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Abstract
We propose a tracking adaptation to recover from early
tracking errors in sign language recognition by optimizing
the obtained tracking paths w.r.t. the hypothesized word se-
quences of an automatic sign language recognition system.
Hand or head tracking is usually only optimized according
to a tracking criterion. As a consequence, methods which
depend on accurate detection and tracking of body parts
lead to recognition errors in gesture and sign language pro-
cessing. Similar to speaker dependent feature adaptation
methods in automatic speech recognition, we propose an
automatic visual alignment of signers for vision-based sign
language recognition. Furthermore, the generation of ad-
ditional virtual training samples is proposed to reduce the
lack of data problem in sign language processing, which
often leads to “one-shot” trained models. Most state-of-
the-art systems are speaker dependent, and consider track-
ing as a preprocessing feature extraction part. Experiments
on a publicly available benchmark database show that the
proposed methods strongly improve the recognition accu-
racy of the system.

1 Introduction
Phonological analysis going back to Stokoe et al [6] has
revealed that signs are made up out of basic articulatory
units, initially referred to as cheremes by Stokoe, now
commonly called phonemes because of their similarity
with the discriminatory units that compose words in spo-
ken languages.

Signs are generally decomposed analytically for pur-
poses of linguistic analysis into hand shape, orientation,
place of articulation, and movement (with important lin-
guistic information also conveyed through non-manual
gestures, i.e., facial expressions and head movements).
Main differences between spoken language and sign lan-
guage are due to language characteristics like simultane-
ous facial and hand expressions, references in the virtual
signing space, and grammatical differences as explained in
the following paragraphs.

Simultaneousness: One major issue in sign language
recognition compared to speech recognition is the possible
simultaneousness [8]: a signer can use different commu-
nication channels (facial expression, hand movement, and
body posture) in parallel.

Signing Space: Entities like persons or objects can be
stored in the sign language space, i.e. the 3D body-centered
space around the signer, by executing them at a certain lo-
cation and later just referencing them by pointing to the
space [9]. A challenging task is to define a model for spa-
tial information containing the entities created during the
sign language discourse.

Environment: Further difficulties for such sign language
recognition frameworks arise due to different environment
assumptions. Most of the methods developed assume

closed-world scenarios, e.g. simple backgrounds, special
hardware like data gloves, limited sets of actions, and a
limited number of signers, resulting in different problems
in sign language feature extraction.

Speakers and Dialects: As in automatic speech recogni-
tion we want to build a robust, person-independent system
being able to cope with different dialects. Speaker adap-
tation techniques known from speech recognition can be
used to make the system more robust. While for the recog-
nition of signs of a single speaker only the intrapersonal
variabilities in appearance and velocity have to be mod-
elled, the amount and diversity of the variabilities is enor-
mously increased with an increasing number of speakers.

Coarticulation and Epenthesis: In continuous sign lan-
guage recognition, as well as in speech recognition, coar-
ticulation effects have to be considered. Furthermore, due
to location changes in the virtual signing space, we have to
deal with the movement epenthesis problem [8, 10]. Move-
ment epenthesis refers to movements which occur regu-
larly in natural sign language in order to change the loca-
tion in signing space.

Silence: As opposed to automatic speech recognition,
where usually the energy of the audio signal is used for
the silence detection in the sentences, new features and
models will have to be defined for silence detection in sign
language recognition. Silence cannot be detected by sim-
ply analyzing motion in the video, because words can be
signed by just holding a particular posture in the signing
space. A thorough analysis and a reliable detection of si-
lence in general and sentence boundaries in particular are
important to reliable speed up and automate the training
process in order to improve the recognition performance.

2 Visual Modeling
However, it is still unclear how best to approach recogni-
tion of these articulatory parameters. Although phonemes
in spoken language are sequential, notwithstanding co-
articulation effects, in signed languages phonemes are real-
ized simultaneously. The hand is simultaneously in a par-
ticular configuration, orientation, and location as it under-
goes movement. The recognition of (linguistic) phonemes
could be possible in a multi-channel approach, where the
correct and combined alignment of the independent sys-
tems remains a challenge. Here, we focus on the recog-
nition of glosses in the annotations, i.e., whole-word tran-
scriptions, and the system is based on whole-word mod-
els. Each word model consists of a temporal division into
one to three pseudo-phonemes modeling the average word
length seen in training. Each pseudo-phoneme is modeled
by a 3-state left-to-right hidden Markov model (HMM)
with three separate Gaussian mixtures (GMM) and a glob-
ally pooled covariance matrix.
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Figure 1: Examples of different hand patches extracted
from tracking framework with their corresponding back-
projections from PCA space using a 1600×30 dimensional
PCA matrix

2.1 Recognition System: Overview
In a vision-based system, tracking-based features have to
be extracted at unknown positions u1, . . . ,uT in a video se-
quence of images X1, . . . ,XT , with u = (x,y) a 2D tracking
position in the image.

