrelate the filter bank coefficients [Davis & Mermelstein 80]. This approach has
two main disadvantages: Firstly, the optimal number and shape of the filter bank
is unknown and is subject to optimization. For instance, experiments at RWTH
have shown cosine shaped filters to outperform triangular filters for certain tasks.
Secondly, this approach provides a twofold smoothing: one by applying the filter
bank and the other by reducing the number of Cepstral coefficients. In general,
each smoothing has to be optimized independently, i.e. the number of filters and
the number of Cepstral coefficients. In the following a different approach will be
described in which the frequency warping is integrated directly into the Cepstrum
transformation and the filter bank is omitted completely [Molau & Pitz+ 01]. Thus
a multiple smoothing is avoided and the number of parameters to be optimized is
reduced significantly.

6.1 Integrated Frequency Axis Warping

This Section presents an approach to calculate the Cepstral coefficients directly
from the magnitude spectrum while omitting the usual filter bank. The Cepstral
coefficients ck, k = 0, . . . , K of an unwarped spectrum X(ω) are given by

ck =
1

2π

π∫
−π

dω eiωk ln |X(ω)|2 , k = 0, . . . , K (6.1)

The application of an invertible frequency axis warping function
g : [−π, π] → [−π, π] can be expressed as follows:

g : [−π, π] → [−π, π]

ω → ω̃ = g(ω) (6.2)

|{X(ω)}| =
∣∣∣{X̃(g(ω))

}∣∣∣ (6.3)

=
∣∣∣{X̃(ω̃)

}∣∣∣ (6.4)

That means, for the new frequency ω̃ the new spectrum X̃(ω̃) is computed according
to (see also Fig. 6.3): ∣∣∣X̃(ω̃)

∣∣∣ :=
∣∣X (g(−1)(ω̃)

)∣∣
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wt
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logxt
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Figure 6.3: Basic principle of frequency warping using a piece-wise linear warping
function.

Hence, the k−th Cepstral coefficient c̃k of the warped spectrum is given by

c̃k =
1

π

π∫
−π

dω̃ eiω̃k ln
∣∣∣X̃(ω̃)

∣∣∣2 (6.5)

=
1

π

π∫
−π

dω̃ eiω̃k ln
∣∣X (g(−1)(ω̃)

)∣∣2 . (6.6)

Up to now, the frequency axis warping is applied to the original spectrum, expressed
by the term X

(
g(−1)(ω̃)

)
in Eq. (6.6). In order to integrate the frequency warping

into the Cepstrum transformation, the integration variable is changed from ω̃ to ω
in the usual way with taking the Jacobian determinant dω̃/dω of the substitution
into account:

c̃k =
1

π

π∫
−π

dω eig(ω)k ln |X(ω)|2 · g′(ω) (6.7)

The boundaries of the integration do not change because of the constraints ω̃(−π) =
ω(−π) and ω̃(π) = ω(π), c.f. Eq. (6.2).

Practical applications work with discrete spectra, which are band limited by the
Nyquist frequency. Thus Eq. (6.7) is equivalent to

c̃k =
1

N

N/2−1∑
n=0

{
cos

[
g

(
2πn

N

)
k

]
ln

∣∣∣∣X (2πn

N

)∣∣∣∣2 · g′(2πn

N

)}
, (6.8)
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where N is the FFT length. Equation (6.8) describes a matrix multiplication, which
allows for a very compact implementation of the signal analysis. A schematic com-
parison of the traditional MFCC signal analysis with the presented integrated ap-
proach is depicted in Fig. 6.4.

2| FFT | 2| FFT |

VTN WARPING

Mel−Frequency Warping

Filterbank

Logarithm Logarithm

Cepstrum
VTN− and Mel−Frequency

Warping

Cepstrum with integrated

Figure 6.4: Schemes of traditional MFCC computation (left) and integrated ap-
proach (right).

In the following two sections the equations for Mel frequency warping and VTN
using a piece-wise linear warping function will be derived explicitly.

6.1.1 Mel Frequency Warping

Mel frequency warping is commonly applied according to [Young 93]

ω → ω̃ = m(ω)

= 2595 · log

(
1 +

ωfs

2π · 700Hz

)
(6.9)

where fs denotes the sampling frequency in Hertz. The Mel frequency scale is intro-
duced to adjust the spectral resolution to that of the human ear and the parameters
2595 and 700 were adjusted empirically by the authors of [Young 93]. In order to
integrate the Mel frequency warping into the Cepstrum transform, Eq. (6.9) has to
be normalized to meet the co-domain specification as given in Eq. (6.2). Thus the
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following Mel frequency warping function is used:

gmel(ω) = π
m(ω)

m(π)

= d · log

(
1 +

ωfs

2π · 700Hz

)
(6.10)

with

d = log

(
1 +

fs

2π · 700Hz

)
(6.11)

and the derivative needed in Eq. (6.8)

g′mel(ω) =
d · fs

(2π · 700Hz + ω · fs) ln(10)
(6.12)

Hence, substituting gmel and g′mel from Eq. (6.10) and Eq. (6.12), respectively, for
g and g′ in Eq. (6.8) yields the equation to compute the integrated Mel frequency
warped Cepstral coefficients.

6.1.2 VTN Frequency warping

Vocal tract normalization (VTN) warps the frequency axis of the magnitude spec-
trum to reduce speaker dependency from the speech signal (c.f. Section 4.2). Usual
implementations use either a modified filter bank as shown in Fig. 6.2 for Mel fre-
quency warping [Lee & Rose 96] or an explicit warping of the frequency axis by in-
terpolating the original discrete magnitude spectrum [Wegmann & McAllaster+ 96,
Welling 99]. As said before, VTN frequency warping and Mel frequency are quite
similar from the signal analysis point of view. Hence, VTN frequency warping
can equally well be integrated into the Cepstrum transformation. In the following
this will be formulated exemplary for a piece-wise linear transformation function as
shown in Fig. 6.5 . The formulation for other warping functions is similar. In or-
der to simplify the notation and to avoid complicated case distinctions the warping
function is written in the following form:

gα(ω) = βω ω + γω (6.13)

The parameters βω and γω depend on ω only via the different sections of the piece-
wise linear function and can take only two discrete values as function of ω:

βω =

{
α ω ≤ ω0

π−αω0

π−ω0
ω > ω0

(6.14)

γω =

{
0 ω ≤ ω0

(α− 1) π ω0

π−ω0
ω > ω0

(6.15)

56



6.2 Discussion

α>1

α<1
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Figure 6.5: Schematic piece-wise linear VTN warping function.

The inflexion point ω0, where the slope of the warping function changes, is chosen
as follows:

ω0 =

{
7
8
π α ≤ 1
7

8·απ α > 1

Mel frequency warping is usually applied after VTN frequency warping and thus the
combination of both frequency warping steps is given as

gα,mel(ω) = gmel (gα(ω))

= d · log

(
1 +

(βω ω + γω)fs

2π · 700Hz

)
(6.16)

g′α,mel(ω) =
d · βω · fs

(2π · 700Hz + (βω ω + γω)fs) · ln(10)
. (6.17)

The Cepstral coefficients with combined Mel and VTN frequency warping using
the presented integrated approach can now be calculated by substituting gα,mel and
g′α,mel from Eqs. (6.16) and (6.17) for g and g′ in Eq. (6.8), respectively.

6.2 Discussion

A comparison of the standard approach using a filter bank as described in Chap-
ter 1.2 and the modified, integrated approach is shown in Fig. 6.6 for one sentence
from the Verbmobil II corpus for the first and 15th Cepstral coefficient. While the
first Cepstral coefficients are very similar for both approaches, the higher Cepstral
coefficients differ significantly. The reason for the differences in the higher Cepstral
coefficients lies in the additional smoothing provided by the filter bank. As the
spectrum has been smoothed already by the filter bank in the traditional approach,
the dynamic of the higher Cepstral coefficient is lower for the traditional MFCC

57



Chapter 6 Improved Signal Analysis

-6000

-5000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

0 50 100 150 200 250 300 350 400
Time Frame

Baseline
Integrated

-1000

-800

-600

-400

-200

0

200

400

600

800

1000

0 50 100 150 200 250 300 350 400
Time Frame

Baseline
Integrated

Figure 6.6: Comparison of Cepstrum coefficients 1 (left side) and 15 (right side)
calculated using the traditional MFCC computation scheme (straight
line) and the integrated approach (dashed line) for an utterance from
the Verbmobil II corpus.

compared to the integrated MFCC. The multiple smoothing in the traditional ap-
proach leads to an interaction of both smoothing steps, which makes optimization
of the parameters difficult. The integrated approach omits the filter bank and the
speech signal is smoothed by reducing the number of Cepstral coefficients only. The
advantage is that less parameters need to be optimized, which provides a better
control of the smoothing step and avoids interaction of concurrent smoothing steps.
Another advantage of the integrated approach is that the number of Cepstral coeffi-
cients, and thus the amount of smoothing, can be easily adjusted for a new task. For
the traditional MFCC scheme, the number of MFCC components cannot be freely
chosen because of the interaction with the number of filters in the filter bank. For
instance, if a filter bank with 20 individual filters is used, the number of Cepstral
coefficients may not exceed this number. A detailed discussion of this point is given
in [Molau 03, pp. 80 ff.]

In addition, the mathematics to calculate the Cepstral coefficients are much sim-
pler for the integrated approach than for the traditional MFCC. The filter bank
makes analytic calculations, for example of frequency warping, more complicated.
With the presented integrated approach it can be shown for instance that frequency
warping of the Fourier spectrum amounts to a linear transformation of the Cepstral
coefficients, which is subject of Chapter 7.

6.3 Experimental Evaluation

The improved signal analysis presented in this Chapter has been evaluated on two
large vocabulary automatic speech recognition tasks, Verbmobil II (VM II) and the
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North American Business News (NAB) task. The recognition tests were performed
using the within-word RWTH ASR system described in Chapter 1, for details of the
training and test corpora as well as the recognition test setup see Appendix C. The
results are summarized in Table 6.1. The experimental setup is as follows:

• 20 filter bank channels (baseline approach only)

• 16 Mel frequency Cepstral coefficients

• NAB: sentence-wise long-term Cepstral mean normalization and energy nor-
malization
VM II: short-term Cepstral mean and variance normalization on a sliding win-
dow of 2 seconds length

• NAB: LDA on seven adjacent MFCC vectors, reduction to 32 dimensions
VM II: LDA of three adjacent augmented MFCC vectors including first order
derivatives, second order derivative of energy, reduction to 33 dimensions

• 3000 (NAB) / 2500 (VM II) decision-tree based generalized within-word tri-
phone states plus one silence state

• 596k (NAB) /455k (VM II) Gaussian mixture densities

• 20000 word (NAB) / 10000 word (VMII) lexicon

• 6 state (NAB) / 3 state (VM II) HMM topology

Table 6.1: Recognition test results for the Verbmobil II and NAB tasks. Baseline:
traditional MFCC computation scheme; integrated: new approach with-
out filter bank and frequency warping integrated into the Cepstrum trans-
formation [Molau & Pitz+ 01].

Task VTN Cepstrum WER [%]
comp.

VM II no baseline 25.7
integrated 25.3

yes baseline 23.8
integrated 24.0

NAB no baseline 12.5
integrated 12.4

yes baseline 11.8
integrated 11.7

In general, the recognition performance of both the standard MFCC and the simpler
and more compact integrated approach are quite similar. For the VM II baseline
system the integrated approach achieves in addition a reduced word error rate.
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6.4 Summary

In this Chapter an improved approach to compute Mel frequency Cepstral coef-
ficients (MFCC) has been presented. In contrast to the traditional approach the
frequency warping is integrated directly into the Cepstrum transform which avoids
possible interpolation or quantization errors which may occur in the traditional ap-
proach. Any invertible frequency warping can easily be integrated in this approach.
Explicit formula have been given for Mel frequency warping and a combination of
Mel frequency warping and frequency warping in connection with vocal tract nor-
malization (VTN). In addition, the new approach does not use any filter bank and
thus avoids the twofold smoothing provided in the traditional approach by the filter
bank and the subsequent reduction of Cepstral coefficients. The integrated approach
allows for a very compact implementation and needs less parameters to be optimized
for a new task. Experiments using the integrated approach have shown a similar
recognition performance compared to the traditional approach.
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Chapter 7

Frequency Warping as Linear
Transformation in Cepstral Space

A speaker independent speech recognition system has to cope with a lot of variability
in the acoustic signal. For example, varying transmission channels, noise, speakers,
and speaking styles are sources of such irrelevant variabilities. From a more general
perspective, this can be viewed as mismatch between training and testing condition
of the ASR system. A lot of normalization (i.e. transformation of acoustic features)
and adaptation (i.e. transformation of acoustic model parameters) schemes have
been developed in the last years to compensate for this mismatch in order to improve
the accuracy of the ASR system [Woodland 01].

7.1 Vocal Tract Normalization

A major part of the variability in the speech signal is caused by the speaker depen-
dent vocal tract length. Vocal tract normalization (VTN) tries to compensate for
the effect of speaker specific vocal tract lengths by warping the frequency axis of the
power spectrum of the speech signal [Eide & Gish 96, Lee & Rose 96, Wakita 77,
Wegmann & McAllaster+ 96]. In a simple physiological model, the human vocal
tract is treated as a uniform tube of length L. According to this model a change in
L by a certain factor α−1 results in a scaling of the frequency axis by α. Thus, for this
model, the frequency axis should be scaled linearly to compensate for the variability
caused by different vocal tracts of individual speakers. However, the simple tube
model may not be the best for the human vocal tract, so other frequency warping
functions have been investigated [Eide & Gish 96]. In general, the frequency axis is
scaled by a warping function ga with a transformation parameter α

gα : [0, π] → [0, π] (7.1)

ω → ω̃ = gα(ω)

where ω denotes the original frequency and ω̃ the warped frequency. The warping
function gα is assumed to be invertible, i.e. strictly monotonic and continuous
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(see Fig. 7.1). The frequency ω = π corresponds to the Nyquist frequency and
the domain and co-domain are chosen to conserve bandwidth and information
contained in the original spectrum.

πω

ω~

α=0

π

α>0

α<0

Figure 7.1: Example of a VTN warping function ω̃ = gα(ω) for different values of α.

All typical VTN approaches have in common that the warping function depends
only on a few free parameters that control the amount of the frequency distortion.
Even with only one free parameter (the warping factor α) to model the mismatch,
VTN performs very well in a variety of recognition tasks. On the other hand, a few
parameters allow to be estimated reliably on very little data, which makes VTN a
good choice for on-line speech recognition systems.

The relationship between VTN and linear transformations in the Cepstral domain
has been studied before. However, these investigations were restricted to a bilin-
ear warping function [Acero 90, p.119],[McDonough 00, p.113], conformal mappings
[McDonough & Zavaliagkos+ 96], or were based on plausibility arguments and rough
approximations [Cox 00]. In [Uebel & Woodland 99] it was shown that improve-
ments in recognition accuracy gained by VTN and subsequent linear transformation
(constrained MLLR) were not additive, which indicates that both techniques may
not be independent of each other.

In this Chapter it will be shown for arbitrary invertible warping functions with-
out approximations that there is a strong interdependence of VTN and a linear
transformation of the Cepstral vector. A related result has also been reported in
[Nocerino & Rabiner+ 85] in the context of spectral distortion measures. For the
case of Gaussian emission probabilities the equivalence of two widely used normal-
ization approaches (namely VTN and MLLR) will be shown, which have so far been
considered to be independent.
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7.2 VTN Equals Linear transformation in Cepstral
space

In the remaining of this Chapter the integrated MFCC computation scheme in-
troduced in Chapter 6 will be used, in which the frequency warping is directly
integrated into the Cepstrum transformation and the filter banks are omitted. In
order to keep the equations simple, the investigation will be at first made for plain
Cepstral coefficients (CC). Mel-scale warping will be considered later because the
occurring integrals and thus the transformation matrix may be computed analyti-
cally for plain CC. In Section 7.5 it will be shown that the results of the current
Section are still valid for MFCC.

