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Abstract

In this paper, we describe three different methods for the classification and an-
notation of medical radiographs. The methods were applied in the medical image
annotation tasks of ImageCLEF in 2005, 2006, and 2007. Image annotation can be
used to access and find images in a database using textual queries when no textual
image description is available. One of the methods is a non-linear model taking into
account local image deformations to compare images which are then classified using
the nearest neighbour decision rule. The other two methods use local image descrip-
tors for a bag-of-features approach. The bags of local image features are classified
using discriminative classifiers. Our methods performed best in the 2005 and 2006
evaluations and second best in 2007.

Key words: medical image annotation, local features, bag of features, image
deformation model

1 Introduction

Automatic annotation of images is a technique to provide textual labels for
images which are not labelled and thus can be used to access images using
textual queries. In the medical domain huge amounts of images are produced
daily and the manual creation of textual labels is expensive and error prone.
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The automatic medical image annotation task of ImageCLEF, as it was es-
tablished in 2005, offered a great opportunity to compare our method to other
state of the art approaches. The method we applied in 2005 is a non-linear
deformation model accounting for local image deformations. The method was
originally developed for optical character recognition by Keysers et al. (2007)
but it was already observed that it could be applied in other areas such as
recognition of medical radiographs (Keysers et al., 2004a) and video analy-
sis (Dreuw et al., 2006). Image comparison methods accounting for variabili-
ties have already been investigated for a long time in different areas, mainly
for OCR applications since this was one of the first important research areas
in computer vision. One of the first approaches to a deformation invariant
image comparison measure is the tangent distance which was introduced by
Simard et al. (1993) and later extended and further investigated by Keysers
et al. (2004b). The tangent distance accounts for global image transformations
and can be approximated using a linear approximation of the transforma-
tion with a Taylor expansion. Later, transformations invariant with respect to
non-linear and local image deformations were introduced. Uchida and Sakoe
(1998) present a dynamic programming algorithm for the two-dimensional im-
age deformation model which takes into account continuity and monotonicity
constraints. Other two-dimensional image warping models and efficient ap-
proximations are discussed by Keysers et al. (2007).

In 2006 and 2007, we applied two novel methods which have originally been
developed for the recognition of objects in cluttered scenes (Deselaers et al.,
2005, 2006). Both of these approaches are based on the common assumption
that objects consist of parts which can be modelled more or less independently.
This assumption offers the immediate advantage that, in principle, objects can
still be detected if most of the object is occluded and only a single part can be
identified. This approach allows us to recognise radiographs even if parts are
missing, occluded, or if the view-port is chosen differently. In 2006 and 2007,
an increasing share of the participating approaches were part-based and on
the average these methods have achieved good results.

The idea of part-based image retrieval goes back to (Schmid and Mohr, 1997),
it has also been used successfully for texture recognition (Mikolajczyk and
Schmid, 2001) and object recognition (Schiele and Crowley, 1996).

Similar techniques were later made popular for object recognition and detec-
tion tasks. Fergus et al. (2003) and Leibe and Schiele (2003) made this ap-
proach popular for object recognition. Now, most approaches to recognising
objects in cluttered scenes follow the assumption of objects being composed of
parts. One common and successful way to create object detectors is to create
a visual vocabulary, to represent the images by histograms over this vocab-
ulary, and to classify these histograms (Dorkó and Schmid, 2005; Perronnin
et al., 2006). Another common approach is based on boosting and Haar fea-
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tures and was first presented by Viola and Jones (2001) for face detection.
Variants of this approach use decision trees or different features (Opelt et al.,
2006; Shotton et al., 2006).

Image annotation, (content-based) image retrieval, and image classification
are strongly connected areas of research. Similar approaches as given above
for object recognition have been proposed for each of these applications (Li
et al., 2005; Duygulu et al., 2002; Jeon and Manmatha, 2004).

The remainder of this paper is structured as follows: section 3 introduces the
different methods that we applied to the medical image annotation task in
ImageCLEF 2005, 2006, and 2007. First, we describe simple baseline methods,
then a zero-order deformation model, and finally two discriminative models
that use local image descriptors. Section 2 provides a short overview of the
ImageCLEF medical annotation tasks 2005, 2006, and 2007 and highlights the
difficulties with respect to the methods. In section 4, experimental results of
the evaluation events and of some additional experiments are presented and
discussed. Finally, the paper is concluded in section 5.

