
Pan, Zoom, Scan – Time-coherent, Trained Automatic Video Cropping

Thomas Deselaers, Philippe Dreuw, and Hermann Ney
Human Language Technology and Pattern Recognition Group

RWTH Aachen University, Aachen, Germany
<lastname>@cs.rwth-aachen.de

Abstract

We present a method to fully automatically fit videos in 16:9
format on 4:3 screens and vice versa. It can be applied
to arbitrary aspect ratios and can be used to make videos
suitable for mobile viewing devices with small and possibly
uncommonly sized displays. The cropping sequence is opti-
mised over time to create smooth transitions and thus leads
to an excellent viewing experience. Current televisions have
simple and often disturbing methods which either show the
centre region of the image, distort the image, or pad it with
black borders. The technique presented here can fully au-
tomatically find the “right” viewing area for each image in
a video sequence. It works in real-time with only very little
time-shift. We employ different low-level features and a log-
linear model to learn how to find the right area. The method
is able to automatically decide whether padding with black
borders is necessary or whether all relevant image areas fit
on screen by cropping the image. Evaluation is done on ten
videos from five different types of content and the baseline
methods are clearly outperformed.

1. Introduction

For decades, televisions and movies have been 1.33 times as
wide as they were high, referred to as 4:3 or 1.33:1 televi-
sion format. Today, the growing availability of wide-screen
televisions and wide-screen movies often leads to unsightly
video presentation: 4:3 movie presentation on 16:9 displays
is disturbing in the same way as 16:9 (or wider) content is
disturbing on conventional 4:3 displays.

Although increasingly many televisions have displays in
16:9 (1.78:1) format [4], still many old TV sets with 4:3
displays are in use and many of the increasingly popular
mobile multimedia devices have uncommon aspect ratios.
Due to the size of their displays, padding the images and
effectively using only a small portion of the display is un-
acceptable. For example, the Apple iPhoneTM has a screen
diagonal of 3.5 inches and a resolution of 480×320 pixels,
i.e. an aspect ratio of 3:2 when viewed in landscape mode,
which makes approx. 29% of the screen unused when view-
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Figure 1: Examples of conventional handling of different as-
pect ratios for video material and display device. (a) squeezed,
(b) cropped, (c) letterboxed, (d) pillarboxed.

ing videos in 16:9 format with black padding. Note that it
is also possible to use it in portrait mode which leads to a
display which is higher than wide.
Preliminaries. Regardless of the chosen display, the origi-
nal aspect ratio of movies usually varies between 1.33:1 and
2.40:1. The common solutions to viewing content in an as-
pect ratio different from that of the display device are either
to squeeze the image onto the screen (Fig. 1 (a)), to crop the
image (Fig. 1 (b)) such that only a central area is visible, or
to horizontally (Fig. 1 (c)) or vertically (Fig. 1 (d)) pad the
images with black borders (letterboxing/pillarboxing).

Squeezing the images leads to distorted images which
can be disturbing and is unacceptable in most cases (cp.
Fig. 1 (a)). Padding the images leaves large portions of the
display unused and thus makes the image smaller which is
particularly annoying on mobile devices (cp. Fig. 1 (c), (d)).
Cropping the image may lead to loss of important details of
a movie, because up to 50% of the original picture can be
lost (cp. Fig. 1 (b), where half of a main actor is lost).
Available Approaches. Today, most TV sets have several
modes to fill the complete screen with videos of different
aspect ratios. Some offer compromises between stretch-
ing and zooming to fill the screen, e.g. stretching the bor-
der areas of the images more than the centre part, which
makes people in the centre of the screen appear correctly,
others crop only a little so that they do not have to stretch
as much. They all have in common that either potentially
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important image content is lost, or that an anamorphic im-
age distortion occurs. As both is unacceptable in most cases
and for most end-users, some DVDs are produced with a se-
quence of manually annotated cropping areas to ensure that
the relevant areas of the image are always included in the
cropped sequence. The process of finding the right crop-
ping sequence is referred to as “panning and scanning”. An
operator manually selects the parts of the original compo-
sition that are significant (i.e. scanning). Once, the action
shifts to a new position in the frame, the operator moves the
region-of-interest, effectively following the action, creating
the effect of a so called pan shot. This method allows for us-
ing the full screen resolution, but (a) requires costly manual
annotation, which can be done for one or two different as-
pect ratios but not for arbitrary aspect ratios, and (b) due to
the major reduction of cinema movies in size, the dynamic
feeling and important image regions can be lost and thus
effectively, the arrangement of a carefully composed scene
can be destroyed.

On other types of video footage, e.g. live-sports or news,
the scenes are not always composed this carefully, but the
“important objects” are kept in the central part of the im-
ages. Here, problems arise, when top and bottom parts are
cropped to reduce a 4:3 movie to 16:9 format and subtitles
or news tickers are superimposed on the image.