The Cepstral coefficients ck, k = 0, . . . , K of a spectrum X(ω) are defined by

ck =
1

2π

π∫
−π

dω eiωk ln |X(ω)|2 , k = 0, . . . , K

=
sk

π

π∫
0

dω cos(ωk) ln |X(ω)|2 , (7.2)

where ω may either denote the true physical or the Mel frequency scale. The sym-
metry factor sk is introduced for convenience:

sk =

{
1
2

: k = 0

1 : else .
(7.3)

The n−th cepstral coefficient c̃n(α) of the warped spectrum is given by

c̃n(α) =
sk

π

π∫
0

dω̃ cos(ω̃n) ln
∣∣X (g(−1)

α (ω̃)
)∣∣2 , n = 1, . . . , N . (7.4)

The spectrum ln
∣∣∣X (g(−1)

α (ω̃)
)∣∣∣2 is expanded in a Fourier series

ln
∣∣X (g(−1)

α (ω̃)
)∣∣2 = ln |X(ω)|2

= 2
K∑

k=0

ck cos(ωk)

= 2
K∑

k=0

ck cos(g(−1)
α (ω̃)k) , (7.5)

where ck denotes the k-th Cepstral coefficient of the unwarped spectrum. In the
case of continuous spectra, there may be no upper limit for K. Therefore it is
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assumed that the original spectrum can be represented by a finite number of Cepstral
coefficients, for instance if it has been Cepstrally smoothed already. This assumption
is not mandatory as long as the Fourier series is uniformly convergent, which will be
the case for the spectra dealt with in practical applications. Practical applications,
however, work with discrete spectra. Hence, K will be finite and equal to the number
of spectral lines of the discrete Fourier spectrum

In order to derive the transformation of the Cepstral coefficients, Eq. (7.5) is
inserted into Eq. (7.2) and the integration and summation is interchanged. Thus,
the warped Cepstral coefficients c̃n(α), n = 1, . . . , N are given as

c̃n(α) =
2sk

π

π∫
0

dω̃ cos(ω̃n)
K∑

k=0

ck cos(g(−1)
α (ω̃)k)

=
K∑

k=0

ck
2sk

π

π∫
0

dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k)

=
K∑

k=0

Ank(α) ck (7.6)

with

Ank(α) =
2sk

π

π∫
0

dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k) (7.7)

with the symmetry factor from Eq. (7.3)

sk =

{
1
2

: k = 0

1 : else .

Eq. (7.6) describes a linear transformation of the original Cepstral coefficients ck

with a transformation matrix A(α) of dimension N × K to obtain the vector of
warped Cepstral coefficients c̃n(α). In other words, VTN warping with a warping
function gα is expressed as a linear transformation of the Cepstral coefficients of the
unwarped spectrum with transformation matrix A(α) as given in Eq. (7.7). Note
that the only assumption made concerning the warping function is invertibility.

For Cepstral smoothing the number of Cepstral coefficients may be reduced by
omitting higher coefficients. In order to prevent a loss in spectral resolution the
dimensionality reduction has to be applied to the warped Cepstral coefficients. This
will be discussed in more detail in Section 7.6.
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7.3 Analytic Calculation of the Transformation Matrix

As shown in the last Section, VTN can always be expressed as a linear transforma-
tion in the Cepstral domain, independent of the functional form of the (invertible)
warping function (cf. Eqs. (7.6) and (7.7)). In the following the transformation
matrix defined in Eq. (7.7) will be calculated analytically for 3 typical warping
functions: piece-wise linear, quadratic and bilinear warping. The analytic calcula-
tion of the transformation matrix for other warping functions than those presented
below, however, may not be as straightforward. Although the solutions for A(α)
will look quite different, it will be shown in Section 7.4 that the resulting matrices
have a common shape. But first the detailed calculations will be presented.

7.3.1 Piece-wise Linear Warping Function

In order to apply a piece-wise linear warping, the solution for a strictly linear warping
function is calculated first:

gα : ω → ω̃ = α · ω
g(−1)

α : ω̃ → ω = α−1 · ω̃

This warping function does not meet the requirements of Eq. (7.1) as the co-domain
is not equal to [0, π] for α 6= 1. This requirement will be neglected at first because the
calculation for the piece-wise linear warping function (which meets the requirements
of Eq. (7.1)) turns out to be very similar.

The entries Ank(α) of the transformation matrix can be computed by elementary
integration. For α 6= 1 the solution is given as

Ank(α) =
2sk

π

π∫
0

dω̃ cos(ω̃n) cos(α−1ω̃k)

=
sk

π

π∫
0

dω̃
(
cos(ω̃n + α−1ω̃k) + cos(ω̃n− α−1ω̃k)

)

= sk
sin[(n + α−1k)π]

(n + α−1k)π
+ sk

sin[(n− α−1k)π]

(n− α−1k)π
.

For α = 1 this simplifies to
Ank(1) = δnk

because of the orthonormality of the cosine function.
To meet the requirement of invertibility, the warping function is extended to be

piece-wise linear [Wegmann & McAllaster+ 96, Welling & Kanthak+ 99] as shown
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in Fig. 7.2:

ω → ω̃ = gα(ω) =


αω : ω ≤ ω0

αω0 +
π − αω0

π − ω0

(ω − ω0) : ω > ω0

(7.8)

The inflexion point ω0, where the slope of the warping function changes, is chosen
as follows:

ω0 =


7
8
π α ≤ 1

7
8·απ α > 1

πω

ω~

α=1

π

α>1

α<1

~

ω0

ω0

Figure 7.2: Piece-wise linear warping functions for α = 0.9, 1.0, 1.1 .

The transformation matrix Ank(α) is computed similarly to the linear case but the
integration is split into two parts:

Ank(α, ω̃0) =
2sk

π

 ω̃0∫
0

+

π∫
ω̃0

dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k)

with ω̃0 = α · ω0.

Noting that the solution for α = 1 remains the same as in the linear case,
the solution for α 6= 1 yields:

Ank(α) =sk
sin[(n− α−1k)ω̃0]

(n− α−1k)π
+ sk

sin[(n + α−1k)ω̃0]

(n + α−1k)π

−sk
sin[(n− α−1k)ω̃0](
n− π−α−1ω̃0

π−ω̃0
k
)

π
− sk

sin[(n + α−1k)ω̃0](
n + π−α−1ω̃0

π−ω̃0
k
)

π

(7.9)
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This matrix can now be used for VTN alternatively to the conventional approaches
like explicitly warping the power spectrum during signal analysis or the integrated
approach described in Chapter 6. A detailed discussion of this warping matrix will
be given in Section 7.4.

7.3.2 Quadratic warping function

In order to study the effect of the functional form of the warping function on the
transformation matrix, the matrix is calculated for a quadratic warping function
(Fig. 7.3). Although it has not been studied in literature in such a detail like piece-
wise or bilinear warping functions, a quadratic warping function is the next step
beyond linear warping in a sense of a power series expansion.
The quadratic warping function is defined as follows:

g(−1)
α : ω̃ → ω = ω̃ + α

(
ω̃

π
−
(

ω̃

π

)2
)

(7.10)

Starting point is again Eq. (7.7):

πω

ω~

α=0

π

α>0

α<0

Figure 7.3: Example of quadratic VTN warping functions ω̃ = gα(ω) for
α = −0.8, 0, +0.8.

Ank(α) =
2sk

π

π∫
0

dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k) (7.11)

=
sk

π

π∫
0

dω̃
[
cos
(
ω̃n + g(−1)

α (ω̃)k
)

+ cos
(
ω̃n− g(−1)

α (ω̃)k
) ]

=
1

π
(I+ + I−)
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with

I± =

π∫
0

dω̃ cos

{
ω̃n±

[
ω̃ + α

( ω̃

π
−
( ω̃
π

)2)]
k

}

=

π∫
0

dω̃ cos
{(

n± k(1 +
α

π
)
)

ω̃ ∓ k
α

π2
ω̃2
}

. (7.12)

The integrand of Eq. (7.12) has the form cos(ax2 + bx) with a = ∓kα/π2 and
b = (n± k(1 + α/π)). To calculate I±, the identity

cos(ax2 + bx) = cos(a(x +
b

2a
)2) cos(

b2

4a
) + sin(a(x +

b

2a
)2) sin(

b2

4a
) . (7.13)

is used. The resulting integrals from Eq. (7.13) can now be solved elementary with
the solutions ∫

dx sin(a(x +
b

2a
)2) =

√
π

2a
S

(
2ax + b√

2πa

)
∫

dx cos(a(x +
b

2a
)2) =

√
π

2a
C

(
2ax + b√

2πa

) (7.14)

where S(x) and C(x) denote the Fresnel sine and cosine which are defined as

S(x) =

∫ x

0

dt sin(
π

2
t2)

C(x) =

∫ x

0

dt cos(
π

2
t2) ,

respectively. Thus, integration of Eq. (7.13) yields

∫
dx cos(ax2 + bx) =√
π

2a

[
cos(

b2

4a
) C

(
2ax + b√

2πa

)
+ sin(

b2

4a
) S

(
2ax + b√

2πa

)]
.

(7.15)

Finally, the solution of Eq. (7.11) for the quadratic warping function as defined

68



7.3 Analytic Calculation of the Transformation Matrix

in Eq. (7.10) becomes:

Ank(α) =

πsk√
2πkα

cos

(
(nπ + k(π + α))2

4kα

)
·
[
C

(
nπ + k(π + α)√

2πka

)
− C

(
nπ + k(π − α)√

2πka

)]
+

πsk√
2πkα

cos

(
(nπ − k(π + α))2

4kα

)
·
[
C

(
nπ − k(π − α)√

2πka

)
− C

(
nπ − k(π + α)√

2πka

)]
+

πsk√
2πkα

sin

(
(nπ + k(π + α))2

4kα

)
·
[
S

(
nπ + k(π + α)√

2πka

)
− S

(
nπ + k(π − α)√

2πka

)]
+

πsk√
2πkα

sin

(
(nπ − k(π + α))2

4kα

)
·
[
S

(
nπ − k(π − α)√

2πka

)
− S

(
nπ − k(π + α)√

2πka

)]
(7.16)

This matrix will also be discussed in Section 7.4.

7.3.3 Bilinear warping function

Another frequently used warping function is the bilinear transformation (BLT). The
calculation of the transformation matrix for a BLT is done in the complex z-domain
instead of the real frequency ω because the occurring integrals will than be easier
to compute. The BLT for a complex number z is defined by

z̃ =
z + α

1 + αz
with z = eiω, z̃ = eiω̃

with the (real) warping parameter α, |α| < 1. As the BLT has a simple form
for complex numbers the z-transform is used to calculate the Cepstral coefficients,
which is equivalent to the Fourier transform for z = eiω:

log[X(z)] =
∞∑

k=0

ckz
−k ck =

1

2πi

∮
dz log[X(z)]zk−1

The z-transform of warped spectrum is given by

log[X̂(ẑ)] =
∞∑

n=0

ĉnẑ
−n ĉn =

1

2πi

∮
dẑ log[X(ẑ)]ẑn−1 .

Frequency warping is defined as

X̂(eigα(ω)) = X(eiω) or X̂(ẑ) = X(z)

and thus

ĉn =
1

2πi

∮
dz

∞∑
k=0

ckẑ
−kzn−1 .
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πω

ω~

α=0

π

α>0

α<0

Figure 7.4: Example of bilinear VTN warping functions ω̃ = gα(ω) for
α = −0.1, 0, 0.1.

Interchanging integration and summation yields

ĉn =
∞∑

k=0

1

2πi

∮
dz ẑ−kzn−1 · ck

Again, warping of the frequency axis of a given spectrum amounts to a linear trans-
formation in the Cepstral domain

ĉn(α) =
∑

k

Ank(α) ck

with the transformation matrix

Ank(α) =
1

2πi

∞∑
k=0

∮
dz ẑ−kzn−1 .

The warping matrix Ank(α) for a bilinear warping function has previously been
calculated in [McDonough 00]:

Ank =
1

2πi

∮
dz

(
z − α

1− αz

)−k

zn−1

The integration is carried out using the Cauchy integral formula

1

n!

d(n)F (z)

dz(n)

∣∣∣∣
z=z0

=
1

2πi

∮
dξ

F (ξ)

(ξ − z0)(n+1)
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which yields

Ank(α) =

1

(k − 1)!

k∑
m=max(0,k−n)

(
k

m

)
(m + n− 1)!

(m + n− k)!
(−1)mα(2m+n−k) (7.17)

7.4 Discussion of the Structure of the Transformation
Matrix

Having obtained the analytical solutions for the transformation matrix Ank(α) in
the last Section, the structure of the resulting matrices will be discussed. It will be
shown that the matrices have a common structure even though the functional forms
in Eqs. (7.9), (7.16) and (7.17) look quite different. Motivated by this common
structure a possible approximation will be given to reduce the number of matrix
elements to be calculated.

In the following, pictures of the transformation matrices are shown for values of
the warping parameter α which occur typically in speech recognition experiments.
As can be seen from Fig. 7.5 - 7.10, all matrices are dominated by the diagonal
elements and the shapes of the matrices are similar.

Figure 7.5: Matrix for piece-wise linear warping function, α = 0.9 .
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Figure 7.6: Matrix for piece-wise linear warping function, α = 1.1 .

Figure 7.7: Matrix for quadratic warping function, α = −0.5 .

Figure 7.8: Matrix for quadratic warping function, α = +0.5 .
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Figure 7.9: Matrix for bilinear warping function, α = +0.1 .

Figure 7.10: Matrix for bilinear warping function, α = −0.1 .

The dominance of the diagonal elements is a consequence of a general character-
istic of typical warping functions rather than the actual functional form. This will
lead to an approximation of the transformation matrix by a quindiagonal matrix.

Warping factors estimated for real speakers lead to warping functions which de-
viate only slightly from unity. This can also be seen from Fig. 7.2 to 7.4, where
typical values of the warping factor α have been used. Hence the warping function
can be written in the following form:

g(−1)
α (ω̃) = ω̃ − δα(ω̃) with δα(ω̃) � 1 . (7.18)

Further the deviation from unity δα(ω̃) := ω̃ − g
(−1)
α (ω̃) is assumed to be smooth

and to be either concave or convex.
Starting point of the following investigation is again Eq. (7.7):

Ank(α) =
2sk

π

π∫
0

dω̃ cos(ω̃n) cos(g(−1)
α (ω̃)k)

=
sk

π

π∫
0

dω̃
[
cos
(
ω̃n + g(−1)

α (ω̃)k
)

+ cos
(
ω̃n− g(−1)

α (ω̃)k
) ]

.

(7.19)
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Substituting Eq. (7.18) into Eq. (7.7) and using

cos(x± y) = cos(x) cos(y)∓ sin(x) sin(y) (7.20)

yields

Ank(α) =
sk

π

π∫
0

dω̃ cos[(n + k)ω̃] cos[k δα(ω̃)]

−sk

π

π∫
0

dω̃ sin[(n + k)ω̃] sin[k δα(ω̃)]

+
sk

π

π∫
0

dω̃ cos[(n− k)ω̃] cos[k δα(ω̃)]

+
sk

π

π∫
0

dω̃ sin[(n− k)ω̃] sin[k δα(ω̃)]

(7.21)

This equation is expanded for small δα(ω̃) up to linear terms in δα(ω̃) for n 6= k

Ank(α) =
sk

π

π∫
0

dω̃ cos[(n + k) ω̃]− k sin[(n + k) ω̃] δα(ω̃)

+
sk

π

π∫
0

dω̃ cos[(n− k) ω̃] + k sin[(n− k) ω̃] δα(ω̃)

+O(δ2
α)

(7.22)

It has been assumed that δα(ω̃) is smooth and has a uniform curvature. Thus and
because of δα(ω̃) � 1, δα(ω̃) can be considered as constant w.r.t. ω̃ over each period[

(m− 1)
2π

n± k
, m

2π

n± k

]
(7.23)

(m = 1, . . . ,
⌊

n±k
2

⌋
) if the sine term oscillates quickly, i.e. for larger values of (n+k)

and (n− k), respectively. Hence, Ank(α) can be approximated by

Ank(α) ∼= δnk +
k

π

π∫
0

dω̃ sin[(n− k) ω̃] δα(ω̃) (7.24)

where the second term contributes significantly only for small values of (n−k), n 6= k,
i.e. close to the diagonal elements and becomes small for large values of |n − k|.
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7.5 Integration of Mel Frequency Scale

Thus the diagonal and only a few off-diagonal elements with small values of |n− k|
will dominate the matrix.

For n = k the expansion has to be extended up to quadratic terms in δα(ω̃)
because the term linear in δα(ω̃) vanishes, as can be seen from Eq. (7.24):

Ann = 1− sn
n

2
δ2
α(ω̃) (7.25)

Combining Eq. (7.24) and (7.25) yields

Ank(α) ∼=(
1− snn

2
δ2
α(ω̃)

)
δnk +

k

π

π∫
0

dω̃ sin[(n− k) ω̃] δα(ω̃)
(7.26)

Eq. 7.26 describes a matrix that is dominated strongly by the main and a few sec-
ondary diagonals. Fig. 7.5 - 7.10, which show typical warping functions obtained
with characteristic warping factors, suggest an approximation by a quindiagonal
matrix. Thus, for values of the warping factor α typical for automatic speech recog-
nition, from Eq. 7.26 and Fig. 7.5 - 7.10 an approximation of the VTN warping
matrix by a quindiagonal matrix is reasoned:

Ank(α) ∼= 0 for |n− k| > 2 . (7.27)

It will be shown in the next Section that the matrix can be even approximated by
a tridiagonal matrix when using the Mel frequency scale.