2 A Short Overview of the Tasks

ImageCLEF hosts medical annotation tasks each year since 2005 with con-
secutive tasks building on the predecessors. The tasks increasingly involved
more data, a higher number of classes, and a more complicated class struc-
ture. Here, we only give a very short description of the tasks and refer to
papers which describe the tasks in detail. In 2005, the annotation task com-
prised 9,000 training images and 1,000 test images. Each of the test images
had to be assigned to one of the 57 classes from the training data (Deselaers
et al., 2007). In 2006, the training and the test data from 2005 were published
as development data for system tuning and a new set of 1,000 test images
was added. The complexity of the task was increased by a higher number
of classes: 116 instead of 57 classes were to be distinguished (Müller et al.,
2007b). In 2007, the training data and the test data from 2006 were released
as training and development set respectively, but instead of classification into
116 classes, the complete IRMA code (Lehmann et al., 2003), a multi-axial
mono-hierarchical code had to be predicted, and an evaluation scheme taking
into account the tree-like structure of all possible labels was used to evaluate
the results (Müller et al., 2007a; Deselaers et al., 2008). The code is given on
four axes, where each axis is represented by 3 or 4 characters, resuling in 13
characters in total. For each axis a class-hierarchy is defined and the aim is
to classify images correctly according to each axis and to each depth in the
hierarchy. Errors in the classification are weighted according to their depth in
the hierarchy, where errors at a coarse level are weighted higher than errors
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2005: class 1

2006: class 8

2007: code 1121-120-200-700

2005: class 12

2006: class 111

2007: code 1123-127-500-000

2005: class 7

2006: class 15

2007: code 1121-120-421-700

2005: class 6

2006: class 4

2007: code 1121-110-415-700

Fig. 1. Example images from the tasks with the classes from 2005, 2006 and the
complete code from 2007.

at a fine level. In addition to simple classification according to the hierarchy,
it is allowed to reject classification when too unsure about the correct class
(i.e. predict a wild-card character) which is scored semi-wrong and thus has
the weight of half an error. In most of our experiments, however, we did not
use the hierarchy at all, but considered each unique code as a class of its own.

In Figure 1, example images that were used in 2005, 2006, and 2007 along
with their classes and codes.

3 Methods

In the following, we describe the methods that we applied to the ImageCLEF
medical image annotation tasks. First, we describe baseline methods using
global image descriptors which can be compared very efficiently. Then, we
present a non-linear image deformation model accounting for local image dis-
tortions. These methods are used in a nearest neighbour manner to annotate
test images. Furthermore, two methods that extract local features from the
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images and store these in histograms which are then classified using a log-
linear discriminative model are presented. Finally, a basic approach to make
use of the hierarchical class structure in the medical image annotation task
of ImageCLEF 2007 is presented. All methods are compared and similarities
and differences are analysed.

3.1 Baseline Methods: Global Image Descriptors

A descriptor that captures an image as a whole in relatively few numerical
values is considered a global image descriptor. Global image descriptors have
long been the state of the art in many image processing and analysis appli-
cations (Squire et al., 1999; Siggelkow et al., 2001; Faloutsos et al., 1994).
Recently, and only possible due to the steadily growing computational power,
methods that strongly build on local image descriptors are becoming more
and more dominant (Fergus et al., 2003; Dorkó and Schmid, 2005).

The global image descriptors are compared using suitable distance functions
in a nearest neighbour classifier. The decision rule of the nearest neighbour
classifier is

x 7→ r(x) = arg min
k

{

min
n=1...Nk

d(x, xnk)
}

, (1)

where x is the image descriptor to be classified, xnk are the image descriptors of
class k from the training data, Nk is the number of training image descriptors
in class k and d is a suitable distance function.

3.1.1 Image Thumbnails.

The most straight-forward way to compare images is to scale them to a com-
mon size and compare them pixel-by-pixel using e.g. the Euclidean distance.
Keysers et al. (2007) show that this method serves as a reasonable baseline for
many tasks including optical character recognition and recognition of medical
radiographs 1 . Here, we scale the images to a common size of 32×32 pixels.
To account for the frequently occurring brightness differences in the images,
a 16-bin grey-value histogram normalisation is applied to each image.