In this work, we present a method that finds a pan, scan,
and zoom sequence for a given video sequence such that
no important content is lost, independent from the position
in the frames, and a smooth transition between succeeding
cropping positions is created. To achieve a panning and
scanning sequence with as little loss of important image de-
tails as possible, we allow for slightly padding the image
with black borders, i.e. zoom out of the image, for partial
sequences. Smoothness of the resulting cropping sequence
is obtained by explicitly optimising over time. The whole
method is capable to run in real-time with only little time-
shift. Starting from a general, feature-driven setup we de-
velop a system that can find the best viewing pane for each
frame in a video using a task-dependent and automatically
learnt scoring method. To learn the parameters, only few
frames from videos of the same domain as the target video
have to be hand-labelled. Additionally, it is possible to learn
a model that performs well on all types of video content.
Related work. The problem of automatic pan and scan for
videos was addressed in [10] and [13] and for still images in
[9]. The authors find a region of interest and create a warp-
ing function, i.e. apply a piecewise linear scaling function
to the images, which leaves the region of interest unchanged
and warps the rest of the image. The video retargeting is
smoothened by adding constraints for consecutive frames.
Contrary to the approach presented here, in [13] there is no
explicit optimisation over time, no zooming out, no learn-
ing, and no quantitative evaluation.

A novel method for image retargeting has recently been
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Figure 2: Overview of the whole system. First (top part) from each
frame of the video sequence, features accounting for appearance,
saliency, and motion are extracted, a log-linear model is applied to
each pixel of the image potentially using these three cues, resulting
in a score-image per frame. In the second phase (bottom part),
dynamic programming is applied to find a sequence of viewing
panes for the video frames. In the forward step, the scores for all
potential areas are computed and in the backward/traceback step,
the best viewing sequence is determined.

presented in [1]. Avidan and Shamir propose a method that
allows for content-aware resizing of images, i.e. keeping the
complete content of an image by removing ‘irrelevant’ re-
gions. This method resizes images by bringing the content
closer together. We quantitatively compare our approach
with this method, which allows some interesting insights.

A similar problem is addressed by the drivers of many
webcams and video chat applications: the webcam has a
wide angle lens to make sure that the user’s face is captured,
then the software detects the face in the image and recenters
the display window around the face. There, face detectors
and possibly motion are used to find the viewing window.
More advanced methods allow for segmenting the webcam
user from arbitrary background in monocular video [3, 14]
(such as considered here) and in binocular video [8].

In [5], a similar algorithm as the one proposed here for
optimisation is used for tracking of hands and faces for sign
language recognition.

Related problems include viewing large images on mo-
bile devices where different solutions are presented in [2]
and [11]. It is proposed to detect the most important region
and automatically move the view-port over the image.

2. Overview
The system is built from two basic components: (1) fea-
ture extraction and combination, (2) panning, scanning, and
zooming. An overview of the system is given in Fig. 2.

In the first component, the images are analysed to find
relevant regions. To determine whether a region is relevant



we employ three different strategies, namely visual saliency
of still images, optical flow to capture movements, and a
trained scoring algorithm which can use the three cues ac-
counting for saliency, motion, and the appearance of the im-
age to determine relevance for each position of an image.
The parameters for this scoring are trained once for each
type of video content, and can then be used for arbitrary
sequences of the same or similar content-types. The algo-
rithm can also be applied to video content types for which
no training has been performed at all. Then, the log-linear
scoring is replaced by a weighted (possibly controllable by
the user) sum of saliency and optical flow.

In the second component, the output of the first compo-
nent is analysed to find a sequence of cropping positions
with correct aspect ratio for the display device, shows as
many relevant image parts as possible, is smooth to give a
nice viewing experience, and uses as much of the available
display, i.e. applies as little black padding, as possible.

The cropping sequence is potentially optimised over the
whole video using dynamic programming. Ideally it is ap-
plied shot-wise, i.e. shot boundary detection is applied and
then the best cropping sequence for each shot is determined.
Using early tracebacks in the dynamic programming, the
cropping sequence can be found with little time-shift, i.e.
30 frames (approx. one second) of time-shift leads to hardly
any decrease in performance or smoothness of the method
but allows a near-live viewing. The system itself, which is
an unoptimised implementation in C++ using OpenCV, is
able to process videos in near real-time.

In general the method can be applied to any type of video
footage. Only a little time-shift is required to be able to
apply the method with sufficiently good results.