7.5 Integration of Mel Frequency Scale

In this Section it will be shown that Mel frequency scaling can equally well be
integrated into the framework of VTN as linear transformation of the Cepstral Co-
efficients. Mel frequency warping is applied during signal analysis to adjust the
spectral resolution to that of the human ear [Young 93]:

fmel = 2595 · lg
(

1 +
f

700Hz

)
. (7.28)

So far, Mel frequency warping has not been considered. There are two possible ways
to include Mel frequency warping into the framework of VTN as linear transforma-
tion of the Cepstral coefficients (CC):

A.) to express the VTN-Mel warped CC as a linear function of the original, un-
warped CC or

B.) to express the VTN-Mel warped CC as a linear function of Mel-warped CC
(MFCC) (without VTN).

Both methods will be discussed in the next two Subsections.
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7.5.1 From Plain CC to VTN-Mel Warped CC

It has been shown in Section 7.2 that a frequency warping of the spectrum with
an arbitrary invertible function results in a linear transformation of the Cepstral
coefficients. Mel frequency warping can be considered as one special case of such a
frequency warping and thus results in a linear transformation as well. Accordingly,
the combination of VTN and subsequent Mel warping still amounts to a linear
transformation in the Cepstral domain. VTN is typically applied before Mel scale
warping; hence the combination of both warping steps becomes

gmel(gα(ω)) : ω → ω̃mel = B · lg
(

1 +
gα(ω) · fs

2π · 700Hz

)
(7.29)

where gα(ω) denotes the VTN warping function as before, fs denotes the sampling
frequency, and B is defined as

B =
π

lg
(
1 + fs

2·700Hz

) (7.30)

to meet the requirement gmel(π) = π. Inserting Eq. (7.29) into Eq. (7.7) leads to

Ank(α) =
2sk

π

π∫
0

dω̃mel cos(ω̃meln) cos
(
g(−1)

α

(
g

(−1)
mel (ω̃mel)

)
k
)

(7.31)

Thus the Cepstral coefficients of the VTN-Mel-warped spectrum can be expressed
as linear transformation of the original, unwarped Cepstral coefficients.

7.5.2 From MFCC to VTN Warped MFCC

It will be shown in Section 7.7 that VTN is equivalent to a parameterized constrained
MLLR (C-MLLR) transformation. MLLR transforms the model parameters of the
ASR, usually the means and/or covariances of the emission probability distributions,
which have typically been estimated from Mel warped feature vectors. Thus more
interesting and of practical relevance is to express the VTN-Mel-warped Cepstral
coefficients as a function of the MFCC (i.e. without VTN) instead of the unwarped
Cepstral coefficients. The difficulty in the present case is that VTN is typically ap-
plied before Mel warping. VTN-Mel-warped Cepstral coefficients c̃mel

n (α) are defined
as

c̃mel
n (α) =

sk

π

π∫
0

dω̃mel ln
∣∣∣X̂(ω̃mel)

∣∣∣ cos(ω̃meln) . (7.32)

VTN is usually applied to original, i.e. non-Mel-scaled, spectrum (ω̃mel denotes the
VTN-Mel-warped frequency). This frequency is given as

ω̃mel = (gmel ◦ gα) (ω) (7.33)
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and the warped spectrum
{

X̂(ω̃mel)
}

is obtained according to{
X̂(ω̃mel)

}
=
{

X
(
g(−1)

α

(
g

(−1)
mel (ω̃mel)

))}
=
{

X(ω)
}

. (7.34)

The log-spectrum is expanded as function of the Mel-warped frequency ωmel in terms
of unnormalized (i.e. not VTN-warped) Cepstral coefficients cmel

k

ln |X(ω)|2 = ln
∣∣∣X̂(ωmel)

∣∣∣2 = 2
K∑

k=0

cmel
k cos(ωmelk) . (7.35)

As before, inserting Eq. (7.35) into Eq. (7.31) results in

c̃mel
n (α) =

K∑
k=0

cmel
k

2sk

π

π∫
0

dω̃mel cos(ωmelk) · cos(ω̃meln) (7.36)

The unnormalized Mel-scale frequency ωmel needs to be expressed as function of the
VTN-warped Mel-scale frequency ω̃mel:

ωmel = gmel(ω) =
(
gmel ◦ g(−1)

α ◦ g
(−1)
mel

)
(ω̃mel) (7.37)

and finally

c̃mel
n (α) =

K∑
k=0

Amel
nk (α) cmel

k (7.38)

with

Amel
nk (α) =

2sk

π

π∫
0

dω̃ cos(ω̃n) cos
((

gmel ◦ g(−1)
α ◦ g

(−1)
mel

)
(ω̃) k

)
. (7.39)

Hence, the Cepstral coefficients c̃mel
n (α) of the VTN-warped Mel-scale spectrum can

be computed by a linear transformation of the unnormalized Cepstral coefficients
cmel
k (without VTN warping). Due to the highly non-linear transformation gmel ◦

g
(−1)
α ◦ g

(−1)
mel , the integral in Eq. (7.39) may not be solved analytically. Nevertheless,

the transformation matrix can be calculated numerically.
The resulting warping function geff := gmel ◦ g

(−1)
α ◦ g

(−1)
mel reads

geff(ω̃mel) :=
(
gmel ◦ g(−1)

α ◦ g
(−1)
mel

)
(ω̃mel) =

B · log
[
1 + 1

α

(
10ω̃mel/B − 1

)]
: ω̃mel ≤ gmel(ω̃0)

B · log
[
1 +

fsω̃0

2 · 700Hz

(
1

α
− π − α−1ω̃0

π − ω̃0

)
+

π − α−1ω̃0

π − ω̃0

(
10ω̃mel/B − 1

) ] : ω̃mel > gmel(ω̃0)

(7.40)
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In Fig. 7.11 the inverse warping function ω̃mel = g
(−1)
eff (ω) (straight line) is shown

since this view is more familiar.

Expanding the effective warping function geff(ω̃mel) for ω̃mel ≤ gmel(ω̃0) in a Taylor
series around α = 1

geff(ω̃mel) = ω̃mel −B
1− 10−ω̃mel/B

ln(10)
(α− 1) +O

(
(α− 1)2

)
. (7.41)

(for ω̃mel ≥ gmel(ω̃0) the expansion is similar) shows that the linear term dominates

the expansion because the term 1−10−ω̃mel/B

ln(10)
is small for 0 ≤ ω̃mel ≤ π. Thus, geff(ω̃mel)

may be approximated by a linear function with an appropriate choice of an effective
warping factor αeff. This matter will not be followed up in this work and will be
subject of further research.

The Cepstral coefficients c̃mel
n (α) obtained by the method presented here are iden-

tical to those calculated by explicitly warping the spectrum during signal analy-
sis as presented in [Molau & Pitz+ 01]. Comparing the resulting warping function

 ω
mel

= g
mel°gα°g

(-1)

mel
(ω

mel
)

 ω
orig

= gα(ω
orig

)

πω

ω~

π

α>1

α<1

~

~

Figure 7.11: Effective warping function g
(−1)
eff = gmel ◦ gα ◦ g

(−1)
mel for combined Mel

and VTN warping as function of the Mel frequency ωmel (straight) in
comparison to the warping function gα for plain CC as function of the
original frequency ωorig (dashed).

ω̃mel =
(
gmel ◦ gα ◦ g

(−1)
mel

)
(ωmel) (straight line in Fig. 7.11) as function of the Mel

frequency with the warping function gα for plain CC (dashed line) as function of the

original frequency reveals that gmel◦gα◦g(−1)
mel is much closer to identity than gα. Thus

the transformation matrix is expected to be even more diagonally dominant than
those obtained for plain Cepstral coefficients. Transformation matrices for MFCC
using piece-wise linear warping with warping factors (α = 0.9 and α = 1.1) are shown
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in Fig. 7.12 and 7.13. These matrices were calculated by solving Eq. (7.39) numer-
ically without approximations. The figures show that the transformation matrices
for MFCC are indeed dominated more by the diagonal elements than the matrices
for plain CC (Fig. 7.5 and 7.6). Thus the transformation matrix for MFCC may
be approximated by a tridiagonal matrix rather than a quindiagonal matrix (cf.
Section 7.4). A first experimental evaluation is given in Section 9.3.

Figure 7.12: Matrix for piece-wise linear warping function, α = 0.9, Mel frequency
scale.

Figure 7.13: Matrix for piece-wise linear warping function, α = 1.1, Mel frequency
scale.

7.6 Examples of Spectra Warped by Linear
Transformation

In the traditional or the integrated signal analysis approach (c.f. Section 7.2), the
smoothing has to be applied by omitting higher warped Cepstral coefficients because
VTN is applied before the Cepstrum transformation or integrated into the Cepstrum
transformation. When using the transformation matrix calculated in this Chapter,
the smoothing can be applied at two different stages: to the warped Cepstral coeffi-
cients (Scheme a) in Fig. 7.14) or to the unwarped Cepstral coefficients (Scheme b)
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Chapter 7 Frequency Warping as Linear Transformation in Cepstral Space

in Fig. 7.14). Smoothing by omitting higher unwarped Cepstral coefficients (Scheme
b) ) results in a loss of frequency resolution but has the advantage of faster computa-
tion because less unwarped Cepstral coefficients have to be calculated. Additionally,
the multiplication of the matrix Ank(α) with the Cepstral vector is faster because
Ank(α) is of lower dimension. The differences between both smoothing schemes will
be discussed in the following. A sample spectrum (Fig. 7.15, α = 1.0) with N = 512
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cepstral smoothing

cepstral smoothing
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512 warped 16 coeff.
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Cepstrum Cepstrum

coeff.

Figure 7.14: Schemes for different stages of Cepstral smoothing: a) smoothing after
VTN warping, b) smoothing before VTN warping.

spectral lines was transformed into K = 512 Cepstral coefficients by a Cepstrum
transformation:

ck =
4

N

N/2−1∑
n=0

ln
∣∣∣X(ei 2πn

N )
∣∣∣2 cos(

2πn

N
k) .

Then the Cepstral vector has been transformed using Eq. (7.9) into a piece-wise
linear warped Cepstral vector of 512 coefficients for warping factors α = 0.8 and
α = 1.2, respectively. Afterwards, the inverse DCT has been applied to the warped
Cepstral vector in order to obtain a warped spectrum. This last transformation has
been carried out for demonstration only; in practice the warped Cepstral vector is
used for further processing. The resulting spectra are shown in Fig. 7.15. A com-
parison of the warped Cepstral coefficients obtained by the method presented here
with those computed from the spectrum using the integrated approach described in
Chapter 6 reveals no differences. As an additional example the effect of Cepstral
smoothing is shown in Fig. 7.16. Again, the spectrum shown in Fig. 7.15 has been
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Figure 7.15: Example of warped spectra with warping factors α = 0.8 and α = 1.2 .
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Figure 7.16: Example of a smoothed spectrum; the Cepstrum was warped with a
512×512 matrix and subsequently reduced to 16 coefficients (Scheme a).

transformed into 512 Cepstral coefficients and has now been smoothed by trans-
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Chapter 7 Frequency Warping as Linear Transformation in Cepstral Space

forming back with only the first 16 Cepstral coefficients (α = 1.0 in Fig. 7.16). The
warped spectra have been obtained by calculating 512 Cepstral coefficients, trans-
forming them with Eq. (7.9) into 512 warped Cepstral coefficients, and subsequent
smoothing by transforming back with only the first 16 warped Cepstral coefficients
(Scheme a) in Fig. 7.14).)

As stated before, the warping obtained from the integrated approach of Chapter 6
can be reproduced only if Scheme a) is applied. If smoothing is applied first by
calculating only the first 16 Cepstral coefficients and warping hereafter using a
16× 16 matrix (Scheme b) ), slightly different results are obtained. The difference
between both methods is shown in Fig. 7.17. These differences arise mainly in the
part of the spectrum where the slope of the warping function is larger than 1 (cf.
Fig. 7.2), i.e. for ω > ω0 for α = 0.8 and ω < ω0 for α = 1.2 (ω0 = 7

8
π=̂7000Hz).
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Figure 7.17: Effect of different order of warping and smoothing on the smoothed
spectrum.

Recognition test results using Scheme a) and Scheme b) from Fig. 7.14 on the
Verbmobil II corpus are given in Table 7.1. The experimental setup for the following
experiments is as follows

• 512 Mel-warped Cepstral coefficients using the integrated approach as pre-
sented in Chapter 6

• 16 VTN warped Cepstral coefficients as presented in Section 7.5.2, augmented
with first derivatives and second derivative of the energy

• short-term Cepstral mean normalization on a sliding window of 2 seconds
length
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Table 7.1: Recognition test results on Verbmobil II. Warping factor estimation ac-
cording to Scheme a) and b) of Fig. 7.14.

MFCC VTN WER
comp. scheme

Scheme a) no 23.1%
yes 21.1%

Scheme b) no 23.2%
yes 21.2%

• first order derivatives (using linear regression on five frames), second order
derivative of energy

• LDA of three adjacent augmented VTN-MFCC vectors with reduction to 33
dimensions

• no variance and energy normalization

• 3500 decision-tree clustered across-word HMM states

• 3 state HMM topology

The acoustic model training was performed according to the RWTH standard train-
ing as described in [Molau 03, p.71][Sixtus 03, p.53]

Although the spectra obtained by both schemes differ slightly (c.f. Fig. 7.17),
the recognition results differ only within the range of statistical significance.

7.7 Interdependence of VTN and MLLR

Adaptation and normalization are commonly viewed as different techniques to re-
duce the mismatch between training and testing conditions [Woodland 01]. In Chap-
ter 4 it has been shown that adaptation and normalization can be put together in
the same mathematical framework. Moreover they are identical in terms of Bayes’
decision rule. As a consequence of VTN being a linear transformation of the Cep-
stral vector, a strong interdependence of two widely used normalization (VTN) and
adaptation (MLLR) techniques can be derived if Gaussian emission probabilities are
used.

Most of today’s ASR systems make use of Hidden Markov Models (HMM) with
Gaussian emission probability distributions

N (x|µ,Σ) =
1√

det(2πΣ)
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
.
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with state dependent parameters µ and Σ. If the acoustic feature vector (essentially
the Cepstral coefficients) x is normalized with the VTN matrix A, the Gaussian
distribution changes to

x → y = Ax :

N (x|µ,Σ) → N (y|µ,Σ)

= N (x|A−1 µ, A−1 ΣA−1T
)

= N (x|µ̂, Σ̂)

with
µ̂ = A−1 µ and Σ̂ = A−1 ΣA−1T

. (7.42)

Thus, a linear transformation of the observation vector x is equivalent to a linear
transformation of the mean vector µ and an appropriate transformation of the co-
variance matrix Σ. This topic has already be discussed in a more general view in
Chapter 5.

The transformations in Eq. (7.42) describe a constrained MLLR (C-MLLR)
[Digalakis & Rtischev+ 95, Gales 98]. The attribute constrained refers to the use
of the same matrix A for the transformation of the mean and variance, c.f. Sec-
tion 5.2.

In [Uebel & Woodland 99], Uebel and Woodland have found empirically that im-
provements obtained by C-MLLR and VTN were not additive. As shown above,
VTN may be viewed as a special case of C-MLLR adaptation with an restriction to
only one adjustable parameter (the warping parameter) that determines the matrix
elements. The experiments were based on a MF-PLP signal analysis. The differ-
ence between MFCC and MF-PLP is mainly caused by different types of smoothing,
which is not expected to effect the equivalence of VTN and linear transformations.
Hence, the experiments support the analytic result that VTN is a special case of
C-MLLR.