3.1.2 Tamura Texture Feature Histograms.

In Tamura et al. (1978), the authors propose six texture features corresponding
to human visual perception: coarseness, contrast, directionality, line-likeness,

1 Keysers et al. (2007) give results for the data of the ImageCLEF 2005 automatic
medical image annotation tasks (cp. table 1).
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regularity, and roughness. From experiments testing the significance of these
features with respect to human perception, it was concluded that the first
three features are very important. Thus, in our experiments we use coarseness,
contrast, and directionality to create a histogram describing the texture (De-
selaers, 2003) and compare these histograms using the Jeffrey divergence in
the nearest neighbour decision rule which was shown to be a suitable way
of comparing histograms by Puzicha et al. (1999). The Jeffrey divergence is
defined as

dJD (h, h′) =
M
∑

m=1

(

hm log
2hm

hm + h′

m

+ h′

m log
2h′

m

h′

m + hm

)

, (2)

where h and h′ denote the histograms being compared and hm is the m-th bin
of h.

Similar feature histograms were also used in the QBIC system by Faloutsos
et al. (1994).

3.2 Deformation Models

The image thumbnail descriptors presented in section 3.1.1 can be seen as a
reasonable baseline for many image recognition tasks. One obvious problem
with this descriptor is that it does not take care of visual variability such as
brightness variability and global and local deformations.

One way to account for image variability is to create invariant features or to
normalise the images such that the differences disappear. Another possibility
is to define image comparison measures that account for the variability.

Keysers et al. (2004b) present the tangent distance which is able to cope with
different global transformations such as affine transformations and brightness
changes.

The most common global difference between radiographs is the brightness
which depends on the size of the subject and the strength of the x-rays. The
brightness differences are taken care of by histogram normalisation as de-
scribed above. For the medical radiographs, apart from brightness changes,
global transformations are not the main source of variations in the images
since the images are taken under normalised conditions, i.e. a radiograph of
an abdomen usually shows nearly the same body region independent of the
patient examined.
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The main source of variation are small local displacements. Keysers et al.
(2007) present different image comparison methods accounting for local defor-
mations. One of these methods is the image distortion model (IDM), which is
computationally the least complex of the proposed methods because it does
not take the deformations of neighbouring pixels into account. The other meth-
ods presented are computationally too expensive to be applied to the tasks.

The IDM is an easily implemented method accounting for small local deforma-
tions of an image. Each pixel is aligned to the pixel with the smallest squared
distance from its neighbourhood. These squared distances are summed up
over the complete image to obtain a global dissimilarity measure. To compare
a query image Q with a database image X (both of size I × J pixels), the
distance d (cf. Eq. (1)) between these two images is calculated as

didm(Q, X)=
I
∑

i=1

J
∑

j=1

min
i′=−w...w

j′=−w...w

(3)

{d′ (Q(i, j), X(i + i′, j + j′))} .

Here w is the warp range, i.e. the radius of the neighbourhood in which a pixel
may be chosen for alignment, and d′ is a pixel distance comparing the image
pixels Q(i, j) and X(i + i′, j + j′).

The warp range is commonly chosen to be w = 3, which is about 10% of the
image size in our setup and thus accounts for relatively large, but still local
displacements in the images.

Keysers et al. (2007) present more experiments on the issue of choosing w

and also show that choosing w arbitrarily large and incorporating a distor-
tion penalty does not improve results but rather increases the computational
complexity.

This method can be strongly improved by enhancing the pixel distance d′ to
compare sub-images (of border length v) instead of single pixels only:

d′ (Q(i, j), X(i + i′, j + j′)) = (4)
v
∑

x=−v

v
∑

y=−v

(Q(i + x, j + y) − X(i + i′ + x, j + j′ + y))
2
.

Figure 2 gives an example how images are compared using the IDM for images
from the same class (top), and images from different classes (bottom). It can be
seen that the deformed image from the same class is much more similar to the
test image than the corresponding one from a different class. Furthermore it
can be observed that the deformation field for the same class is much smoother
than the deformation field for the different class.
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Fig. 2. Example images being compared using the image deformation model. first
column: test image, second column: deformed database image, third column: de-
formation field, right column: database image. Top: images from the same class,
bottom: images from different classes.