3. Task Definition
To evaluate and test our system, we defined a set of 5 dif-
ferent types of video content representing a wide variety
to show that the system generalises over different types of
video content: TV series (Buffy, the vampire slayer), cinema
movies (Star Wars), Sport (football world cup 2006), Car-
toon (Simpsons movie), and News shows. For each of these,
we have two sequences of at least 30 seconds. To be able
to evaluate the performance of the method we randomly se-
lected 10 frames from each video and labelled some areas
of the images as important and unimportant, respectively.
An example image from each type of video content to-
gether with the corresponding relevance labellings is shown
in Fig. 3 (a) and (b). To keep training and testing data dis-
joint, we use the respective other video of the same type.
In particular the selected sequences are fully disjoint and
from different parts of the movies. Note that we chose five
different types of video content to show that the presented
approach in principle works for arbitrary content type.
TV series: Buffy. The Buffy sequences are two, 30-second

long, non-overlapping parts of the second episode from the
fifth season from “Buffy the Vampire Slayer”. The images
are of size 640 × 340 (i.e. 1.88:1 original aspect ratio), the
target aspect ratio is 4:3.
News. One sequence from ABC World News and one
sequence from BBC World News were collected, lasting 30
seconds each. ABC World News has an aspect ratio of 4:3
(image size 320×240) and BBC World News has an aspect
ratio of 16:9 (416×232 pixels). The target aspect ratio is
16:9 for the first and 4:3 for the second.
Cartoon: Simpsons Movie. Two different, disjunct parts
of two trailers of the Simpsons movie were selected. The
images are of size 640 × 272 (i.e. 2.35:1 original aspect
ratio), the target aspect ratio is 4:3.
Sport: Football World Cup 2006. One minute from the
world cup game Iran vs. Mexico and one minute from the
world cup final France vs. Italy were selected. The images
are of size 640 × 340 (i.e. 1.88:1 original aspect ratio), the
target aspect ratio is 4:3.
Cinema: Star Wars IV: A New Hope Two 30-second
long, non-overlapping parts of Star Wars IV were randomly
selected. The images are of size 640×320 (i.e. 2.00:1 orig-
inal aspect ratio), the target aspect ratio is 4:3.
Creation of Ground Truth. To create the ground truth,
which is required for training and for evaluating the system,
a user is presented with ten frames taken from each video
and marks areas as important (red) and unimportant (blue)
by painting into the image. The user is not required to label
each pixel, unlabelled pixels are not considered at all and
the labelling can be very coarse (Fig. 3). This way, frames
can be annotated quickly. A user presented with the annota-
tion system for the first time was able to annotate an image
within few seconds.
Experimental Protocol. For the evaluation, we give the
recall (percentage of important pixels displayed) and the
percentage of unused pixels on the display (i.e. if the im-
age is padded with a black border). Ideally, all important
pixels are shown without having to matte the image with
black borders.

4. Features
Feature-based relevance of image regions can be deter-
mined by saliency, motion is captured by optical flow.
Saliency, optical flow, and appearance can furthermore be
fused using a log-linear model to determine a probability
of relevance. Specialised detectors could be used for some
types of content, e.g. a face detector, such as the one pre-
sented in [12] to mark faces as relevant. Note, that sim-
ple difference images or background subtraction is not suf-
ficient to determine the important areas in a video sequence
due to possible camera movements, zooming, and chang-
ing backgrounds. To allow the system to learn which parts
of the images are relevant, depending on saliency, optical
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Figure 3: Example images for the 5 different types of video (top) and their corresponding
relevance annotation (bottom). Red annotation denotes important areas and blue annotation
denotes unimportant areas. From left to right: Buffy, News, Simpsons, Football, and Star Wars.
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Figure 4: Features: (a) image, (b)
saliency, (c) video saliency, and (d) op-
tical flow.

flow, and appearance, we propose to train a simple log-
linear model effectively fusing these three cues to yield one
relevance-score per pixel. If desired, it is possible to easily
add a face-cue (obtained from a face detector) to the cues
considered here.

4.1. Saliency
Computational modelling of visual saliency is a challenge.
In [7] a simple method for visual saliency detection is pre-
sented. The log-spectrum of a given input image is analysed
to extract the residual of an image in the spectral domain.
The method was shown to perform well on both natural im-
ages and artificial, psychological patterns and performs fast
since it mainly requires to calculate two two-dimensional
Fourier transforms. Given an image X , the saliency map
S(X) is obtained as

S(X) =F−1
(
exp(R(X) + P(X))

)2 ∗ g1 with (1)
R(X) = log(||F(X)||)− log(||F(X)||) ∗ g2 (2)
P(X) =I (F(X)) , (3)

where R(X) is the spectral residual, P(X) is the phase
of the Fourier transform F(X), i.e. the imaginary part of
the Fourier transform, g1 and g2 are smoothing filters, and
F and F−1 denote the Fourier transform and the inverse
Fourier transform, respectively.

It is straightforward to extend the method to calculate
the saliency on 3-dimensional data and thus it could be
used to determine saliency in videos. An example saliency
map and the corresponding video saliency map are shown
in Fig. 4 (b) and (c). The video saliency was obtained for
a 63-image sequence with 31 images before and 31 images
after the frame of interest. In the video saliency, static but
otherwise salient objects are not salient anymore. For our
application a region is likely to be important if it is salient
or if something is moving rather than if it is salient and it is
moving. Therefore, we did not use video saliency but only
frame-wise image saliency in the experiments.