7.8 Conclusions

Currently, the warping factor is estimated similarly in nearly all VTN approaches:
The spectrum is warped with a discrete set of warping factors and a forced align-
ment of the utterance is performed using a given transcription (either the correct
one or obtained by a preliminary recognition pass). The warping factor for which
the alignment yields the best score is then chosen. This procedure is quite time
consuming since a signal analysis and a time alignment for each warping factor in
the set is required. Although there are some approaches to speed up the warping
factor estimation [Welling & Ney+ 02], calculating the warping factor analytically
from the Cepstral vectors would be preferable. As the transformation matrix can
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now be calculated analytically, the warping factor could be directly calculated rather
than being estimated by a grid search. Unfortunately, the resulting objective func-
tion for an HMM with Gaussian emission probability with variance Σs and mean
µs and posterior probability γs(t) for being in state s at time t

αopt = argmax
α

T∑
t=1

S∑
s=1

{
γs(t)

(
log | det A(α)|

− 1

2
(A(α) xt − µs)

TΣ−1
s (A(α) xt − µs)

)} (7.43)

can hardly be solved explicitly, especially for MFCC (cf. Eq. (7.39)).
Using the standard grid search approach for estimating the warping factor, the

approximation of the transformation matrix derived in Sections 7.4 and 7.5 may be
of less importance. In that case, the computing the approximated matrix has similar
costs as computing the complete matrix Ank. But the approximation may be useful
in another way: as shown in Section 7.7, VTN can be considered as a special case of
C-MLLR. Thus, the approximation motivated in Sections 7.4 and 7.5 can be used
for the case of a feature space transform as described in [Gales 98]. In that case, a
tridiagonal matrix could result in a similar performance with much less parameters.

A first exploitation of the theoretical results presented in this Chapter is given
in Section 9.3. Experimental studies show that a band diagonal restriction of the
matrix used for MLLR adaptation clearly outperforms the full transform for small
amounts of adaptation data and is only slightly inferior to the full transform for
large amounts of adaptation data.

7.9 Summary

In this Chapter it has been shown that vocal tract normalization can be expressed
as a linear transformation of the Cepstral vector for arbitrary invertible warping
functions. For the case of piece-wise linear, quadratic and bilinear warping an an-
alytic solution for the transformation matrix has been derived exemplary. Using
special properties of typical warping functions it has been shown that the trans-
formation matrix can be approximated by a quindiagonal matrix for plain Cepstral
coefficients or a tridiagonal matrix for MFCC, respectively. Computing the transfor-
mation matrix for VTN allows a proper normalization of the probability distribution
with the Jacobian determinant of the transformation. Finally it has been illustrated
that VTN amounts to a special case of MLLR. This explains previous experimen-
tal results that improvements obtained by VTN and subsequent C-MLLR were not
additive, which had not been understood so far.
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Chapter 8

Effect of the Jacobian Determinant
on Vocal Tract Normalization

In Section 4.3 was discussed that the Jacobian determinant needs to be taken into
account for vocal tract normalization (VTN). In virtually all approaches, the Jaco-
bian determinant is assumed to be flat as function of the warping parameter and
hence neglected. In [McDonough 00] it was shown that the Jacobian determinant
plays an important role if an all-pass transform is used as warping function. With
the approach presented in Chapter 7 it is for the first time possible to study the effect
of the Jacobian determinant on VTN in general. Although VTN works quite well
without taking the Jacobian determinant into account, a systematic study of the
effects has not been done yet. The correct treatment should result in an improved
warping factor estimation and thus improved recognition accuracy.

8.1 Jacobian Determinant for Vocal Tract
Normalization

To estimate the unknown warping factor α, the procedure is as follows
[Welling & Ney+ 02]: For each speaker r, labeled training data (xr

T
1 , wr

N
1 ) are given,

where xr
T
1 denotes the sequence of acoustic data and wr

N
1 the sequence of spoken

words. In recognition, a preliminary hypothesis of the unknown word sequence wr
N
1

can be obtained by a first recognition pass. Typically, a maximum likelihood estima-
tion is applied to obtain the unknown warping factor α of a feature transformation
function gα [Sankar & Lee 96]

α̂r = argmax
α

{
p(gα(xT

1 r)|w
N
1 r) ·

∣∣∣∣dgα(xT
1 r)

dxT
1 r

∣∣∣∣} . (8.1)

The last term denotes the Jacobian determinant of the transformation. It can be
omitted if no direct comparison of probability values is carried out with differently
“normalized” distributions. In a typical VTN approach the warping factor α is cho-
sen by comparing the scores obtained by a forced alignment of the same utterance
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warped with a set of discrete warping factors. Hence the Jacobian determinant needs
to be taken into account [Sankar & Lee 96]. Often the Jacobian determinant is as-
sumed to be flat as function of α. Accordingly it is approximated to be independent
of α and thus neglected.

In VTN the speaker normalization is usually not performed as a transformation
of the acoustic vectors but by warping the power spectrum during signal analysis
instead, and the Jacobian determinant can hardly be calculated. In virtually all
experimental studies the second factor in Eq. (8.1), the Jacobian determinant, is
neglected. Whether this is a good approximation or not will depend very much on
how much the Jacobian determinant depends on α. Therefore it is good to study
the second term as function of α. By expressing VTN as a matrix transformation of
the acoustic vectors (x → Ax) it is for the first time possible to study the Jacobian
determinant |detA| for all kinds of transformation functions. Taking the negative
logarithm of Eq. (8.1), the Jacobian determinant results in an additive term to the
acoustic score − log p(gα(xT

1 r)|wN
1 r), thus the maximum likelihood estimation of the

warping factor α reads

α̂r = argmin
α

{
− log p(gα(xT

1 r)|w
N
1 r)− log |detA|

}
. (8.2)

8.2 Effect on Warping Factor Estimation and
Experimental Results

The goal of the following investigation is to study if the conventional VTN im-
plementation can be improved by incorporating the Jacobian determinant without
changing the conventional signal analysis. As shown in Section 7.4, the shape of the
transformation matrices is very similar for different functional forms of the warping
function gα because of common characteristics of the warping functions. Addition-
ally, in [Molau & Kanthak+ 00] a study of different warping functions revealed little
impact on the recognition accuracy. As the piece-wise linear warping function is the
most popular warping function, the investigation is focused on that functional form.
An investigation of other warping functions is straightforward with the analytical
solutions given in Chapter 7.

In Section 7.6 two different schemes for computing warped Cepstral coefficients
have been discussed. For convenience, Fig. 7.14 is shown again in this Chapter as
Fig. 8.1. Scheme a) yields the same Cepstral coefficients as the signal analysis pre-
sented in Chapter 6. In that Scheme, the resulting Cepstral coefficients are obtained
by transforming the 512-dimensional vector of Cepstral coefficients with a 16× 512
matrix, i.e. includes a dimensionality reduction. For that case, the Jacobian deter-
minant is difficult to calculate. On the other hand, Scheme b) yields very similar
Cepstral coefficients with a 16× 16 dimensional transformation matrix and thus it
is assumed that Jacobian determinant for Scheme a) can be approximated by the
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Figure 8.1: Schemes for different stages of Cepstral smoothing: a) smoothing after
VTN warping, b) smoothing before VTN warping

Jacobian determinant for Scheme b). For the latter case, the Jacobian determinant
is simply the determinant of the 16×16 dimensional transformation matrix. There-
fore in this Section the term Jacobian determinant refers always to the determinant
of the 16 × 16 matrix from Scheme b). In other words, the Jacobian determinant
which has been calculated for a 16 × 16 matrix has been also used to modify the
warping factors obtained for Scheme a), i.e. by using a 16 × 512 matrix. It should
be clearly stated that using the Jacobian determinant from Scheme a) for a signal
analysis according to Scheme b) is an approximation, which has been introduced for
two reasons: firstly, the Jacobian determinant for Scheme a) can hardly be calcu-
lated. Secondly, the goal is to account for the Jacobian determinant while altering
the signal analysis as little as possible. Therefore the following study analyzes the
effect of using the Jacobian determinant from Scheme b), i.e. a 16× 16 transforma-
tion matrix, when using a signal analysis according to Scheme b), i.e. a 16 × 512
transformation matrix.

The experimental setup for the following experiments is as follows

• 512 Mel-warped Cepstral coefficients as presented in Chapter 6

• 16 VTN warped Cepstral coefficients as presented in Section 7.5.2, augmented
with first derivatives and second derivative of the energy

• short-term Cepstral mean normalization on a sliding window of 2 seconds
length
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• first order derivatives (using linear regression on five frames), second order
derivative of energy

• LDA of three adjacent augmented VTN-MFCC vectors with reduction to 33
dimensions

• no variance and energy normalization

• 3500 decision-tree clustered across-word HMM states

• 3 state HMM topology

• 10000 word lexicon

The acoustic model training was performed according to the RWTH standard train-
ing as described in [Molau 03, p.71][Sixtus 03, p.53].

Fig. 8.2 shows the Jacobian determinant which has been computed numerically as
function of the warping factor α for a piece-wise linear warping function using the
16×16 matrix from Scheme b). The function − log | detA| penalizes warping factors
with larger deviations from α = 1 and thus keeps the transformation closer to iden-
tity. If Mel frequency warping is additionally applied (dashed line in Fig. 8.2), the
dependence of the Jacobian determinant on α is much weaker because the effective
warping function gmel ◦gα ◦g

(−1)
mel is much closer to identity than gα for plain Cepstral

coefficients (i.e. without Mel frequency warping) (cf. Fig. 7.11).

Fig. 8.3 shows a typical distribution of the log-likelihood − log p(gα(xr
T
1 )|wr

N
1 )

(without the Jacobian determinant) for a female and a male speaker from the Verb-
mobil II corpus together with the Jacobian determinant − log | detA(α)| , all as
function of the warping parameter α. Looking at this plot, it seems that the Jaco-
bian determinant might play an important role for VTN as it is in the same order of
magnitude as the log-likelihood itself. Thus, a correct consideration of the Jacobian
determinant will result in major deviations in the estimation of the warping factors.
The effect of the Jacobian determinant on the estimation of the warping factors is
depicted in Fig. 8.4. Shown are the histograms of warping factors obtained using
Scheme a) with and without taking the Jacobian determinant into account. It can
be clearly seen that the histogram narrows towards the value α = 1 (the identity
transformation) when taking the Jacobian determinant into account. Although the
consideration of the Jacobian determinant has a noticeable effect on the warping
factor estimation, the effect on the word error rate is surprisingly small. Recogni-
tion results on the Verbmobil II corpus are given in Table 8.1. A slight degradation
in the recognition accuracy is observed which is hardly beyond the significance limit.
To care for possible systematic errors introduced by using the Jacobian determinant
from Scheme b) for Scheme a), the value of the Jacobian determinant has been scaled
down by a certain factor resulting in a smaller change of the warping factors. The
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Figure 8.2: Plot of − log | detA| (Jacobian determinant) for piece-wise linear warp-
ing of 16 Cepstral coefficients as function of α. Straight line: original
frequency scale, dashed line: Mel frequency scale

0.8 0.9 1 1.1 1.2
 α

0

1

2

3

Jacobian determinant
female speaker
male speaker

Figure 8.3: Normalized acoustic score (negative log-likelihood) of two test sentences
from the Verbmobil II corpus as function of the warping factor α in com-
parison to the contribution of the Jacobian determinant − log | detA(α)|
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Figure 8.4: Histogram of estimated warping factors for the test speakers of the Verb-
mobil II corpus without (dashed line) and with (straight line) taking the
Jacobian determinant into account. The warping factors were estimated
using Scheme a) of Fig. 8.1.

Table 8.1: Recognition test results on Verbmobil II. Warping factor estimation ac-
cording to Scheme a) of Fig. 8.1.

VTN Jacobian scaling factor WER
determinant

no 23.1%
no 0.0 21.1%

yes 1.0 21.3%
yes 0.5 20.8%

0.25 21.0%

recognition accuracy is improved slightly, but again hardly beyond the significance
limit.

As stated before, using the Jacobian determinant from Scheme b) of Fig. 8.1 for the
signal analysis according to Scheme a) is an approximation. In order to study if the
disappointing results shown in Table 8.1 are due to this approximation, a second set
of experiments was carried out using the signal analysis from Scheme b) including
the warping factor estimation, i.e. the complete signal analysis has been carried
out according to Scheme b) and thus no approximation concerning the Jacobian
determinant was made.
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The histogram of the obtained warping factors is shown in Fig. 8.5. By comparing

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15
0

50

100

150

200

250

300

female
male

Figure 8.5: Histogram of estimated warping factors for the test speakers of the Verb-
mobil II corpus without (dashed line) and with (straight line) taking the
Jacobian determinant into account. The warping factors were estimated
using Scheme b) of Fig. 8.1.

this histograms with those depicted in Fig. 8.4, it can be seen that the latter are
closer to the value α = 1. This suggests that for the warping factors of Scheme b)
a correction towards α = 1 maybe helpful, indeed. Recognition results using the
same experimental setup as before (except from the signal analysis) are given in
Table 8.2. As expected, the baseline results are very similar. Incorporating the
Jacobian determinant now results in a minor improvement (without the need of a
scaling factor) but the effect is again very small.

Table 8.2: Recognition test results on Verbmobil II. Warping factor estimation ac-
cording to Scheme b) of Fig. 8.1.

VTN Jacobian WER
determinant

no 23.2%
yes no 21.2%

yes 20.9%

Surprisingly, the correct treatment of the Jacobian determinant has only little
influence on the recognition accuracy despite the significant effect on the warping
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factor histograms. A study of individual speakers as well as individual warping
factors gave no further insight. In previous studies a correlation of the shape of
the warping factor histograms with the recognition accuracy has been observed
[Molau 02]. Thus, further research is needed on that topic.

In summary, it can be stated that the assumption of the small influence of the
Jacobian determinant on the recognition accuracy is valid, at least for the Verbmobil
II corpus, and that the approximation of dropping the Jacobian determinant is
justified. As the warping factor histograms and functional forms of the log-likelihood
are similar for other corpora, the same result can be expected.

8.3 Discussion

The warping factor α is usually determined by warping the speech signal with a dis-
crete set of warping factors and choosing the most likely one according to Eq. (8.1),
neglecting the Jacobian determinant. With the limitation of possible warping factors
to a set of discrete values close to the identity transformation, the span of possible
transformations is reduced. Thus the errors caused by improper normalization of
the probability distribution by neglecting the Jacobian determinant are small and
do not cause VTN to fail.

When not restricting the span of possible transformations, for instance in Max-
imum Likelihood Linear Transforms (MLLT) [Gales 98], the normalization of the
acoustic feature vectors will fail without proper normalization of the probability
distributions. Experiments have shown that unrestricted linear transformation with
neglecting the Jacobian determinant cause the automatic speech recognition system
to spuriously recognize silence only. A similar result has been reported in [Cox 00].
In the following an empirical explanation of these results will be given. A transfor-
mation of the acoustic feature vectors using a matrix A without any restrictions to
the values of the matrix elements while neglecting the Jacobian determinant results
in a density function

dA(x|µ, Σ) =

1√
det(2πΣ)

exp

{
−1

2
(Ax− µ)TΣ−1(Ax− µ)

}
,

which is not normalized. If the transformation matrix A is estimated using a max-
imum (log)likelihood criterion, the following will most probably happen: Among
the possible means µ of the ASR system, one or more means are assigned to the
silence model, which contains usually low spectral energy and thus small Cepstral
coefficients. The transformation will now map the acoustic feature vectors onto the
silence model by simply shrinking the values of the Cepstral coefficients1. As a sim-

1If the silence model is treated separately, the estimated transformation will map the feature
vectors to the mean of a consonant model with low spectral energy
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plified example, assume that the mean vector of the silence model consists of zeroes
only. If the transformation matrix is identical to 0, all transformed feature vectors
match perfectly with the silence model independent of their actual values. How-
ever, if the density is properly normalized by taking the Jacobian determinant into
account, this results in an additional term log | detA| in the log-likelihood function:

logL(xT
1 ; dA(x|µ, Σ)) =

T∑
t=1

log dA(xt|µ, Σ) + T · log | detA|

This second term log | detA| plays the role of a penalty for the transformation onto
the silence model because it penalizes transformation to small Cepstral values. In
the example above, this would result in an infinite penalty which balances the perfect
match of the first term.

The reason why VTN (in contrast to MLLT) does not fail without proper nor-
malization lies in the limitation of the warping factors and the specification of the
warping function. The resulting transformation has not enough degrees of freedom
and thus the matrix is kept close to the identity matrix.

8.4 Summary

The representation of vocal tract normalization as a linear transformation of the
Cepstral coefficients, as shown in Chapter 7, allows for the first time a detailed
analysis of the influence of the Jacobian determinant on the VTN warping factor
estimation. In this Chapter this has been investigated exemplary for a piece-wise
linear warping function, which is used in many VTN approaches. In nearly all previ-
ous VTN implementations the Jacobian determinant has been neglected. It turned
out that the Jacobian determinant has a significant influence on the estimation of
the warping factors, which resulted in a major difference between the particular the
warping factor histograms. Surprisingly, the recognition performance turned out
to be almost unaffected, despite of the major changes in the values of the warping
factors. In general, the approximation of neglecting the Jacobian determinant has
been shown to be justified. However, further research is needed to understand the
small impact of the Jacobian determinant on the recognition performance given the
large impact on the warping factor histograms.
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Chapter 9

Maximum Likelihood Linear
Regression

9.1 Introduction

Maximum likelihood linear regression (MLLR) [Leggetter & Woodland 95a] belongs
to the transformation family of adaptive acoustic modeling (cf. Section 4.2.2). The
basics of MLLR adaptation are given in Section 5.2.1 and are repeated in this Section
for completeness.