Further improvements are achieved by using derivatives instead of the images
directly. Figure 3 gives a schematic overview how images are compared using
the IDM with sub-images of local derivatives. Intuitively, the use of derivatives
makes the IDM align edges to edges and homogeneous areas to homogeneous
areas.

The IDM distance as described above is used in a nearest neighbour classifier
(Eq. (1)) to determine the most similar training image for each test image and
assign the corresponding label.

Recently, Springmann and Schuldt (2007) have presented an improvement
of the IDM, lowering the computational costs significantly by reducing the
number of pixels considered for highly dissimilar images.

3.3 Histogram of Patches Using a Trained Visual Vocabulary

A current trend in object recognition and detection which assumes that objects
consist of parts which can be modelled independently is very common, which
led to a wide variety of bag-of-features approaches (Dorkó and Schmid, 2004;
Deselaers et al., 2005).

Here, we follow this approach to generate histograms of image patches. The
creation is a 3-step procedure:
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Query image

Sobel filtering

feature vector

Sobel filtering

Database image

feature vectors

... w × w vectorscalculation
distance

(i, j) (i, j)

B = {bij}A = {aij}

w

{

scaling down

Fig. 3. Using sub-images of local gradients as features in the IDM. In a first step,
the query and the database image are scaled down to a common height. Then the
best match is determined for each pixel from position (i, j) in the query in a w ×w

neighbourhood of the corresponding pixel in the database image. To determine the
best match, not only the grey value of the pixel but the values of local derivatives
(Sobel filtered images) from a 3 × 3 neighbour hood are considered.

(1) In the first step, sub-images are extracted from all training images and the
dimensionality is reduced to 40 dimensions using PCA transformation.
The sub-images are extracted at interest points that were detected using
the wavelet-based approach proposed by Loupias et al. (2000).

(2) In the second step, the sub-images of all training images are jointly clus-
tered using the EM algorithm for Gaussian mixtures. The Gaussian mix-
ture densities are iteratively split starting with one single density which
is split to form two densities. Then, the densities are reestimated until
convergence and then re-split until 2n densities (n is the number of splits)
are created. It has been observed that usually 2048 clusters or 11 splits
are sufficient to obtain good classification accuracy.

(3) In the third step, all information about each sub-image is discarded except
its closest cluster centre. Then, for each image, a histogram h(X) over the
cluster identifiers b of the respective patches xl is created, thus effectively
coding which “visual words” from the code-book occur in the image:

hb(X) =
1

LX

Lx
∑

l=1

δ(b, b(xl)),

where hb(X) denotes the b-th bin of the histogram representing image
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Extraction of local features Clustering the features into 2n clusters Creation of histograms

µ0 µ1

µ3µ2

Images Local features Clusters Histograms

Fig. 4. Overview of the creation of a visual vocabulary and the creation of patch
histograms. First, patches are extracted in all training images at interest points, then
the patches from all training images are jointly clustered to form a Gaussian mixture
density (we depict the means µ and the patches in the cluster) and finally the images
are represented by histograms counting how many of the patches correspond to
which cluster centres.

X, b(xl) is the identifier of the closest cluster centre of patch xl and δ

denotes the Kronecker delta.

These histograms are then classified using a log-linear model which was trained
according to the maximum entropy approach (Deselaers et al., 2005).

The decision rule for this classifier is

h(X) 7→ r(h(X)) = arg max
c

{p(c|h(X))} with

p(c|h(X)) =
exp

(

αc +
∑B

b=1 λbchb(X)
)

∑C
c′=1 exp

(

αc′ +
∑B

b=1 λbc′hb(X)
) .

The maximising model is unique and the problem is convex, thus it is possible
to obtain the global optimum.

3.4 Histogram of Patches Using a General Visual Vocabulary

This approach is also based on the widely adopted assumption that objects
in images can be represented as a set of loosely coupled parts. In contrast to
former models (Deselaers et al., 2005), this method can cope with an arbitrary
number of object parts. Here, the object parts are modelled by image patches
that are extracted at each position and then efficiently stored in a histogram.
In addition to the patch appearance, the positions of the extracted patches are
considered and provide a significant increase in the recognition performance.