4.2. Optical Flow
Optical flow describes the motion of objects in a scene and
is a well understood way to capture motion in videos. The
optical flow is a flow-field specifying the motion in x and
y-direction for each pixel in an image X . The calculation
of the optical flow is commonly based on the assumption

that given a sufficiently high sampling frequency, the inten-
sity of a particular point is constant. We use the OpenCV
implementation of the method described in [6] which gives
us a dense flow field in x-direction X (X) and in y-direction
Y(X). To capture motion, we use the magnitude of the flow
vectors O(X) =

√
X (X) + Y(X).

An example optical flow magnitude O(X) is shown in
Fig. 4 (d). The expectation is that optical flow is able to
capture where in the image motion occurs as opposed to
the saliency which is expected to find interesting regions in
static images. In particular, optical flow is expected to help
when subtitles or news tickers are superimposed on images.
For example, the title line in a football game showing the
current score of a game is not required to be visible always,
but if information about a player exchange is superimposed
in the bottom part, this information may be important.

5. Log-linear Scoring
One of the core components of the system is a log-linear
model which can be parametrised task dependently. Given
the saliency, the optical flow, and the appearance (RGB
channels), for each position (x, y) in an image X we calcu-
late a probability whether the position is important (denoted
as 1, opposed to irrelevant, denoted as 0) as

p(1|X, x, y) =
exp

(
α1 +

I∑
i=0

λ1if(X, x, y, i)
)

∑
c∈{1,0}

exp
(

αc +
I∑

i=0

λcif(X, x, y, i)
) , (4)

where f(X, x, y, i) denotes the i-th feature extracted for po-
sition (x, y) in image X . λci and αc are the parameters of
the log-linear model and are trained with gradient descent.
Feature functions f(X, x, y, i)f(X, x, y, i)f(X, x, y, i). To allow the log-linear
model to fuse the three cues, we use sub-windows from each
cue as features. The window size was chosen to be 15 ×
15 pixels, i.e. 225 features are extracted for saliency and
optical flow and 675 features are extracted for appearance.
In the experiments presented later, we show the impact of
the different cues on the results and how fusing them helps
to improve the results by combining their advantages. A
relevance probability p(1|X, x, y) is obtained by applying
Eq. 4 after the features f(X, x, y, i), which effectively are
pixel values, saliency score, or optical flow are extracted.
This procedure is schematically presented in Fig. 5.



Figure 5: Calculation of p(1|X, x, y) using different cues.

Training of the Parameters. To train the parameters λci

and αc we extract the required features from all positions in
the labelled images of the training sequences and use them
as training data for class 1 if it was labelled red and for class
0 if it was labelled blue. Unlabelled, i.e. black, pixels are
not considered for the training. For each video sequence,
we extract the features for each annotated image and train
one model per content-type. Note that we always use one
sequence for training and the other for testing, resulting in
a total of 10 training and 10 evaluations per setting to keep
training and testing data disjoint.

6. Automatic Panning, Zooming, and Scanning
- Finding the Best Cropping Sequence

Given the scores from the first step, in this section we
describe how we find the optimal cropping sequence for
a given video sequence to achieve a smooth and time-
coherent impression. One possible way to find a cropping
sequence is to detect the best scored area in each frame in-
dividually, leading to a non-smooth cropping sequence with
large jumps between succeeding frames which is unaccept-
able for most viewers. Instead, we use dynamic program-
ming, which, in the forward step accumulates scores for po-
tentially hypothesised cropping sequences and in the back-
ward step (traceback) determines the optimal one. By defin-
ing suitable penalty functions it is possible to define exactly
which transitions are allowed between succeeding frames
and thus preventing non-smooth cropping sequences. The
optimisation over the sequence then finds the best smooth
sequence. Using early traceback it is possible to use this
method with only little time shift in an on-line manner.

The proposed algorithm prevents taking possibly wrong
local decisions, because the decision making is done at the
end of a (partial) sequence by tracing back the decisions to
construct the optimal path w.r.t. to the given criterion. In
the following, we describe the two steps of the algorithm.
First, the algorithm is described for a fixed size pan and
scan area and then extended toward variable pan, scan, and
zoom sizes. An overview of this algorithm is given in the
bottom part of Fig. 2.
Step 1: Accumulation of Scores. For a frame Xt at time

step t = 1, ..., T , for each position (x, y) in Xt a local
score qt(x, y, w, h) for a possible pan and scan area of size
w × h pixels centred at (x, y) is calculated as the sum of
the relevance-scores over this area. This can be calculated
efficiently using integral images It [12]:

qt (x, y, w, h)= It

(
x +

w

2
, y +

h

2

)
−It

(
x +

w

2
, y − h

2

)
− It

(
x− w

2
, y +

h

2

)
+It

(
x− w

2
, y − h

2

)
(5)

The local score qt(x, y, w, h) thus gives the sum over the
scores in a hypothesised pan and scan area. From these
local scores, for each time step t a global score Qt(x, y)
is calculated for each position. Qt(x, y) is the score for
the best hypothesised cropping sequence ending at time t
in position (x, y), the according best predecessor is stored
in a table of back pointers Bt(x, y), i.e. the position (x′, y′)
which leads to the score Qt−1(x′, y′) in the preceding frame
and is passed to come to (x, y) in the frame at time t. The
stored predecessors are used in step 2 to trace back the op-
timal cropping sequence.