The MLLR approach uses an affine transformation to adjust the mean vectors µs of
the emission probability distributions to a new speaker or environmental condition:

µ̂s,r = As,r µs + bs,r (9.1)

where s denotes the HMM state and r the speaker (or condition). For notational
convenience, Eq. (9.1) is usually rewritten in the form

µ̂s,r = W s,r ξs (9.2)

where ξs denotes the extended mean vector

ξs = [1 µ>s ]> (9.3)

and W s,r is the n× (n + 1)-matrix [bs,r As,r]. The adaptation matrix W s,r is esti-
mated by maximum likelihood, given adaptation data (xr

T
1 , wr

N
1 ):

W ML
s,r = argmax

W s,r

p(xr
T
1 |wr

N
1 , θ, W s,r) (9.4)

The maximization of Eq. (9.4) is carried out using the expectation-maximization
(EM) algorithm [Dempster & Laird+ 77] and results in the following optimization
problem:

W ML
s,r = argmin

W s,r

{
T∑

t=1

γs(t)(xrt −W s,r ξs)
>Σ−1

s (xrt −W s,r ξs)

}
. (9.5)
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For diagonal covariance matrices, which are used in the RWTH system, taking the
derivative w.r.t. W s,r and equating to zero yields a row-wise solution for W ML

s,r

[Leggetter & Woodland 95a]:

W (i)
s,r = Z(i)

s G(i)
s

−1
(9.6)

with

G(i)
s =

1

σ2
s i

ξsξ
>
s

T∑
t=1

γs(t) (9.7)

Z(i)
s =

T∑
t=1

γs(t)
1

σ2
s i

xrtξ
>
s (9.8)

where W
(i)
s,r and Z

(i)
s denote the i-th row-vector of W ML

s,r and Zs, respectively, and
σ2

s i is the i-th diagonal element of Σs. A solution for the full covariance case is given
in [Gales & Woodland 96]. The main advantage of MLLR is that several HMM
states may share the same transformation matrix and thus even HMM states which
are unseen or have a small number of observations in the adaptation data can be
adapted. Usually, the adaptation matrices are tied over several HMM states thus
defining regression classes c = 1, . . . , C. Thus, Eqs. (9.7)–(9.8) read

G(i)
c =

M∑
m=1

1

σ2
sm i

ξsmξ>sm

T∑
t=1

γsm(t) (9.9)

Z(i)
c =

M∑
m=1

T∑
t=1

γsm(t)
1

σ2
sm i

xrtξ
>
sm

(9.10)

where the sum over m runs over all states Sc = {s1, . . . , sm, . . . , sM} which belong
to class c.

The RWTH system applies the Viterbi approximation, and the covariances Σs

are globally tied over all HMM states. Hence, Eqs. (9.5), (9.9)–(9.10) simplify to

W ML
c,r = Zc G−1

c (9.11)

Gc =
T∑

t=1
st∈c

ξstξ
>
st

(9.12)

Zc =
T∑

t=1
st∈c

xrtξ
>
st

(9.13)
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9.2 Modeling of Regression Classes

One of the main advantages of adaptation schemes belonging to the transformation
family (c.f. Section 4.2.2) is the use of regression classes. The number of trans-
formations used to adapt the speech recognition system to a new speaker and/or
environment is chosen dependent on the available adaptation data, for instance a
global transformation is used for the case of limited adaptation data and one trans-
formation for each phoneme is applied if many adaptation data is available. This
Section deals with the definition of regression classes and presents some refined
regression class definition, especially for the case of limited adaptation data.

9.2.1 Refined Bias Modeling

In the conventional approach [Leggetter & Woodland 95a], an equal number of
matrices and bias vectors is used for adaptation. It has been shown, how-
ever, that a more detailed approach can lead to better adaptation results
[Digalakis & Berkowitz+ 99]. In the following a study on the effect of using dif-
ferent numbers of classes for the MLLR matrix A and the bias vector b is presented:

µ̂s = Ac′µs + bc ,

where the adaptation class c′ is a function of the more detailed classes c

c′ = c′(c) ,

and the refined classes c themselves are functions of the HMM states c = c(s)
(i.e. several HMM states share the same adaptation class). The estimation formula
remain almost the same, only the estimation of the bias vector b (which is the first
column in the extended matrix W ) has to be refined:

bc =
1

T

T∑
t=1
st∈c

(
xt −Ac′(c)µst

)
(9.14)

The experimental setup is as follows:

• 16 Mel-frequency Cepstral coefficients

• short-term Cepstral mean and variance normalization on a sliding window of
2 seconds length

• first order derivatives (using linear regression on five frames), second order
derivative of energy

• LDA of three adjacent augmented MFCC vectors with reduction to 33 dimen-
sions
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• 2500 decision-tree clustered, within-word HMM states

• 243k Gaussian mixture densities

• 3 state HMM topology

• 10000 word lexicon

• two-pass unsupervised adaptation

Several modelings of adaptation classes were tested, ranging from one global trans-
formation for all time frames up to three matrices/bias vectors for speech frames and
one matrix/bias vector for silence/noise. Additionally, an adaptation class modeling
using one matrix for speech and silence each and one bias vector for each phoneme
plus silence was tested. The experimental results are summarized in Table 9.1. It can
be clearly seen that using only few full matrices but more bias vectors outperforms
an equal number of matrices and biases. With an equal number of matrices and bias
vectors, the optimum was reached with 3 matrices and 3 bias vectors (WER = 23.2%)
and could not be further improved by increasing the number of parameters. The use
of more classes for the biases gave an additional gain of 2.6% rel. (WER = 22.6%)
with approximately the same number of adaptation parameters. Using diagonal
MLLR matrices could not improve the results, even when using many adaptation
classes, in accordance with the results presented in [Leggetter & Woodland 95a].
Block matrices, which are widely used and are often superior to full matrices, are
not meaningful when using an LDA transformation since there is no specific order
of the Cepstral coefficients in the acoustic feature vector any more after the LDA
transformation.

Table 9.1: Recognition test results on the Verbmobil II corpus for different modelings
of adaptation classes.

Number of classes for No. of adpt. WER [%]
matrices W bias vectors b parameters

- - - 24.6

1 1 1122 23.6
2 2 2244 23.4
3 3 3366 23.2
4 4 4488 23.5
2 50 3828 22.6
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9.2.2 Dynamic Selection of Regression Classes

Several methods have been proposed to define the regression classes c of HMM states
that share the same transformation matrix [Leggetter & Woodland 95b, Gales 96,
Haeb-Umbach 01]:

• expert knowledge: the regression classes are divided into broad phonetic classes
like nasals, fricatives, etc. defined by an expert

• distance in acoustic space: the mean vectors are clustered using bottom-up or
top-down clustering based on their distance in the acoustic space.

The RWTH systems uses a combination of both methods: As the triphones are
clustered using a decision tree based on phonetic questions anyway, the same tree is
used for the MLLR adaptation. The number of leafs is usually too large for MLLR
adaptation as most of the leafs will seldomly be observed in the adaptation data,
the tree is cut at a certain level, usually in the order of magnitude of 100 leafs for
a tree with a total of 5000− 8000 leaves. The tree cut to N leafs is carried out by
storing the order of the splits during estimation of the tree in the training phase
and using the first N − 1 splits only.

The regression classes are dynamically obtained using this pruned decision tree.
The parameter to refine the regression classes is the number of observations for this
regression class, which is subject to empirical optimization. A simple example of
such a tree is given in Fig. 9.1. Using this tree approach, a single observation can

0

1 2

3 4 5 6

7 8

Figure 9.1: Example of MLLR regression class tree.

account for several regression classes. The statistics according to Eqs. (9.12)–(9.13)
are estimated for the leaves of the tree during the enrollment of the adaptation data.
Afterwards, the statistics are distributed across the complete tree, for instance

G1 = G3 + G4 (9.15)
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according to Fig. 9.1. The gray nodes in Fig. 9.1 denote that the associated re-
gression class has enough observations, i.e. the number of observations seen in the
adaptation data is larger than a certain threshold. Thus, HMM states which belong
to class 3 are adapted with the MLLR matrix W 3, estimated on data from class 3
only, and HMM states of class 4 are adapted using W 1, estimated on adaptation
data from both class 4 and class 3. The silence model is always adapted using a
separate adaptation class. Experimental results of this approach on the Verbmobil
II database are given in Table 9.2 for different threshold for the regression classes.
The experimental setup is as follows:

• 16 Mel-frequency Cepstral coefficients

• short-term Cepstral mean and variance normalization on a sliding window of
2 seconds length

• first order derivatives (using linear regression on five frames), second order
derivative of energy

• LDA of three adjacent augmented MFCC vectors with reduction to 33 dimen-
sions

• 3500 decision-tree clustered, position-dependent across-word HMM states

• 360k Gaussian mixture densities

• 3 state HMM topology

• 10000 word lexicon

• two-pass unsupervised adaptation, CART tree used for definition of regression
classes

Further details of the RWTH system can be found in [Sixtus 03]. The application of
MLLR with one global adaptation matrix for speech and silence each gives a reduc-
tion in word error rate (WER) of 6.6% rel. The silence model is adapted because it
is usually dependent on the environment and may additionally be speaker dependent
(breath noises that are modeled by the silence model, for instance). Increasing the
number of regression classes, the best performance is obtained at a threshold of 4000
observations per regression class, yielding a reduction in WER of 9.9% rel. These
results are comparable with those reported in literature [Soltau & Schaaf+ 01].

9.2.3 Semi-tied MLLR

The idea of semi-tied covariances (c.f. Section 5.3) can be transferred to MLLR
adaptation. Based on the concept of Eigen-decomposition, in the semi-tied co-
variances approach the covariance matrices are decomposed into a state dependent
diagonal matrix Σdiag

s and a transformation H which is tied over all HMM states:

Σs = H Σdiag
s H> , (9.16)
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Table 9.2: Recognition test results on the Verbmobil II corpus for different thresholds
for the minimum number of observations per adaptation class using an
adaptation class tree.

min. obs. Avg. no. matrices WER
(regression classes) %

baseline − 0 22.15
− 2 (fixed) 20.74

500 45.7 20.84
1000 35.2 20.73
2000 24.9 20.25

MLLR 3000 19.2 20.09
3500 16.9 20.14
4000 15.6 20.00
4500 14.3 20.05
5000 12.4 20.26
6000 10.6 20.35

where the matrix H is not necessarily orthogonal. Semi-tied covariances have been
introduced to overcome the restriction of diagonal covariance matrices without the
enormous increase in parameters to be estimated using a full covariance model.

A similar problem occurs with MLLR adaptation. When using adaptation classes,
several matrices have to be estimated from possibly limited adaptation data. It
was shown in [Leggetter & Woodland 95a] and confirmed by experiments with the
RWTH system that a few full matrices are superior to many diagonal matrices.
Thus, the off-diagonal elements of the MLLR transformation matrix play an impor-
tant role for the adaptation performance. On the other hand, MLLR adaptation
with only one global matrix gives already good improvements. The idea of semi-
tied MLLR adaptation is now as follows: use a global transformation (i.e. tied
over all regression classes) and a class dependent diagonal MLLR matrix. In other
words, the model space is transformed into a new space where the assumption of a
diagonal MLLR transformation matrix is more valid. As the MLLR matrix is not
symmetric in general, a decomposition based on the Eigen-decomposition may not
be used. Therefore, the MLLR matrix is decomposed similar to the Singular Value
Decomposition (SVD):

Ac = UΛcV
> (9.17)

where Λc is diagonal. Again, the transformation matrices U and V do not have to
be orthogonal. Using the Viterbi approximation and globally pooled covariances,
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the following optimization problem has to be solved:

argmin
{U ,Λ,V }

T∑
t=1

‖xt −Acµst‖
2 = argmin

{U ,Λ,V }

{
tr(Ac

>Ac Gc)− 2 tr(Ac
>Zc)

}
(9.18)

with
Ac = U Λc V > and Λ = {Λc | c = 1, . . . , C} .

and Gc and Zc are defined similar to Eqs. (9.12) and (9.13):

Gc =
T∑

t=1
st∈c

µstµ
>
st

(9.19)

Zc =
T∑

t=1
st∈c

xrtµ
>
st

(9.20)

The bias term bc will be dropped for the moment to simplify the equations, because
the estimation of that term is not changed by this approach. Taking the derivatives
with respect to Λc, U and V yields the following equations to estimate Λc, U and
V :

2 diag
(
UU>ΛcV

>GcV −U>ZcV
)

= 0 c = 1, . . . , C (9.21a)

2
∑

c

UΛcV
>GcVΛc − 2

∑
c

ZcVΛc = 0 (9.21b)

2
∑

c

GcVΛcU
>UΛc − 2

∑
c

Z>
c UΛc = 0 (9.21c)

The detailed calculation is given in Appendix B. To the knowledge of the author, a
closed-form solution of Eqs. (9.21) does not exist for general Λc, U and V . There-
fore, a conjugate gradient descent has been used to solve Eq. (9.18) numerically with
use of the gradients given in Eqs. (9.21).

So far, the transformations U and V have been tied over all regression classes to
simplify the notation. In practice, regression classes as described in Section 9.2.2
have also been used for U and V , but with a larger threshold than that used for Λ:

Ac = U c′ Λc V >
c′ (9.22)

Thus, the classes c are a refinement of the classes c′ and the matrices U and V in
Eq. (9.21) become dependent on c′.

The semi-tied MLLR approach has been evaluated on the Verbmobil II task.
As initial values for the conjugate gradient descent the results of a singular value
decomposition (SVD) of the usual MLLR matrices were used. In the Verbmobil
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II test set, a given speaker occurs in several dialogues. To simulate the effect of
little adaptation data, the data from the same speaker but different dialogues were
not merged for the following tests, i.e. the adaptation was carried out dialog-wise.
Therefore the result for the common MLLR approach in Tables 9.3 and 9.4 differs
from the respective number in Table 9.2.

As a first test, the transformations U and V were fixed to their initial values
(i.e. the results from the SVD of the initial MLLR matrix) and only the values of
Λc were estimated. For that special case, only Eq. (9.21a) has to be solved, which
can be solved in closed form for fixed U and V since it is linear in Λc′ . Thus, the
algorithm is as follows:

1. calculate Gc and Zc according to Eqs. (9.19) and (9.20) from the adaptation
data

2. calculate the usual MLLR matrix A0
c′ = Zc′G

−1
c′ with

Zc′ =
∑
c∈c′

Zc, Gc′ =
∑
c∈c′

Gc

3. apply SVD to A0
c′ : A0

c′ = U 0
c′ Λ

0
c′ V

0
c′
>

4. calculate Λc according to Eq. (9.21a)

5. adapt references with Ac = U 0
c′ Λc V 0

c′
>

and the usual bias term bc′ :
µ̂s = Acµs + bc′ for all HMM-states s which belong to regression class c.

The experimental results are given in Table 9.3. The threshold for the transfor-
mations (i.e. regression class c′) was kept fixed at 6000 observations. This large
threshold was chosen to ensure that the resulting matrices can be estimated reliably
rather than using the optimal threshold (cf. Table 9.2). It can be seen that there is a
clear optimum at 1000 observations or at about 18 regression classes for the diagonal
matrix Λc, but the overall improvement over the usual MLLR is very small.