10



3.4.1 Creation of histograms

The distribution of the patches extracted from an images is approximated us-
ing a histogram. In contrast to the previous section, here we extract patches
in various scales from each position in the image. To reduce the necessary
storage, the histograms are created without explicitly storing any feature vec-
tor. Thus, the creation of the histograms is a three step procedure: in the
first step, the PCA transformation is determined as described above. In the
second step, the mean and the variance of the transformed patches are calcu-
lated to determine a reasonable grid for the histograms. In the last step, the
histograms themselves are created. For each of these steps, all training images
are considered.

(1) In the first step, all possible patches in various sizes from all training
images are extracted and their mean and the covariance matrix are esti-
mated to determine the PCA transformation matrix.

(2) Given this PCA transformation matrix and the means, the mean µd and
the variance σ2

d for each component d of the transformed vectors is cal-
culated to determine the bin boundaries for the histograms. The bins for
component d are uniformly distributed between µd − ασd and µd + ασd.

(3) Then, we consider all dimensionality reduced patches from the training
images and create one histogram per training image. This step is de-
picted in Figure 5. The processing is from left to right: first the patches
are extracted, then PCA transformed, then the position of the patch
is concatenated to the PCA transformed feature vector, and finally the
vectors are inserted into the sparse histogram data structure.

As mentioned above, the patches are not explicitly stored in any of these steps
as this would lead to immense memory requirements.

Informal experiments have shown that 6 to 8 dimensions for the PCA reduced
vectors lead to the best results, and that α = 1.5 is a good value to determine
bin boundaries. Values exceeding the given range are clipped.

3.4.2 Spatial Information.

One serious issue with many part-based models is the incorporation of spatial
information. To incorporate spatial information in our approach, we simply
concatenate the extraction position to the PCA reduced feature vectors and
thus simply add two further components to the histograms. These additional
components can easily be handled by the histograms. As the range of values
for each component is calculated individually and independently of the other
components, no special processing of these additional components is required.
One issue with the inclusion of the absolute patch extraction positions is that
translation invariance, normally one of the major advantages of part-based
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models, is partly lost. Still, currently it is unclear how to incorporate relative
position information into the model presented here. It will be shown later that
for the tasks considered here, either the translation invariance is not required,
or translations are sufficiently represented in the training data.

Using this method, we create sparse histograms of 84 (65536 = 216) bins, i.e.
joint histograms to store 8-dimensional data, where each dimension is split into
4 bins. These histograms can either be classified using the nearest neighbour
rule with suitable histogram comparison measure, or a discriminative classifier
can be applied. Here, we use a support vector machine with a histogram
intersection kernel and the same discriminatively trained log-linear maximum
entropy model which is used for the histograms described in Section 3.3.

For nearest neighbour classification, one problem is the sparseness of the data,
and thus histogram comparison measures like the Jeffrey divergence (Eq. (2))
are not suitable for this data. On the other hand, the common histogram
comparison measures which take into account neighbouring bins such as the
Earth Movers Distance (EMD) (Rubner et al., 1998) are computationally too
expensive to be applied to histograms with several thousand bins. Therefore,
we propose the Histogram Distortion Model (HDM) which is inspired by the
IDM.

Histogram Distortion Model. The HDM is inspired by the image dis-
tortion model (cp. section 3.2). The implementation of the HDM is straight-
forward for any bin-by-bin histogram comparison measure, as long as neigh-
bourhoods are defined for the underlying histograms. Given a bin at position
p = (p1, . . . pD), we use the bin from position γ out of the neighbourhood
U(p) of p that minimises the resulting distance. The neighbourhood U(p) is
chosen such that one neighbouring bin in each direction of each dimension is
considered, which, given the very coarse quantisation, accounts for relatively
large changes. Here, we use it as an extension to the Jeffrey Divergence, i.e.
we replace the distance function dJD(h(X), h(X ′)) in Eq. 1 with

dJDDM(h(X), h(X ′)) = (5)
P
∑

p=1

min
γ∈U(p)

{

hp(X) log
2hp(X)

hp(X) + hγ(X ′)

+ hγ(X
′) log

2hγ(X
′)

hγ(X ′) + hp(X)

}

.

A related way to account for neighbouring bins in the comparison of his-
tograms would be to smooth the histograms, which would require more mem-
ory as it would lead to non-sparse histograms.
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patch extraction

inclusion of
positions

entry into sparse histogram
data structure

PCA transformation

. . .