The recursive equation for this dynamic programming
algorithm is defined as follows:
Qt(x, y) = max

(x′,y′)∈R(x,y)

{(Qt−1(x′, y′)−T (x′, y′, x, y)}

+qt(x, y, w, h) (6)
Bt(x, y) = arg max

(x′,y′)∈R(x,y)

{(Qt−1(x′, y′)− T (x′, y′, x, y)} (7)

where R(x, y) is the set of possible predecessors of point
(x, y) and T (x′, y′, x, y) is the transition-penalty from point
(x′, y′) in the predecessor image to point (x, y) in the cur-
rent image. The transition-penalty can be used to penalise
large jumps between succeeding frames, by e.g. using the
Euclidean distance between two succeeding points (x, y)
and (x′, y′): T (x′, y′, x, y) = α ·

√
(x− x′)2 + (y − y′)2

where α is a weighting parameter to control smoothness vs.
flexibility.
Step 2: Tracing Back the Optimal Path. Given the accu-
mulated scores Qt(x, y) over a sequence of frames for time
steps t = 1 . . . T , we begin from the last frame at time T to
reconstruct the optimal path, which is a sequence of crop-
ping positions. A full traceback starts from the last frame
of the sequence at time step T using the cropping position
(xT , yT ) = arg maxx,y QT (x, y). Then, the best tracking
centre at time T−1 is looked up in the table of back pointers
(xT−1, yT−1) = BT (xT , yT ). This is iteratively repeated
until a cropping position for each time step t = T . . . 1 is
determined.

In a full traceback, the decision for a single frame au-
tomatically depends on all preceding and succeeding deci-
sions. Using early tracebacks over ∆ frames (e.g. ∆ = 30),
the decisions for each frame only depend on the frames
which are considered in the same partial optimisation. The
optimisation can be initialised with the outcomes from



Figure 6: Two examples with crop marks where slight padding
(left: letterboxing, right: pillarboxing) is necessary to avoid loss
of important image regions: yellow, centre crop markings; red,
automatic pan and scan; green, automatic pan, scan, and zoom.

a preceding decision which makes it possible to obtain
smooth cropping sequences even if the path is not optimised
over the whole sequence. If ∆ = 0 is chosen, completely
local decisions are taken and a non-smooth cropping se-
quence is obtained.
Extensions. As described above, there are cases, where a
simple pan and scan is not able to capture all relevant parts
of the image, because the relevant area is larger than fits on
the screen. In these cases, it is desired to slightly zoom out,
and apply black mattes to the borders of the image. Exam-
ples for this are given in Fig. 6, where it can be observed that
central cropping leads to loss of large parts of the relevant
image regions, automatic pan and scan has a slightly better
result where more of the relevant information is kept, and
the automatically padded image, despite being padded only
marginally, shows all relevant parts. Here, time-coherence
is particularly important since otherwise the zooming in and
out might lead to disturbing effects, but if the zooming is
done slowly and smoothly the impression is similar to a
smooth camera zoom. This is made possible by optimis-
ing over time which allows to start zooming out relatively
long before and thus a smooth transition is possible.

To allow for automatically changing the size of the pan
and scan area, we adapt our recursive equation, our score,
and our penalty functions. To account for varying sizes of
the boxes, we normalise the scores with the size of the box
and jointly optimise w.r.t. to position and size:

qt(x, y, w, h) = max
W≤w′≤δW

H≤h′≤δH

{
qt(x, y, w′, h′)

(w′ · h′)

}
(8)

where the sizes W and H correspond to the dimensions of
the default pan and scan area, i.e. no padding is required to
fit the cropped image of size W × H pixels onto a screen
with the desired aspect ratio, and δ is maximally allowed
factor to deviate from the default target aspect ratio.
Penalty Functions. In Eq. 6, T (x′, y′, x, y) is introduced
as transition penalty to penalise non-smooth cropping se-
quences, to further improve the viewing experience, we
present some additional penalty functions:
Centre Penalty: Commonly we expect the most important
areas to be central. To penalise non-central pan and scan
areas, the following penalty can be incorporated

C(x, y) = β · (|x− xc|+ |y − yc|), (9)
where (xc, yc) is the centre of the image.