In order to investigate whether the improvement being so small results from fixing
the transformations U and V , these transformations were reestimated too. As said
before, the equation (9.18) has been solved numerically using a conjugate gradient
method [Press & Teukolsky+ 02, p. 424]. The algorithm is as follows:

1. calculate Gc and Zc according to Eqs. (9.19) and (9.20) from the adaptation
data

2. calculate the usual MLLR matrix A0
c′ = Zc′G

−1
c′ with

Zc′ =
∑
c∈c′

Zc, Gc′ =
∑
c∈c′

Gc

3. apply SVD to A0
c′ : A0

c′ = U 0
c′ Λ

0
c′ V

0
c′
>

105



Chapter 9 Maximum Likelihood Linear Regression

Table 9.3: Recognition results for semi-tied MLLR on Verbmobil II. Only Λc has
been estimated, U c′ and V c′ were kept fixed to the values obtained by a
singular value decomposition of conventional MLLR with an observation
threshold of 6000. |C| denotes the average number of regression classes,
i.e. the average number of adaptation matrices. The corresponding num-
ber for |C ′| is 3.9 .

semi-tied conventional
MLLR MLLR

min. obs. |C| min. obs. WER [%] WER [%]
U c′ , V c′

baseline − 0 22.15 22.15
6000 3.9 20.88 20.88
100 91.4 21.14 54.10
500 28.2 20.90 21.98
1000 18.7 fixed 20.73 21.36
2000 9.4 20.84 20.90
4000 5.2 20.88 20.68

4. use the values U 0
c′ , Λ0

c′ and V 0
c′
>

as start values for the conjugate gradient
method with the gradients from Eq. (9.21)

5. update U i
c′ , Λi

c′ and V i
c′
>

until the difference of Eq. (9.18) for successive
iterations is below a certain threshold.

6. adapt references with Ac = U i
c′ Λ

i
c V i

c′
>

and the usual bias term bc′ :
µ̂s = Acµs + bc′ for all HMM-states s which belong to regression class c.

The experimental results are given in Table 9.4. For these experiments, the threshold
as described in item 5. of the above algorithm was set to 10−5. For the best result
(4000 observations), the experiment was carried out again with a threshold of 10−8.
The resulting adaptation matrices differed slightly, but without having an effect on
the recognition performance. As can be seen from Table 9.4 the reestimation of
the transformation matrices U and V did not improve the recognition performance
compared to the results given in Table 9.3.

9.2.4 Discussion

Unfortunately, the approach of semi-tied MLLR matrices has not resulted in an im-
proved speech recognition accuracy yet. The semi-tied approach aims at a refined
use of the regression classes. The recognition results shown in Table 9.2 reveals that
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Table 9.4: Recognition results for semi-tied MLLR on Verbmobil II. Λc, U c′ and V c′

have been estimated. The observation threshold for U c′ and V c′ was set
to 6000. |C| denotes the average number of regression classes, i.e. the
average number of adaptation matrices. The corresponding number for
|C ′| is 3.9 .

semi-tied conventional
MLLR MLLR

min. obs. |C| min. obs. WER [%] WER [%]
U c′ , V c′

baseline − 0 22.15 22.15
6000 3.9 20.88 20.88
100 91.4 54.10
500 28.2 21.40 21.98
1000 18.7 6000 20.92 21.36
2000 9.4 20.88 20.90
4000 5.2 20.71 20.68

the benefit of regression classes in general is rather small compared to the improve-
ment when using only two adaptation matrices, one for the silence models and one
matrix for the speech models. The word error rates are 20.74% when using only two
matrices and 20.00% when using about 16 matrices on average, which corresponds
to a relative reduction in word error rate of only 3.5%. This is rather small com-
pared to the improvements reported in [Leggetter & Woodland 95a] and [Gales 96],
though these tests were performed on a small vocabulary task only and used a super-
vised adaptation scheme. A general problem of the regression class modeling in the
RWTH system seems unlikely, as results using a similar regression class modeling are
superior than those presented by other groups([Afify & Siohan 00], c.f. Table 9.5)
on the same task. Thus further research is needed to get an insight why the im-
provements obtained by the use of regression classes are only moderate. A first hint
can be obtained from [Leggetter & Woodland 95a]: In Table I of that work it is
shown that if pooled covariances are assumed (which is called least squares adap-
tation in [Leggetter & Woodland 95a]), the use of regression classes also gives only
a small additional improvement of about 6% rel. reduction in word error rate in
comparison to a reduction of about 18% for model specific covariances. On the other
hand, the baseline in [Leggetter & Woodland 95a] uses specific covariance matrices,
unfortunately it is not stated in that work if mixture-specific or density-specific.
Thus assuming a pooled covariance matrix just for the estimation of the MLLR
matrix while the acoustic model does use specific covariance matrices may be an
inappropriate approximation.
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Currently the acoustic model of the RWTH system only uses a globally pooled
covariance matrix. Experiments at the RWTH have shown no significant differences
for the baseline system using a globally pooled and mixture-specific covariance ma-
trices [Schlüter 02]. However, this result may change if MLLR adaptation is added
to the system. The influence of a pooled covariance matrix on the adaptation perfor-
mance as well as the quality of the approximation of assuming a pooled covariance
for estimating the MLLR matrices, while using specific covariance matrices in the
acoustic model, has, to the knowledge of the author, not been studied yet and will
be a topic for further research.

An additional improvement of about 6% relative reduction in word error rate is re-
ported in [Leggetter & Woodland 95a] if the forward-backward algorithm is applied
for the estimation of the MLLR matrix instead of using the Viterbi approximation,
which is applied in the RWTH system.

Another interesting outcome of the experiments is that the semi-tied MLLR ma-
trix is in the vast majority of cases superior to the conventional MLLR with the
same threshold for the minimum number of observations per regression class. Cer-
tainly, the conventional MLLR has much more parameters to be estimated given the
same threshold and the conventional MLLR outperforms the semi-tied approach at
the respective optimal threshold. But this opens an interesting direction for further
research: The semi-tied MLLR may be helpful if only a small amount of adaptation
data is available: Assume, enough adaptation data is available to reliably estimate
the transformations U and V before the actual recognition test. Than, during the
real test, only the diagonal part Λ has to be estimated on-line. The combination
of the pre-calculated transformations U and V and the on-line estimated diago-
nal matrix Λ may outperform a full transformation matrix calculated previously on
the adaptation data because this matrix will not be able to adapt to changes in
the transmission channel for instance. On the other hand, the semi-tied approach
should outperform diagonal matrices estimated on-line because it offers a more flex-
ible adaptation and additionally may benefit from previously collected adaptation
data. The situation just outlined may for instance arise in the following scenario:
The speech recognition is used as user access to a voice mail box. When the voice
mail box is set up, the user provides the system with a certain amount of speech data
for adaptation purposes. The transformations U and V are calculated on this data
and the matrix Λ on-line every time the user accesses his mail box. This should
be superior to estimating a static transformation matrix on the adaptation data
because this matrix may not be able to adapt to environmental conditions different
from those represented in the adaptation data, for instance if the adaptation data is
collected using a conventional phone and the user accesses the mail box via a mobile
phone.
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9.3 Band-structured MLLR

In Sections 7.4 and 7.5 it has been shown that the VTN warping matrix may
be approximated by a band-diagonal structured matrix. Similar approxima-
tions have been proposed based on empirical findings in [Uebel & Woodland 99,
Afify & Siohan 00]. Although the band-structure has been shown to be valid for
the VTN transformation matrix AVTN in Section 7.4, a similar structure can also
been anticipated for the corresponding MLLR matrix. In Section 7.7 VTN has been
shown to be equivalent to a C-MLLR with transformation matrix AC-MLLR = A−1

VTN.
In [Demko & Moss+ 84] it has been shown that the entries of inverses of band matri-
ces decay fast enough to justify a similar approximation for the inverse matrix itself,
though the number of bands may be higher for the inverse matrix. This motivates
to restrict the usual MLLR matrix to a band structure.

The experimental setup is as follows: the common MLLR matrix A has been
restricted to a band structure: Aij = 0 for j < i− δ and j > i + δ, i.e. only δ bands
have been used. Similar results have been reported in [Afify & Siohan 00], where the
authors used an iterative approach to solve the occurring equations. Unfortunately,
the convergence of the iteration is not guaranteed and in fact convergence problems
have been observed by the author using this iterative approach. On the other hand,
the estimation of the MLLR matrix is a quadratic optimization problem and thus
can be solved in closed form. As the solution for the MLLR matrix can be obtained
row-wise, it is easy to restrict the resulting matrix to a band structure. For diagonal
covariance matrices

Σs = diag(σ2
1, . . . , σ

2
d, . . . , σ

2
D) ,

the solution of Eq. (9.4) for the i-th row w(i) of the band-restricted transformation
matrix W δ as defined in Eq. (9.2) is given by the following equation:

i+δ∑
k=0,i−δ

G
(i)
jk w

(i)
k = Z

(i)
j j = 0, i− δ, . . . , i + δ (9.23)

with G(i) and Z(i) from Eqs. (9.7) and (9.8) The k, j = 0-term in Eq. (9.23) results
from the bias term bs,r. Thus, for each row only a part of G(i) of size (2δ +1+11)×
(2δ + 1 + 1) has to be inverted.

The Spoke3 test set of the Wall Street Journal task has been used for the experi-
mental evaluation. This consists of 40 utterances for test and adaptation each, from
10 non-native speakers. Further details of this corpus can be found in Appendix C.
The experimental setup 2 is as follows:

• 16 Mel-frequency Cepstral coefficients

1for the bias term
2The experimental setup has been chosen to obtain comparable results as those presented in

[Afify & Siohan 00].
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• short-term Cepstral mean normalization

• LDA of seven adjacent augmented MFCC vectors with reduction to 32 dimen-
sions

• 4000 decision-tree clustered, across-word HMM states, one globally pooled
diagonal covariance

• 185k Gaussian mixture densities

• 6 state HMM topology

• trigram language model trained on the training data provided by NIST

• 5000 word lexicon

• supervised adaptation estimated on the adaptation utterances, CART tree
used for definition of regression classes, observation threshold 100 observations
(see Section 9.2.2 for details of the regression class modeling)

The acoustic models were trained on the SI-84 training set. Details of the RWTH
speech recognition system can be found in [Sixtus & Ney 02]. The baseline speaker
independent (SI) word error rate (WER) is 34.7%, the SI WER on the WSJ0-5k
evaluation corpus is 3.75%.

Table 9.5: Recognition results (WER in %) on the WSJ Spoke3 corpus for different
amounts of adaptation data and varying number of bands δ for the MLLR
matrix.

Number of adaptation utterances
1 5 10 20 40

baseline 34.7
0 27.7 23.1 20.2 17.3 17.4
1 27.0 22.2 18.6 16.3 15.5
2 27.0 22.0 17.9 15.6 14.5
3 27.3 21.3 17.7 14.9 14.0
4 27.5 21.2 16.7 14.1 13.3
5 28.2 21.9 16.7 14.2 13.2
7 28.8 22.4 16.8 14.0 12.9

N
u
m

b
er

of
b
an

d
s

full 43.8 33.2 23.2 15.6 12.5

As can be seen from Table 9.5 and Fig. 9.2, the largest improvement is obtained
from the first few bands of the MLLR matrix. This supports the theoretical findings
from Sections 7.4 and 7.5 that the transformation matrix can be approximated by
a tri- or quindiagonal matrix. Additionally, the full matrix is superior only for the
complete adaptation set of 40 utterances. For all other adaptation sets a band-
restricted matrix is superior to the full matrix. In general, except for very limited
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Figure 9.2: Plot of recognition results from Table 9.5.

adaptation data (1 utterance only), the best choice for δ is 4 which is very close to
the respective optimal value.

9.4 Confidence Measures

Automatic recognition of conversational speech tends to have significantly higher
word error rates (WER) than read speech. Improvements gained from unsupervised
speaker adaptation methods like MLLR are reduced because of their sensitivity to
recognition errors in the first pass. In this Section it is shown that the use of confi-
dence measures can improve the adaptation performance for conversational speech.
Usually, two main adaptation schemes are distinguished: supervised adaptation,
where the correct word transcription of the adaptation data is known, and unsuper-
vised adaptation, where it is not known. In unsupervised adaptation a preliminary
transcription is generated in a first recognition pass, which usually contains recogni-
tion errors. Adaptation with this erroneous transcription degrades the performance
of the adaptation step compared to supervised adaptation. Confidence measures
can be used to automatically label individual words in the preliminary transcription
with a continuous confidence score between 0 and 1. Using a threshold on that
confidence score, each word can be labeled either correct or false, which enables the
adaptation step to use only those words which are most probably correct. This is
especially significant in the context of conversational speech recognition, as the first
pass tends to have higher WER than read speech.

In the following, a short introduction into the specific confidence measure used
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in this Section is given. For a more detailed description, the reader is referred to
[Wessel 02]. The fundamental rule in all statistical speech recognition systems is
Bayes’ decision rule (cf. Section 1.1) which is based on the posterior probability
p(wM

1 |xT
1 ) of a word sequence wM

1 = w1, . . . , wM , given a sequence of acoustic ob-
servations xT

1 = x1, . . . , xT . That word sequence
{
wM

1

}
opt

which maximizes this

posterior probability also minimizes the probability of an error in the recognized
sentence:

{
wM

1

}
opt

= argmax
wM

1

p(wM
1 |xT

1 )

= argmax
wM

1

{
p(xT

1 |wM
1 ) · p(wM

1 )

p(xT
1 )

}
= argmax

wM
1

{
p(xT

1 |wM
1 ) · p(wM

1 )
}

,

(9.24)

where p(wM
1 ) denotes the language model probability, p(xT

1 |wM
1 ) the acoustic model

probability and p(xT
1 ) the probability of the acoustic observations. Strictly speaking,

the maximization is also performed over all sentence lengths M .

If these posterior probabilities were known, the posterior probability p(wm|xT
1 ) for

a specific word wm could easily be estimated by summing up the posterior proba-
bilities of all sentences wM

1 containing this word at position m. This posterior word
probability can directly be used as a measure of confidence [Wessel & Macherey+ 98,
Wessel & Schlüter+ 00, Wessel & Schlüter+ 01].

Unfortunately, the probability of the sequence of acoustic observations p(xT
1 ) is

normally omitted since it is invariant to the choice of a particular sequence of words.
The decisions during the decoding phase are thus based on unnormalized scores.
These scores can be used for a comparison of competing sequences of words, but not
for an assessment of the probability that a recognized word is correct. This fact,
and in other words the estimation of the probability of the acoustic observations, is
the main problem for the computation of confidence measures.

For the following considerations it is very useful to introduce explicit boundaries
between the words in a word sequence wM

1 . Let τ denote the starting time and t
the ending time of word w. With these definitions, [w; τ, t] is a specific hypoth-
esis for this word. A sequence of M word hypotheses can thus be formulated as
[w; τ, t]M1 = [w1; τ1, t1], . . . , [wM ; τM , tM ], where τ1 = 1, tM = T and tn−1 = τn − 1
for all n = 2, . . . ,M . In order to determine these word boundaries, the following
modified Bayes’ decision rule is considered. p([w; τ, t]M1 |xT

1 ) denotes the posterior
probability for a sequence of word hypotheses, given the acoustic observations and
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p(xT
1 |[w; τ, t]M1 ) the acoustic model probability:

{
[w; τ, t]M1

}
opt

= argmax
[w;τ,t]M1

p([w; τ, t]M1 |xT
1 )

= argmax
[w;τ,t]M1

p(xT
1 |[w; τ, t]M1 ) · p(wM

1 )

p(xT
1 )

= argmax
[w;τ,t]M1

M∏
m=1

[
p(xtm

τm
|wm) · p(wm|wm−1

1 )
]

p(xT
1 )

.

(9.25)

It is assumed that the generation of the acoustic observations xtm
τm

= xτm , . . . , xtm

depends on word wm only. With these word boundaries, the posterior probability
p([w; τ, t]|xT

1 ) for a specific word hypothesis [w; τ, t] can be computed by summing
up the posterior probabilities of all sentences which contain the hypothesis [w; τ, t]:

p([w; τ, t]|xT
1 ) =

=
∑

[w;τ,t]M1 :

∃ n∈{1,...,M}:
[wn;τn,tn]=[w;τ,t]

M∏
m=1

[
p(xtm

τm
|wm) · p(wm|wm−1

1 )
]

p(xT
1 )

.
(9.26)

The posterior probability for a word hypothesis and p(xT
1 ) can be computed on the

basis of word graphs. In the style of the forward-backward algorithm the forward
probability and the backward probability for a word hypothesis are computed and
both probabilities are combined into the posterior probability of this hypothesis. In
contrast to the forward-backward algorithm on a Hidden-Markov-Model state level,
the forward-backward algorithm is now based on a word hypothesis level.

These posterior hypothesis probabilities turned out to perform poorly as a con-
fidence measure. In fact, this observation is not surprising since the fixed start-
ing and ending time of a word hypothesis determine which paths in the word
graph are considered during the computation of the forward-backward probabili-
ties. Usually, several hypotheses with slightly different starting and ending times
represent the same word and the probability mass of the word is split among them.
In order to solve this problem, the posterior probabilities of all those hypotheses
which represent the same word have to be summed up. More details are given in
[Wessel & Schlüter+ 01, Wessel 02].
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Using Confidence Measures for MLLR Adaptation

For an unsupervised two-pass adaptation strategy the accuracy of the first pass is
crucial for the adaptation performance. Recognition errors and out-of-vocabulary
words degrade the adaptation to the new speaker or environment. The use of con-
fidence measures for unsupervised speaker adaptation has been investigated before
in [Anastasakos & Balakrishnan 98, Nguyen & Gelin+ 99]. The improvements re-
ported by these authors range from 1.8% to 4.1% relative reduction in word error
rate when comparing MLLR adaptation with and without confidence measures.