Fig. 5. Sparse histogram creation: first sub-images are extracted at every position,
then the dimensionality of the patches is reduced with PCA. The position is ap-
pended to the PCA coefficients and then the histogram bin corresponding to the
vector is increased.

Since neighbourhoods in the histograms have to be defined for the HDM to
be applicable, the HDM can only be applied to the histograms using a general
vocabulary. In these histograms, the neighbourhood is easily defined, because
the whole feature space is covered with a rectangular grid. For the histograms
over learnt vocabularies, the individual clusters are not created in any par-
ticular order and therefore a neighbourhood is not automatically created and
thus the HDM cannot be directly applied. However, it would be possible to
define a neighbourhood by considering the cluster-means for the individual
clusters, but we do not expect a performance gain here, as sparsity is not an
issue for these histograms.

3.5 Comparison of the Methods

The methods presented here are strongly connected in the following way. The
most obvious one is the connection between the IDM and the simple thumb-
nails. Both methods use the same image representation but the IDM accounts
for image deformations which clearly occur in radiographs due to different
patients and slightly varying viewing angles. The allowed deformations can
easily be restricted by choosing a small warp-range so that mainly image de-
formations which do not alter the classification of an image are modelled.

The two different patch histogram-based approaches are also strongly con-
nected as they are based on the same assumption about the compositionality
of objects to be recognised. They mainly differ in the way the vocabulary is
created.

A not so obvious connection exists between the patch histogram-based meth-
ods and the IDM. Since the sparse histograms also include position (albeit
strongly quantised) and the IDM includes local subwindows to determine the
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best deformation the approaches are related to each other. In informal ex-
periments, the IDM using PCA-coefficients of the neighbourhoods instead of
gradients was evaluated and, as expected, the performance remains mainly
unchanged. Furthermore, if the histograms had a much finer quantisation of
the positions (and possibly also of the features), a reconstruction of the image
would be possible, since then, each feature would have its own bin and the
HDM in fact would become a variant of the IDM.

3.6 Hierarchy-Aware Classification

The above-described methods all are flat-classification schemes, i.e. they do
not account for the hierarchical structure of the classes at all. In the following
we describe how these approaches can be extended to account for the hierarchy.

3.6.1 Hierarchy-Aware Run-Combinations

One possibility to use the hierarchy is to create different flat-classification
runs and combine these using the hierarchy, e.g. using three runs and putting
a wild-card character at a position (and all succeeding positions) if not at least
two of the three runs agree about a particular position. This approach can be
tuned with respect to the number of runs being combined and the agreement
necessary for a position not to be predicted with the wild-card.

3.6.2 Predicting Axes Independently

Another possibility to use the hierarchy for this task is to predict the four
independent axes individually. This has the advantage that the individual
training processes can be done more efficiently as the number of classes is
lower and hopefully more reliable as the amount of training data is constant.
The downside of this approach is that possible correlations between the axes
are being lost and that combinations of invalid codes might be predicted. In
principle, this approach can be extended toward using a classifier tree for each
axis.

4 Experimental Results

Results from the ImageCLEF medical annotation tasks 2005, 2006, and 2007
are given in Table 1. The table lists the results for all methods presented in
this paper and furthermore gives the best result for each year. In 2005 and
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Table 1
Results for the different methods for the ImageCLEF tasks. Results from the official
evaluation are printed in bold-face.

ImageCLEF

error rate [%] score

method 2005 2006 2007 2007

32x32 thumbnails 36.8 32.1 32.4 112.2

Tamura texture features 33.1 51.8 50.5 174.4

image distortion model (IDM) 12.6 20.4 21.6 61.7

patch histogram with learnt voc. 13.9 22.4 27.6 98.6

patch histogram with general voc. 9.3 16.2 11.9 33.0

patch histogram with general voc. (SVM) 10.0 16.7 – –

best run in evaluation 12.6 16.2 10.3 26.8

2006, our methods performed best. Official results from the evaluation are
shown in boldface. The best results in 2007 were from Tommasi et al. (2007)
using a multi-cue kernel to fuse local and global image descriptors.