Aspect Ratio Penalty: To penalise diverging from the cor-
rect aspect ratio, i.e. to avoid padding with black borders,
we incorporate the following penalty function

A(w, h) = γ · |(w/h)− C|, (10)
where C denotes the aspect ratio of the target display (C=
1.78 for a 16:9 display, C=1.33 for a 4:3 display).
Zoom Penalty: Frequent zooming in and out, i.e. padding
with black borders and removing these, can be visually dis-
turbing, to penalise changing the cropping size between
succeeding frames we incorporate the zooming penalty

Z(w′, h′, w, h) = δ · (|w − w′|+ |h− h′|), (11)
where (w, h) and (w′, h′) denotes the size of the current and
of the predecessor’s cropping area

These penalty functions can be incorporated into Eq. 6
and 7 in the same way as the transition penalty T . The
parameters α, β, γ, and δ are scaling factors that can be used
to tune the influence of the individual penalty functions.

7. Experiments
First, we present results which are obtained when only pan-
ning and scanning is done. We compare the results to crop-
ping the centre part of the image, and to the content-aware
image resizing (CAIR) method presented in [1]1. Tab. 1
shows the percentage of relevant pixels (recall) displayed
using the centre cropped image (first line), CAIR (second
line), purely feature driven method presented here (second
block) and the trained method (bottom block). Note that in
these experiments, the cropped region always has the tar-
get aspect ratio and thus no black borders are attached to
the image. It can be observed that the recall for the centre
cropped image in general outperforms the CAIR method,
although visually the results from the CAIR method are
good. In particular for the Simpsons scenes, quantitatively
CAIR performs badly but the resulting images are nice. Ex-
ample images for CAIR are given in Fig. 7. It can be seen
that it works very well for the Buffy and Simpsons images.
In the football sequence the distorted lines are disturbing.

The recall values for the purely feature driven setups and
for the different setups of the trained method are higher than
the baseline methods. In particular it can be observed that
the results improve when all cues are used jointly. Only for
the first football sequence the recall is only at about 90% for
the best setting. For all other sequences the good settings
are in the range of 96-100%.

In further experiments, we evaluated early tracebacks to
reduce the time-shift when viewing a video. We evaluated
tracing back every 0, 3, 30, and 300 frames and observed
that with a very short traceback of 0 (local search) or 3
frames, the viewing experience is significantly deteriorated
due to frequently occurring jumps between the re-initialised
parts of the video, but the recall values are slightly im-

1http://sourceforge.net/projects/c-a-i-r/

http://sourceforge.net/projects/c-a-i-r/


Table 1: Results from panning and scanning using different tech-
niques compared to simple centre cropping and content-aware im-
age resizing (CAIR). All results are given as median percentage of
the relevant pixels shown. First block: centre cropped and CAIR,
second block: using only visual features, bottom block: trained
system, A: appearance cue, OF: optical flow, S: saliency.
method Buffy News Simpsons Football Star

Wars
1 2 1 2 1 2 1 2 1 2

cen.crop 93.0 87.7 97.2 96.0 98.3 83.8 93.1 92.7 79.0 95.6
CAIR 87.2 75.3 80.9 87.9 73.3 71.7 92.2 90.3 78.7 87.4

OF 100.0 93.4 86.4 95.5 99.8 98.0 92.1 100.0 99.6 100.0
S 100.0 95.4 99.9 98.4 98.0 93.0 90.1 100.0 98.9 100.0
OF+S 100.0 95.4 99.9 98.4 98.7 94.4 90.1 100.0 99.4 100.0

A 99.9 95.3 98.2 91.9 97.2 91.9 88.3 99.7 97.6 100.0
OF 100.0 88.4 86.4 95.5 98.3 97.7 93.0 99.9 99.6 99.8
S 100.0 93.9 98.8 99.6 99.1 92.3 87.0 99.9 99.4 100.0
S+OF 100.0 95.1 98.8 99.2 99.2 93.2 92.4 100.0 99.4 100.0
S+OF+A100.0 97.3 99.7 96.4 98.2 94.4 88.3 99.7 98.1 100.0

proved, due to the higher flexibility in the search. With
30 frames (slightly more than one second time-shift) these
jumps disappeared nearly completely and with 300 frames
(slightly more than 10 seconds time-shift), we could not
distinguish it from a video with full traceback. The per-
formance for the methods is hardly changed, thus we per-
formed all further experiments with full tracebacks. Ideally,
the optimisation would be performed after shot-boundary
detection on each shot individually.