To study the effect of confidence measures on the MLLR adaptation in the RWTH
system, the word posterior based confidence measures described above were applied
as follows: each word in the recognized sentence was annotated with a confidence
score between 0 and 1. When collecting the statistics according to Eqs. (9.12) and
(9.13), those feature and mean vectors belonging to a word with a confidence score
below a given threshold were omitted. In other words, all words in the preliminary
transcription with a bad confidence score were disregarded for the estimation of the
MLLR adaptation matrix. The experimental results are given in Table 9.6. The
experimental setup is as follows:

• 16 Mel-frequency Cepstral coefficients

• short-term Cepstral mean and variance normalization on a sliding window of
2 seconds length

• first order derivatives (using linear regression on five frames), second order
derivative of energy

• LDA of three adjacent augmented MFCC vectors with reduction to 33 dimen-
sions

• 2500 decision-tree clustered, within-word HMM states

• 243k Gaussian mixture densities

• 3 state HMM topology

• 10000 word lexicon

• two-pass unsupervised adaptation using 2 adaptation matrices and 50 bias
vectors as described in Section 9.2.1

For this hard decision scheme a confidence threshold of 0.6 was applied and an im-
provement in word error rate of 4.9% rel. could be achieved. Varying the threshold
in the range from 0.4 to 0.7 yielded no significant difference. Similar relative im-
provements were reported in [Wallhoff & Willet+ 00], however only on clean, read
speech (WSJ0 task) and with a relatively high baseline word error rate for this task.

A drawback of completely disregarding the time frames with bad confidence scores
is the reduction in the amount of adaptation data. Thus, in another experiment, the
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Table 9.6: Recognition test results on Verbmobil II using confidence measures for
MLLR adaptation.

adaptation method WER[%]

no adaptation (baseline) 24.6

without confidence measures 22.6
with confidence measures, hard decision 21.5
with confidence measures, weighted 22.0
only correctly recognized words 21.0
supervised 18.3

feature and mean vectors were weighted with the confidence score annotated to the
corresponding word rather than disregarding bad time frames completely. Although
the amount of adaptation data is about 20% larger, the recognition performance is
inferior to the hard decision scheme. This suggests that the amount of adaptation
data is already sufficient when using only those time frames with a good confidence
score. On the other hand, the contribution of correctly recognized words is scaled
down when weighted with the confidence score.

In order to get an insight in the best performance possible with confidence mea-
sures, the statistics in Eqs. (9.12) and (9.13) were collected using only the correctly
recognized words. This is equal to an “ideal” confidence measure with 0% false
acceptance and 0% false rejection rate. As can be seen from Table 9.6, the result
obtained with word posterior based confidence measures is already quite close to
the ideal confidence measure. Another interesting contrast experiment is to use the
correct transcription of the test data in the first pass for a supervised adaptation.
Evidently, this is not a feasible experiment for real applications but gives more in-
sight in the potential performance of MLLR. This experiment gives an upper bound
for possible improvements to be gained by MLLR adaptation for a given set of adap-
tation classes. Comparing the results obtained with the correctly recognized words
only and with the complete correct transcription reveals still a major difference in
recognition performance. This shows the importance of adapting especially to those
words that were incorrectly recognized in the first pass and thus reduce the mis-
match between the acoustic models and the acoustic vectors of those words which
are responsible for recognition errors.
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9.5 MLLR in Combination With Other Adaptation
Approaches

This Section deals with the combination of the MLLR adaptation with other adap-
tation approaches, namely Vocal Tract Normalization (VTN) and Quantile Equal-
ization. The goal is to evaluate to which extend the gains obtained by each method
individually are additive when the approaches are combined.

9.5.1 MLLR and VTN

In [Pye & Woodland 97] and [Uebel & Woodland 99] it has been shown that
improvements obtained by VTN and MLLR are largely additive, whereas in
[Uebel & Woodland 99] it has been reported that there is only a very small benefit
from combining VTN and C-MLLR (constrained MLLR, i.e. mean and variances are
adapted using the same transformation matrix). An explanation of that empirical
finding has been given in Chapter 7, where it is shown that VTN can be expressed
as a special case of C-MLLR. However, there are benefits of combining VTN and
(standard) MLLR, experimental results are given in Table 9.7.

Table 9.7: Recognition test results on Verbmobil II using VTN and MLLR adapta-
tion. The results indicated by (∗) and (∗∗) are preliminary, see text for
experimental details and further explanation.

MLLR VTN WER[%]

Baseline no no 23.7
yes no 22.8 (∗)
no yes 21.3 (∗∗)
yes yes 19.8 (∗∗)

The experimental setup use in the experiments above is as follows:

• 16 Mel-frequency Cepstral coefficients

• short-term Cepstral mean and variance normalization on a sliding window of
2 seconds length

• LDA of eleven adjacent MFCC vectors (no derivatives) with reduction to 33
dimensions

• 2500 decision-tree clustered, within-word HMM states

• 286k Gaussian mixture densities

• 3 state HMM topology
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• 10000 word lexicon

• two-pass unsupervised adaptation in the case of MLLR

• supervised estimation of the VTN warping factors

These numbers indicated by (∗) and (∗∗) are preliminary results. At the time these
experiments were carried out the RWTH system was redesigned and newly imple-
mented. The MLLR had been implemented already in the new system, whereas the
estimation of the warping factors for VTN had not yet been implemented. Therefore
the VTN warping factors used in the experiment indicated by (∗∗) in Table 9.7 were
estimated in a supervised scheme using the previous system. This results in the
very good performance of VTN compared to the MLLR adaptation. Additionally,
the performance of the MLLR itself in the within-word system is less compared to
the performance in the across-word model system (WER 22.2% → 20.0%, cf. Ta-
ble 9.2). Presumably, there has been an error in the time alignment part of the new
RWTH software for within-word modeling, which is supported the the observation
that other approaches which rely on that module suffer from reduced performance,
too [Zolnay 04]. The problem could not be solved completely during the scope of
this work.

Apart from the degraded performance of MLLR for within-word modeling, the
combination of VTN and MLLR is mostly additive, as has also been shown in
[Uebel & Woodland 99].

9.5.2 MLLR and Quantile Equalization

Quantile equalization (QE) [Hilger & Ney 01] aims at increasing the noise robust-
ness of the automatic speech recognition system. The basic idea is to transform
the feature vectors during the signal analysis based on the cumulative distribu-
tion function. The cumulative distribution function for the training and testing
data set will differ if a mismatch of the training and testing conditions exists. The
mismatch can be reduced by a non-parametric approach (histogram normalization,
[Molau & Keysers+ 02]). This approach requires the estimation of the cumulative
distribution of the test data and thus a large number of test data for a reliable esti-
mation. In order to provide an online capable approach, the cumulative distribution
is approximated by a small number of quantiles. The cumulative distributions of the
training and test data are now matched based on the quantiles using a non-linear
parametric transformation function rather than the full histograms. The transfor-
mation function Tk is applied to the kth Mel-scaled filter bank coefficient Yk before
taking the logarithm (i.e. each filter bank coefficient is transformed individually),
yielding the transformed coefficient Ỹk:

Ỹk = Tk(Yk, θk) = QkNQ

(
αk

(
Yk

QkNQ

)γk

+ (1− αk)
Yk

QkNQ

)
(9.27)
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The parameters θk = {αk, γk} of the transformation are estimated by optimizing
the squared distance between the transformed recognition quantiles and the training
quantiles:

θk = argmin
θ′k

NQ−1∑
i =1

(
Tk(Qki, θ

′
k)−Qtrain

i

)2 (9.28)

The QE approach can be further enhanced by combining neighboring filter out-
puts [Hilger & Ney+ 03]: A second linear transformation is applied to the quantiles
Q̃k which are obtained from the transformed values Ỹk after the transformation of
Eq. (9.27):

T̃k(Q̃k) = (1− λk − ρk)Q̃k + λkQ̃k−1 + ρkQ̃k+1 . (9.29)

Again, the parameters {λk, ρk} are obtained by minimizing the squared distance

{λk, ρk} = argmin
{λ′k,ρ′k}

NQ−1∑
i =1

(
T̃k(Q̃k,i)−Qtrain

i

)2

+ β
(
λ′

2
k + ρ′

2
k

) , (9.30)

where β is a scaling factor to restrict the possible values of λk and ρk.
In addition, using the 10th root instead of the logarithm to compress the spectral

dynamics has emerged to reduce the word error rate significantly for noisy data.
For further details on QE, filter combination and using the 10th root, the reader is
referred to [Hilger 04].

The following experiments shall explore to which amount the improvements gained
by MLLR and QE individually add up if both approaches are combined. The ex-
perimental setup is as follows:

• 16 Mel-frequency Cepstral coefficients with filter mean normalization and 10th
root instead of logarithm

• LDA of seven adjacent MFCC vectors (no derivatives) with reduction to 33
dimensions

• 4001 decision-tree clustered, across-word HMM states

• 220k Gaussian mixture densities

• 6 state HMM topology

• 5000 word lexicon

• two-pass unsupervised adaptation in the case of MLLR, CART tree used for
definition of regression classes, observation threshold 2000 observations

• utterance wise QE

Recognition test results on the Aurora 4 noisy WSJ 16kHz test set [Hirsch 02] are
given in Table 9.8. The Aurora 4 test set consists of 14 different test sets, the given
results are averaged over all test sets.
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The MLLR approach alone (22.2% WER) outperforms the best QE result (25.5%
WER). However, the QE approach can be applied in an online system whereas
the MLLR is applied in a two-pass way. The improvements obtained from MLLR
adaptation are consistent over all test sets (see [Hilger 04] for details). Test set 8
(clean data, no additional noise, only microphone mismatch) is outstanding: The
WER using QE with filter combination is 21.2%, a combination with MLLR yield a
WER of 10.3%. Evidently, MLLR is very well capable of compensating for mismatch
conditions that are constant over the speaker sessions. On the other hand, QE is
very well suited for rapidly changing noise conditions. Thus a combination of MLLR
and QE yields significant improvements over either method alone.

Table 9.8: Recognition test results on the Aurora 4 noisy WSJ 16kHz test set us-
ing QE and MLLR. QE: standard quantile equalization, QEF: quantile
equalization with filter combination.

QE MLLR WER[%]

Baseline no no 29.7
QE no 25.9
QEF no 25.5
no yes 22.2
QE yes 20.4
QEF yes 20.1

9.6 Summary

In this Chapter several enhancements of maximum likelihood linear regression
(MLLR) adaptation have been presented. By the use of a refined regression class
modeling for the bias vectors of the affine transformation the exploitation of the
adaptation data could be improved, which resulted in an improved recognition ac-
curacy. The adaptation data could be even better exploited by the use of a dynamic
selection of regression classes. A new approach called semi-tied MLLR has been
presented, which aims at an even more flexible definition of regression classes. Al-
though this approach has not resulted in an improved recognition accuracy yet,
several promising ways of further research have opened up and should result in an
improved recognition accuracy especially for the case of limited available adaptation
data.

The restriction of the MLLR to a band structured matrix motivated by the struc-
ture of the matrix for vocal tract normalization derived in Chapter 7 resulted in a
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significant improvement in recognition accuracy when only limited adaptation data
are available.

For conversational speech the adaptation performance usually suffers from higher
error rates of the first pass in an unsupervised two-pass adaptation approach. Con-
fidence measures based on word posterior probabilities have shown to improve the
adaptation performance for conversational speech. The improvements obtained by
computed confidence measures have been shown to be very close to those obtained
when using an “ideal” confidence measure where only the correctly recognized words
have been used for adaptation.

Finally it has been shown that MLLR is very well suited for a combination with
VTN and QE, as for both cases the improvements obtained by the individual meth-
ods have shown to be largely additive to the improvements obtained by the MLLR
approach.
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Chapter 10

Scientific Contributions

The aim of this thesis was to study the interrelationship between several linear trans-
formations which had been commonly used in state-of-the-art speech recognition
systems. Due to this popularity, a confusing abundance of linear transformations
at various stages of the speech recognition process has been proposed in litera-
ture. Accordingly, there exist strong relationships or even equivalences between
those transformations. Although some indications of these relationships have been
reported, there has been no detailed analysis and classification of the approaches.

In this work a formal description of speaker adaptation techniques, usually referred
to as transformation of the model parameters, and speaker normalization, usually
referred to as transformation of the acoustic feature vectors, was given. Both speaker
adaptation and normalization were described in the same mathematical framework
and were deduced to be equivalent in terms of the Bayes’ decision rule.

Motivated by this equivalence, a review of the most commonly used linear trans-
formation was given in a unified notation. Many close relationships between the
transformations were revealed, for instance between the various speaker adaptation
techniques based on linear transformations and vocal tract normalization (VTN).
Further close relationships were proven to exist between linear discriminant analysis
(LDA), semi-tied covariances (STC), (extended) maximum likelihood linear trans-
formations ((E)MLLT) and heteroscedastic discriminant analysis (HDA). It was
derived that all these transformations can be obtained by maximizing a common
optimization function for the case of Gaussian emission probabilities.

An improved approach was presented to calculate Mel frequency Cepstral coef-
ficients (MFCC) from the acoustic data. This new approach avoids the twofold
smoothing inherent in the common MFCC computation scheme by means of the
filter bank and the subsequent reduction of Cepstral coefficients. The Cepstral co-
efficients are directly calculated from the Fourier spectrum, thus omitting the filter
bank completely. This allows for a very compact implementation of the signal anal-
ysis front end. Additionally, instead of optimizing a set of independent parameters
(number and shape of the filter banks and the number of Cepstral coefficients), only
one single parameter has to be optimized for a new task. Additionally, all types
of frequency warping can be directly integrated into the Cepstrum transformation

121



Chapter 10 Scientific Contributions

without quantization and interpolation errors.
Based on this modified signal analysis, it was possible to proof analytically that

vocal tract normalization is a linear transformation in the Cepstral space for ar-
bitrary invertible warping functions. For three widespread warping functions the
transformation matrix was calculated explicitly. Since typical warping functions
deviate only slightly from unity, the structure of the matrix describing the linear
transformation is determined by general characteristics of the warping functions
rather than the actual functional form. It was proven that the transformation ma-
trix is dominated by the main diagonal and a few off-diagonal bands, independent
of the actual functional form of the warping function.

Using this general structure to constrain the common maximum likelihood linear
regression (MLLR) matrix to a band structure significantly improved the MLLR
performance for small amounts of adaptation data. As predicted from the theoret-
ical analysis, increasing the number of off-diagonals the largest improvements are
obtained by the first few bands. When using only five adaptation utterances, the
common MLLR gave an relative improvement of 4% while using a diagonal MLLR
matrix improved the recognition by 33% relative and a band-diagonal MLLR with
4 bands by 39%.

Since vocal tract normalization was expressed as a linear transformation, the
Jacobian determinant of that transformation was calculated for the first time for
any warping function. Up to now, the Jacobian determinant had either been been
simply omitted or taken into account only for a few special warping functions. An
experimental study revealed that the consideration of the Jacobian determinant had
a significant influence on the estimation of the warping factors but surprisingly not
on the recognition performance. Thus the current practice of omitting the Jacobian
determinant was confirmed.

Confidence measures based on word posterior probabilities significantly improved
the MLLR adaptation performance. With help of these confidence measures the
difficulty of recognition errors in the first pass of an unsupervised adaptation scheme
had been largely overcome. The use of confidence measures on an conversational
speech task improved the recognition accuracy by 4.9% rel. A control experiment
where only the correctly recognized words were used for adaptation (thus providing
an ideal confidence measure) revealed that this result is already quite close to the
optimal value.