It is observed that the IDM, which was the best method in 2005, cannot
compete with the discriminative method which performed best in 2006 and
2007. For comparison, we performed experiments with the histogram methods
on the 2005 data. It can also be observed that the patch histograms with learnt
visual vocabulary are slightly worse than the IDM. This is probably due to
missing spatial information in this approach. The comparison experiments
with the patch histograms with general vocabulary on the 2005 data show
that they outperform the IDM in each year.

For the baseline methods it is observed that the Tamura texture features
outperform the thumbnails on the 2005 data which consisted of 57 classes
but is clearly beaten by the thumbnail images on the 2006 and 2007 data.
A possible explanation for this effect is probably that the Tamura texture
features are more invariant to certain changes in the images. Therefore, they
capture the higher variability in the data of 2005 but are disadvantageous
for the 2006 and 2007 tasks which have more classes and thus less intra-class
variability.

In Table 2 we give additional results for the ImageCLEF 2005 task for the
patch histograms with general visual vocabulary using different classifiers,
with and without position information. It can be observed that position in-
formation always leads to improved results and that the maximum entropy
method outperforms all other methods. Furthermore, it can be observed that
the histogram distortion model based on the Jeffrey divergence outperforms
the simple Jeffrey divergence in a nearest neighbour classifier. The support
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Table 2
Impact of different settings on the performance of the sparse patch histograms on
the ImageCLEF 2005 task.

method ER [%]

sparse histograms (without position)

+ nearest neighbour 13.0

+ HDM, nearest neighbour 12.5

+ maximum entropy classification 11.6

+ support vector machine 11.3

sparse histograms (with position)

+ nearest neighbour 10.1

+ HDM, nearest neighbour 9.8

+ maximum entropy classification 9.3

+ support vector machine 10.0

vector machine performs slightly better than the maximum entropy method
for the histograms without position information but slightly worse when posi-
tion information is used. This might be due to slight over-fitting. The success of
using absolute position information in the patch histograms can be explained
by the very coarse quantisation of the data, the stored positions subdivide the
image into only 16 regions. For the IDM method the relatively small displace-
ments captured in the distance function is sufficient because the variability
captured in the training data is sufficient to account for large displacements.

In 2007, we created two runs trying to exploit the hierarchy. The first run was
a combination of four slightly different runs of the sparse histogram method
differing only in the number of histogram bins and in the scaling of the original
images. These four runs were combined such that the wild-card character was
set for a position (and all succeeding positions) if not at least three of the
runs agree about the position. This run was slightly better than the best of
the four runs and thus was our best submission in 2007. The results for the
four individual runs and the combined run are given in Table 3.

The second run trying to exploit the hierarchy used individual classifiers for
the four axes. Unfortunately, this run could not achieve a competitive result,
having a score of 44.6 and an error rate of 17.8%. The reason for the failing
of this method is probably that the assumption that the four axes are inde-
pendent is not valid. On the one hand, large parts of the code are not used at
all, and on the other hand, some combinations of the code are not valid and,
thus, a method that works on a per-axis basis can create codes that cannot
be assigned to any image. For the data at hand, the axes one to four have 4,
26, 63, and 5 unique codes, respectively, which, in principle, can be combined
to 32,760 different codes, but only 116 codes occur in the data.
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Table 3
Hierarchy-aware combination of runs in ImageCLEF 2007. First four lines: individ-
ual runs, bottom line: combined run. All results from (Müller et al., 2007a).

run id score ER [%]

RWTHi6-SH65536-SC025-ME 33.0 11.9
RWTHi6-SH65536-SC05-ME 33.2 12.3
RWTHi6-SH4096-SC025-ME 34.6 12.7
RWTHi6-SH4096-SC05-ME 34.7 12.4

RWTHi6-4RUN-MV3 30.9 13.2

5 Conclusion

We presented three different approaches to automatic annotation of medical
radiographs. The methods were applied to the automatic medical image an-
notation tasks of ImageCLEF 2005, 2006, and 2007 and achieved competitive
results. It is observed that discriminatively trained methods clearly outper-
form other methods and that local image descriptors work better than global
image descriptors.

The knowledge of the class hierarchy could be used to combine runs to obtain
an improvement over single runs. The results of our approach which tries to
make direct use of the hierarchy/independence of the axis, are worse than the
ones which use a flat classification scheme because the independence assump-
tion for the four axes seems to be invalid.

For the future we intend to combine image deformation models with discrim-
inative training approaches to take advantage of both approaches.
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