Next, we evaluate how the method performs when it
is allowed to change the size of cropping area, i.e. if it
is allowed to pad the image with black borders, to keep
more image content. Ideally, the shown portion of the rel-
evant image parts is maximised while the black padding
is minimised. Tab. 2 gives results for these experiments,
the first block gives results for central cropping of differ-
ently padded images, no padding, 10% wider than central
padding, 30% wider than central padding, and full padding,
i.e. no content is lost. The recall values for the padded runs
are clearly improved but obviously the unused area of the
screen is extended. The second, third, and fourth blocks
give results from the experiments with the newly proposed

Figure 7: Example images for content-aware image resizing for
the (from left to right) Buffy, Football, and Simpsons sequences
(top: original image, bottom: resized).

method where it is allowed to change the aspect ratio by
30% maximal. The purely feature driven setups (Tab. 2,
second block) show greatly improved recall values and rel-
atively small values for the unused area which is clearly pre-
ferred over the strongly padded baseline runs. The trained
setups (Tab. 2, third block) show even stronger improve-
ments and only very small unused areas. The bottom block
gives results when training is done on all first sequences
and testing on all second sequences and vice versa. That
is, the results in the bottom block are fully content-type in-
dependent. Note that for each of these runs the padding
with black borders does not occur for the whole sequence
(which is also possible) but only happens during short pe-
riods of time. It is smoothly added when required and re-
moved when not required.

Comparing the average recall and black values, the cen-
trally cropped run with 30% padding has an average recall
of 98.6% and a high unused area of 23.0%. Our method
(purely feature driven: row OF+S) obtains an average re-
call of 97.7% and only 2.9% of the screen is unused. The
trained method using all three cues, has an average recall of
98.7% and 97.6% for the content-type dependent and inde-
pendent setups, respectively. The average unused area for
these runs is 2.2% and 2.5%, respectively. The content-type
independent run is only slightly worse than the content-type
dependent ones, which shows that the method generalises
well and can be applied for arbitrary video sequences.

We performed various experiments with the different
penalties and found that the centre penalty does not have
a beneficial effect but rather limits the method. The zoom
penalty, the aspect ratio penalty, and the transition penalty,
however lead to visually much more appealing sequences
due to reduced jitter and less zooming in and out. Although,
with zooming penalty the average black area on the screen
is slightly increased by 2-5%, the viewing experience is
clearly improved.

To completely evaluate the advantages and disadvan-
tages of the method presented, it may be necessary to per-
form experiments with users assessing the perceived video
quality on different screens. However, the presented quanti-
tative results indicate a large potential for improvements in
perceived quality, which was also subjectively observed by
looking at the results.
Runtime. The proposed method works in near real-time
on all of the videos used and faster than real-time on the
smaller news videos. Using only saliency or optical flow
without training, the system processes 75 and 40 frames per
second (fps), respectively. In the trained setups, it processes
15, 12, and 12 fps when using saliency, optical flow, or ap-
pearance, respectively. Appearance is not faster than the
other two, due to the higher number of features(RGB chan-
nels). When using all three cues simultaneously, the system
processes 8 frames per second. With an additional engineer-
ing effort and code cleanup, we assume that it is possible to



Table 2: Results from panning, scanning, and zooming. The columns of the table denote recall (cp. Tab. 1) and percentage of black/unused
pixels on screen. The first block gives the results of different centrally cropped setups, with 0%, 10%, 30% divergence from the target
aspect ratio and fully padded (i.e. nothing is lost) images. The second block gives results for the purely feature driven setups, the third
block gives the results for the different trained setups, and the bottom block is obtained with content-type-independent training.
method Buffy News Simpsons Football Star Wars

1 2 1 2 1 2 1 2 1 2

cent. crop 93.0 0.0 87.7 0.0 97.2 0.3 96.0 0.0 98.3 0.0 83.8 0.0 93.1 0.0 92.7 0.0 79.0 0.0 95.6 0.0
cent.crop 10% 96.0 9.1 92.0 9.1 98.7 9.1 98.8 9.0 99.6 9.0 88.0 9.0 95.0 9.1 95.2 9.1 84.9 9.1 98.1 9.1
cent.crop 30% 99.2 23.1 99.0 23.1 100.0 23.1 100.0 22.9 100.0 22.9 94.7 22.9 99.2 23.1 98.8 23.1 95.3 23.1 100.0 23.1
fully padded 100.0 29.2 100.0 29.2 100.0 24.9 100.0 25.6 100.0 43.3 100.0 43.3 100.0 29.2 100.0 29.2 100.0 33.3 100.0 33.3

OF 100.0 0.0 91.4 2.0 86.4 0.9 97.5 3.7 100.0 7.4 98.0 5.5 91.7 0.3 100.0 3.6 97.9 1.2 100.0 5.2
S 100.0 2.1 88.9 2.9 99.9 1.5 98.4 3.1 99.5 9.9 95.9 6.4 90.1 0.0 100.0 0.0 99.5 1.8 100.0 1.2
OF+S 100.0 1.8 89.2 2.9 99.9 0.0 98.4 3.0 99.4 6.6 96.9 6.4 93.5 4.4 100.0 0.7 99.6 1.9 100.0 1.4