Several new approaches were presented to deal with the problem of using adap-
tation classes for MLLR adaptation when only small amounts of adaptation data
are available. First, the use of more refined regression classes for the offset term of
the affine transformation was suggested. The performance of the MLLR adaptation
was improved by 8.8% relative compared to the baseline or by 2.6% rel. compared
to standard MLLR, respectively. By a dynamic selection and a tree organization of
the adaptation classes the MLLR yielded an improvement of 9.7% rel. with respect
to the baseline. To exploit the adaptation data even more, a subspace structuring
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for MLLR adaptation, called semi-tied MLLR, was suggested. The goal is to define
a common subspace in which an approximation of diagonal MLLR matrices for the
different adaptation classes is most appropriate. The estimation formula were de-
rived and first experimental results were presented. While semi-tied MLLR proved
to be inferior to standard MLLR with the same number of regression classes, the
overall performance of MLLR could be improved only slightly. However, for the case
of very small amounts of adaptation data semi-tied MLLR may improve the recog-
nition performance whereas the standard MLLR actually decreases the recognition
performance.
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Chapter 11

Outlook

In this thesis linear transformations, especially for speaker adaptation and normal-
ization have been studied. It has been shown that Vocal Tract Normalization (VTN)
can be expressed as linear transformation in the Cepstral space and thus VTN
emerges as special case of Maximum Likelihood Linear Transformation (MLLR).
A study on commonly used linear transformations has demonstrated further close
relationships among those transformations. Finally, several enhancements of the
MLLR adaptation technique have been developed.

The following questions remain open and may serve as starting point for further
research:

• The influence of the Jacobian determinant on the warping factor estimation for
VTN warping has been studied in detail in this work. The correct consideration
of the Jacobian determinant has a significant effect on the estimated warping
factors, which results in a major difference in the warping factor histograms for
estimation schemes that both consider and neglect the Jacobian determinant.
However, the recognition performance remains almost unaffected by consider-
ing or neglecting the Jacobian determinant. This result is even more surprising
since the recognition performance is usually quite sensible to changes in the
warping factor histograms. So there remains a need for further research on the
effects of the Jacobian determinant on the warping factor estimation. A study
on different warping factor estimation schemes would give further interesting
insights. The scheme used in the RWTH speech recognition system is quite
stable. However, the correct consideration of the Jacobian determinant could
for instance improve an iterative warping factor estimation, which usually be-
comes unstable after several iterations. Here the Jacobian determinant may
be helpful for an improved warping factor estimation.

• A general structure of the VTN warping matrix has been derived that is almost
independent of the specific functional form of the VTN warping function. This
structure has been successfully applied for MLLR adaptation and resulted in
significant improvements for small amounts of adaptation data. A very promis-
ing extension is to use this general structure for speaker adaptive training with
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constrained MLLR. Although mathematically more difficult because of the nu-
merical computation of the adaptation matrix, restricting the matrix to a band
structure should result in an improved adaptation performance if only limited
data from a specific speaker are available for adaptation. In speaker adaptive
training often clusters of training speakers are build to ensure that sufficient
training data are available to reliably estimate the adaptation matrices. The
restriction of the adaptation matrix to a band structure could result in more
refined clusters and thus improve the adaptation performance.

• No systematic study on the influence of variance modeling on MLLR adapta-
tion has been published to this date. In this work the benefit from regression
classes was less than expected, which could be associated with the pooled co-
variance modeling in the RWTH system. For the RWTH baseline system, a
study on the covariance modeling and the difference between Baum-Welsh and
Viterbi training revealed no significant differences. This may change if MLLR
speaker adaptation is applied. So the investigation should be repeated in the
light of MLLR speaker adaptation.

• The semi-tied MLLR modeling proposed in this work gave very promising re-
sults, although the overall recognition performance could not be improved. An
interesting direction of further research is to estimate the transformations U
and V of the semi-tied MLLR approach beforehand, either on adaptation data
from the actual speaker collected in advance or on a training speaker with sim-
ilar characteristics as the current test speaker. For example, text-independent
Gaussian mixture models may be trained on the training speakers or clusters
of training speakers. In recognition, the most probable training speaker ac-
cording to the Gaussian mixture models could be chosen, for instance based
on the acoustic vectors of the first sentence. Then the transformations U and
V of that training speaker are used for semi-tied MLLR modeling and only
the diagonal matrix Λ has to be estimated online for the given test speaker.
Thus a full transformation matrix may be used to adapt the acoustic model
while only a diagonal transformation matrix has to be estimated on the test
data. This approach should result in an improved adaptation performance,
for instance for fast adaptation, where the adaptation matrices are estimated
iteratively on the test data.
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Symbols and Acronyms

In this appendix, all relevant mathematical symbols and acronyms which are used
in this thesis are defined for convenience. Detailed explanations are given in the
corresponding Chapters.

Mathematical Symbols

In general, mathematical symbols printed in bold face denote matrices, A> denotes
a transposed matrix.

xT
1 sequence of acoustic vectors x1, . . . , xT

T total number of time frames

wN
1 word sequence w1, . . . , w

N

N total number of spoken words

p(xT
1 |wN

1 ) acoustic probability distribution of the acoustic vector sequence xT
1

given the word sequence wN
1 (acoustic model)

p(wN
1 ) a-priori probability of the word sequence wN

1 (language model)

s = 1, . . . , S index for hidden Markov model states

r = 1, . . . , R index for different speakers

sT
1 sequence of hidden Markov model states s1, . . . , sT , usually the

Viterbi path

N (x|µ,Σ) Gaussian probability distribution

µ mean vector, usually of an Gaussian probability distribution

Σ covariance matrix, usually of an Gaussian probability distribution
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µs mean vector of HMM emission probability of state s

Σs covariance matrix of HMM emission probability of state s

csl mixture weight for density l of state s, usually of an Gaussian mix-
ture distribution

θ set of model parameters, usually {{µ}, {c},Σ}

XTrain set of training data, consisting of a collection of different acoustic
conditions

XTest test data, usually consisting of only one specific condition

X̃ normalized acoustic data

θTrain model parameter set trained on XTrain, covers the conditions repre-
sented in XTrain

θTest (hypothetical) model parameter set that covers the specific test con-
ditions represented in XTest

θ̃ model parameter set trained on the normalized acoustic data X̃

ω frequency

ω̃ warped frequency

ω0 inflexion point for piece-wise linear VTN warping

ω̃0 warped inflexion point for piece-wise linear VTN warping

ωmel mel-frequency

ω̃mel warped mel-frequency

α warping factor for vocal tract normalization (VTN)

gα warping function with warping factor α

As,r maximum likelihood linear regression (MLLR) transformation ma-
trix for state s of speaker r

xr
T
1 sequence of acoustic vectors for speaker r, adaptation data

wr
N
1 sequence of spoken words from speaker r, transcription of adapta-

tion data

bs,r MLLR bias vector for state s of speaker r
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H transformation matrix for the covariance matrix

ξs extended mean vector ξs = [1 µ>s ]> for MLLR adaptation

W s,r extended MLLR matrix [bs,r As,r]

γs(t) state occupation probability for state s

σsi i-th diagonal element of a diagonal covariance matrix

D dimension of the acoustic feature space

Θ HDA transformation matrix

Θ−> Θ−1>

ck k-th Cepstral coefficient

Ank nth row, kth column element of VTN warping matrix

δnk Kronecker delta, δnk = 1 for n = k; 0 otherwise

◦ composition of two functions, (f ◦ g)(x) = f(g(x))

X(ω) Fourier spectrum

X̃(ω̃) warped Fourier spectrum

sk symmetry factor, sk = 1
2

for k = 0; 1 otherwise

S(X) Fresnel sine function

C(X) Fresnel cosine function

g(−1) inverse warping function

tr(A) trace of matrix A

diag(A) diagonal elements of A

det A determinant of A
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Acronyms and Abbreviations

Acronyms

ASR automatic speech recognition

BLT billinear transform

C-MLLR constrained maximum likelihood linear regression

CART classification and regression tree

CC Cepstral coefficient(s)

CMN Cepstral mean normalization

(D)ARPA (Defense) Advanced Research Projects Agency

DCT discrete cosine transform

DLLR discounted likelihood linear regression

EM expectation maximization

EMLLT extended maximum likelihood linear transformation

F-MLLR feature-space maximum likelihood linear regression

FFT fast Fourier transform

HDA heteroscedastic discriminant analysis

HMM hidden Markov model

LDA linear discriminant analysis

LM language model

LPC linear predictive coding

LVCSR large vocabulary continuous speech recognition

MAP maximum a-posteriori

MAPLR maximum a-posteriori linear regression

MFCC Mel-frequency Cepstral coefficients

MF-PLP Mel frequency perceptual linear prediction
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ML maximum likelihood

MLLR maximum likelihood linear regression

MLLT maximum likelihood linear transformation

NAB North American Business News - a speech corpus

PLP perceptual linear prediction

PP perplexity

RWTH Rheinisch-Westfälische Technische Hochschule

SAT speaker adaptive training

SI speaker independent

SIMD single instruction, multiple data

STC semi-tied covariance modeling

SVD singular value decomposition

TI-DIGITS Texas Instruments connected digit sequences - a speech corpus

VTN vocal tract length normalization

WER word error rate

WSJ Wall Street Journal - a speech corpus
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Detailed Calculations

B.1 Semi-tied MLLR modeling

This section gives come detailed calculations for semi-tied MLLR modeling, which
has been discussed in Section 9.2.3. For semi-tied MLLR, the optimization problem

argmin
{U ,Λ,V }

T∑
t=1

‖xt −Acµst‖
2 (9.18)

with

Ac = U Λc V > and Λ = {Λc | c = 1, . . . , C} .

and Gc and Zc given as

Gc =
T∑

t=1
st∈c

µstµ
>
st

(9.19)

Zc =
T∑

t=1
st∈c

xrtµ
>
st

(9.20)

has to be solved. For convenience, the function to be optimized is defined as

F (U ,Λ, V ) :=
T∑

t=1

‖xt −Acµst‖
2 =

T∑
t=1

D∑
d=1

(
xtd − (U Λc V >µst)d

)2
(B.1)

where xtd denotes the dth component of the D-dimensional vector xt; accordingly
(•)d denotes the d-th component of the term in parentheses, the symbol • denotes
the term in parentheses itself. The derivatives will be calculated component-wise.
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B.1.1 Derivative w.r.t. Λc

As Λc is modeled to be diagonal, only the diagonal components have to be calculated:

∂

∂Λcii

F (U ,Λ, V ) =

= − 2
T∑

t=1

D∑
d=1

(
xtd − (U Λc′ V

>µst)d

)
· ∂

∂Λc′ ii

(U Λc′ V
>µst)d (B.2a)

= − 2
T∑

t=1

D∑
d=1

(
•
) ∂

∂Λcii

D∑
m,n=1

Udm Λc′mm Vnm µstn (B.2b)

= − 2
C∑

c′=1

∑
t∈c′

D∑
d=1

(
•
) D∑

m,n=1

Udm Vnm µstn δimδcc′ (B.2c)

= − 2
∑
t∈c

D∑
d=1

(
xtd − (U Λc V >µst)d

) D∑
n=1

Udi Vni µstn (B.2d)

= 2
D∑

d,n,k,l=1

Udk Λkk Vlk Udi Vni

∑
t∈c

µst l µstn − 2
D∑

d,n=1

UdiVni

∑
t∈c

xtd µstn (B.2e)

= 2
D∑

d,n,k,l=1

U>
id Udk Λkk V >

kl GcnlVni − 2
D∑

d,n=1

U>
idZcdnVni (B.2f)

= 2 diag
(
UU>ΛcV

>GcV −U>ZcV
)

(B.2g)

In Eq. (B.2c) the Viterbi approximation is utilized. The meaning of the shortcut
t ∈ c is as follows: The sum is taken over all time frames for that the Viterbi state
st (and thus the mean µst) belongs to class c.
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B.1.2 Derivative w.r.t. Uij

∂

∂U ij

F (U ,Λ, V ) =

= − 2
C∑

c=1

∑
t∈c

D∑
d=1

(
xtd − (U Λc V >µst)d

)
·

D∑
l=1

Λcjj Vlj µst l δid (B.3a)

= − 2
C∑

c=1

D∑
d,l=1

Λcjj Vlj Zcdl δid + 2
C∑

c=1

∑
t∈c

D∑
d,l=1

(U Λc V >µst)d Λcjj Vljµst l δid (B.3b)

= − 2
C∑

c=1

D∑
d=1

Λcjj Vlj Zcil + 2
C∑

c=1

D∑
d,l=1

D∑
m,n=1

Udm Λcmm VnmGcln Λcjj Vlj δid (B.3c)

= − 2
C∑

c=1

D∑
k,l=1

Zcil Vlk Λckj δkj + 2
C∑

c=1

D∑
l,m,n=1

Uim Λcmm VnmGcln Vlj Λcjj (B.3d)

= −2
∑

c

ZcVΛc + 2
∑

c

UΛcV
>GcVΛc (B.3e)

B.1.3 Derivative w.r.t. Vij

∂

∂V ij

F (U ,Λ, V ) =

= −2
C∑

c=1

∑
t∈c

D∑
d=1

(
xtd − (U Λc V >µst)d

)
· Udj Λcjj µst i (B.4a)

= −2
C∑

c=1

D∑
d=1

Udj Λcjj Zcdi + 2
C∑

c=1

D∑
d=1

D∑
m,n=1

Udm Λcmm VnmGcnj UdjΛcjj (B.4b)

= −2
C∑

c=1

D∑
d=1

Zc
>
id Udj Λcjj + 2

C∑
c=1

D∑
d=1

D∑
m,n=1

Gcin Vnm ΛcmmU>
md UdjΛcjj (B.4c)

= −2
∑

c

Z>
c UΛc + 2

∑
c

GcVΛcU
>UΛc (B.4d)
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Corpora

Verbmobil II

Verbmobil was a major long-term German speech-to-speech translation research
project funded by the German Ministry for Education, Science, Research and Tech-
nology (BMBF) and the industrial partners [Wahlster 00]. The consortium con-
sisted of 31 universities, industrial companies and research institutes. The corpus
of spontaneous dialogues in the domain of appointment scheduling and informa-
tion desk [Burger & Weilhammer+ 00]. Details of the Verbmobil corpus are given
in Table C.1.

Table C.1: Statistics of the Verbmobil II training and test corpora.

Corpus Training Test
CD1-41 DEV99

Language German
Speaking Style spontaneous
Overall Duration [h] 61.5 1.6
Silence Fraction [%] 13 11
# Speakers 857 16
# Sentences 36 010 1 081
# Running Words 560 837 14 662
Class-Trigram LM Perplexity - 62.0

Wall Street Journal – Spoke 3

The Wall Street Journal corpus was collected by the American National Institute of
Standards and Technology for November ’93 ARPA CSR II Hub and Spoke Bench-
mark Tests [Pallett & Fiscus+ 94]. It consists of newspaper texts read by journalists
from the Wall Street Journal. The Spoke 3 subset consists of non-native speakers

137



Appendix C Corpora

of American English (British, European, Asian dialects, etc.) and was used for
the optional speaker adaptation evaluation (S3). Details of the corpus is given in
Table C.2.

Table C.2: Statistics of WSJ1-Spoke3 training and test corpora.

Corpus Training Test
CSR-WSJ0 CSR-WSJ1

Spoke 3

Language US English US English
(non-native)

Speaking Style read read
Overall Duration [h] 15.04 0.93
Silence Fraction [%] 18 26
# Speakers 83 40
# Sentences 7 138 400
# Running Words 129 435 6 611
Trigram LM Perplexity - 71.9

North American Business News

The North American Business (NAB) corpus was collected by the American National
Institute of Standards and Technology for November ’94 ARPA CSR III Hub and
Spoke Benchmark Tests [Pallett & Fiscus+ 95]. It consists of newspaper texts from
Reuters News Service, New York Times, Washington Post, Los Angeles Times and
Wall Street Journal read by journalists.
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Table C.3: Statistics of the NAB 20k training and test corpora.

Corpus Training Test
WSJ0+1 NAB DEV-94 H1

Language US English
Speaking Style read
Overall Duration [h] 81.4 0.8
Silence Fraction [%] 27 19
# Speakers 284 20
# Sentences 37 571 310
# Running Words 643 754 7 387
Trigram LM Perplexity - 124.5

Aurora 4 – Noisy Wall Street Journal 5k

The Aurora 4 corpus is based on the WSJ0 corpus described above. Different noise
samples at various signal-to-noise ratios (SNR) were added to simulate noisy data
from the data recorded under clean studio conditions [Hirsch 02]. The noise was a
collection of car, babble, restaurant, street, airport and train noise.

In this work, only the clean training data have been used for training, i.e. the
original WSJ0 training data without added noise; the test results given in this work
are averaged over all 14 official test sets.

Table C.4: Statistics of the Aurora 4 training and test corpora.

Corpus Training Test
CSR-WSJ0 CSR-WSJ0

Language US English
Speaking style read
Environment studio added noises
Overall Duration [h] 15.04 0.35
Silence Fraction [%] 18 26
# Speakers 83 8
# Sentences 7138 166
# Running Words 129 435 2 737
Trigram LM perplexity – 62.3
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