A 100.0 0.0 95.5 1.3 99.3 2.0 99.8 3.4 97.2 2.6 94.6 5.8 88.8 4.4 99.8 1.0 97.6 5.7 100.0 1.2
OF 100.0 0.1 99.4 11.6 89.6 0.3 95.5 3.1 99.8 3.8 97.7 3.7 93.3 0.1 99.9 2.8 98.3 1.1 100.0 4.9
S 100.0 1.7 95.5 1.4 99.7 0.9 99.6 1.7 99.5 9.7 97.7 6.6 92.3 3.5 99.9 0.0 99.7 5.3 100.0 1.2
S+OF 100.0 1.7 95.5 0.9 99.9 1.3 99.6 2.7 99.4 9.7 97.7 6.6 91.8 0.6 99.9 0.0 99.7 5.3 100.0 1.2
S+OF+A 100.0 0.2 97.1 0.2 100.0 0.0 99.0 2.6 98.9 2.9 98.6 6.0 94.8 0.3 99.9 1.0 99.1 5.6 100.0 3.6
S+OF+A (all) 100.0 0.0 92.8 0.3 100.0 4.5 99.8 2.1 95.7 5.8 97.7 2.3 92.0 1.2 99.4 0.1 98.1 5.6 100.0 3.6

use all setups in real-time (measurements were performed
single-threaded on an Intel Core 2 Duo 2.4GHz processor).

8. Conclusion

We presented a method that allows for time-coherent au-
tomatic panning, scanning, and zooming to present video
sequences on displays of different aspect ratios. In a first
step, the method uses different visual cues which are fused
using a log-linear model to obtain relevance scores. In a
second step, dynamic programming is applied to find the
optimal cropping path for a given video sequence. The
method is evaluated on five different types of video con-
tent and is shown to be robust w.r.t. superimposed subtitles
and camera motion. The method also allows to dynami-
cally choose whether padding with black borders is neces-
sary to show all important image parts, while keeping the
amount of padding as low as possible. Different setups are
presented, starting from a simple, low-level feature-based
setup to a trained system that makes use of appearance,
saliency and motion cues. It is shown that the method can be
trained content-type dependent and that performance hardly
decreases if performed content-type independent.
Acknowledgements. This work was partially supported by the
DFG (German Research Foundation) under contract NE/572-6.
We would like to thank Joseph Auman for providing his imple-
mentation of the content-aware image resizing method.

References
[1] S. Avidan and A. Shamir. Seam carving for content-aware

image resizing. ACM SIGGRAPH 2007, 26(3), 2007.
[2] L. Chen, X. Xie, X. Fan, W. Ma, H. Zhang, and H. Zhou. A

visual attention model for adapting images on small displays.
Multimedia Systems, 9(4):353–364, 2003.

[3] A. Criminisi, G. Cross, A. Blake, and V. Kolmogorov. Bi-
layer segmentation of live video. In CVPR 2006, New York,
NY, USA, June 2006.

[4] C. Daskalakis, B. Gessler, and N. Labourdette. Programme
production and the 16:9 action plan: An assessment. Int.
Broadcasting Convention 1995, pages 366–371, Sept. 1995.

[5] P. Dreuw, T. Deselaers, D. Rybach, D. Keysers, and H. Ney.
Tracking Using Dynamic Programming for Appearance-
Based Sign Language Recognition. In FG 2006, pages 293-
298, Southampton, UK, April 2000.

[6] B. K. P. Horn and B. G. Schunck. Determining optical flow.
Artificial Intelligence, (17):185–203, 1981.

[7] X. Hou and L. Zhang. General purpose object detection:
A spectral residual approach. In CVPR 2007, Minneapolis,
MN, USA, Jun 2007.

[8] V. Kolmogorov, A. Criminisi, A. Blake, G. Cross, and
C. Rother. Probabilistic fusion of stereo with color and
contrast for bi-layer segmentation. IEEE Trans. PAMI,
28(9):1480–1492, Sept. 2006.

[9] F. Liu and M. Gleicher. Automatic image retargeting with
fisheye-view warping. In ACM UIST, pages 153–162, Seat-
tle, WA, USA, Oct. 2005.

[10] F. Liu and M. Gleicher. Video retargeting: Automatic pan
and scan. In ACM Multimedia, pages 241–250, Santa Bar-
bara, CA, USA, Oct. 2006.

[11] H. Liu, X. Xie, W. Ma, and H. Zhang. Automatic browsing
of large pictures on mobile devices. In ACM Multimedia,
pages 148–155, Berkeley, CA, USA, Nov. 2003.

[12] P. Viola and M. J. Jones. Robust real-time face detection.
IJCV, 57(2):137–154, 2004.

[13] L. Wolf, M. Guttmann, and D. Cohen-Or. Non-homgeneous
content-driven video-retargeting. In ICCV 2007, Rio de
Janeiro, Brazil, Oct. 2007.

[14] P. Yin, A. Criminisi, J. Winn, and I. Essa. Tree-based clas-
sifiers for bilayer video segmentation. In CVPR 2007, Min-
neapolis, MN, USA, June 2007.