In an automatic sign language recognition (ASLR) sys-
tem for continuous sign language, we are searching for an
unknown word sequence wN

1 , for which the sequence of
features xT

1 = f (XT
1 ,uT

1 ) best fits to the trained models.
Opposed to the recognition of dynamic (but iso-

lated) gestures, we maximize the posteriori probability
Pr(wN

1 |xT
1 ) over all possible word sequences wN

1 with un-
known number of words N. This is modeled by Bayes’
decision rule. The optimal word sequence is found using
maximum approximation over all possible hidden Markov
model (HMM) temporal state sequences:

ŵN
1 = argmax

wN
1

{
p(wN

1 )max
sT
1

T

∏
t=1

{
p( f (Xt ,ut)|st ,wN

1 ) · p(st |st−1,wN
1 )

}}
(1)

where Pr(wN
1 ) is the a-priori probability for the word se-

quence wN
1 given by the language model (LM). Here, the

system is Viterbi trained and uses a smoothed trigram lan-
guage model. Pr(xT

1 |wN
1 ) is the probability of observing

features xT
1 given the word sequence wN

1 , referred to as
visual model (VM), with xT

1 := f (XT
1 ,uT

1 ) hand tracking
features extracted at positions uT

1 in the image observation
sequence XT

1 .

2.2 Features
We use appearance-based image and hand features, i.e.
thumbnails of video sequence frames, which can be re-
duced by linear feature reduction methods like PCA or
LDA. These features give a global description of all (man-
ual and non-manual) features that have been shown to be
linguistically important.

To extract manual features, the dominant hand (i.e. the
hand that is mostly used for one-handed signs such as fin-
ger spelling) is tracked in each image sequence. There-
fore, a robust tracking algorithm for hand and head track-
ing is required [2]. Given the hand position (HP) ut = (x,y)
at time t in signing space, features such as hand velocity
(HV) mt = ut − ut−1 or hand trajectory (HT) can easily
be extracted [3]. Furthermore, the obtained tracking rect-
angle Qt , which is the set of pixel coordinates around a
hand tracking center ut of size w×h, can be used to extract
appearance-based hand features (see Figure 1).

We focus in the following sections only on these rather
low-level frame and hand based features instead of possi-
bly high-level features presented e.g. in [5]. Nevertheless,
the achieved results in section 4 even outperform other ap-
proaches on the same benchmark set.

2.3 Visual Speaker Alignment
Due to the usage of appearance-based features (c.f. subsec-
tion 2.2), which do not require a near perfect segmentation
of the body parts and encode also the scales and relative
depth of the objects to be extracted (e.g. hands and head),
the bodies of the signing speakers should have the same
baseline depth. With an increasing number of signers in
the database, the variability in data, such as different head
or hand sizes due to different speaker sizes, has to be mod-
eled.

Similar to a speaker dependent feature adaptation in
ASR, we propose to adapt the vision-based features, too.
Based on a face detection in a reference recording of each
speaker with the Viola & Jones [7] head detection method,
we propose to automatically align the speakers.

For every speaker n in a set of 1, ..,N speakers, we want
to find the speaker dependent affine warping matrix An, so
that the difference between all overlapping speaker images,
i.e. the cropped regions-of-interest (ROI), and their corre-
sponding detected heads is minimal.

Similar to a tracking rectangle Qt let Qn be now the set
of pixel coordinates around a ROI center un of size w×h.
This means that for every pixel position u = (x,y) in a ROI
Qn, we want to optimize the parameters of an affine 2× 3
warping matrix

An =
[

A11 A12 b1
A21 A22 b2

]
with

Q′
n = {ut +u : u ∈ QAn}

QAn = {(A11i+A12 j +b1,A21i+A22 j +b2),(i, j) ∈ Q}

such that the difference between the warped ROI Q′
m and

the warped target ROI Q′
n is minimal.

Based on the ROI Qn and the face detection rectangle
rn(x,y,w,h) := {(x−w/2,y−h/2),(x+w/2,y+h/2)} of a
target speaker n (n ∈ 1, ..,N), the speaker dependent affine
warping matrices Am of the remaining N − 1 speakers are
optimized w.r.t. the difference between the ROIs Q′

n and
Q′

m and a face penalty function which penalizes large dif-
ferences between face position and ratio:

q(rnAn,rmAm) =
√

(x′rn − x′rm)2 +(y′rn − y′rm)2

+(w′
rn −w′

rm)2 +(h′rn −h′rm)2 (2)

with r′n := rnAn = {(A11i + A12 j + b1,A21i + A22 j +
b2),(i, j) ∈ rn},n = 1, ..,N, the affine transformed face
rectangle.

For an appearance-invariant (e.g. background or cloth-
ing) matching score of the speakers, the gray intensity im-
ages Xn are thresholded to binary images (denoted by X̃n),
but any other pre-processing could be used here.

This visual speaker alignment (VSA) can then be ex-
pressed with the following optimization criterion:

min
An,Am

 ∑
u∈Q′n

u′∈Q′m

(X̃n[u]− X̃m[u′])2 +α ·q(r′n,r
′
m)

 (3)

To speed up the VSA optimization, all ROIs are first
horizontally translated to center the speakers’ head to opti-
mize the warping matrices only w.r.t. vertical translation



(a) (b)

Figure 2: Automatic speaker alignment based on face de-
tection (a) and virtual training samples generation (b) by
slightly distorted cropping positions.

and scaling (rotation could also be considered if neces-
sary). Figure 2 gives an overview of the automatic speaker
alignment and virtual training data generation. Figure 2 (a)
shows the resulting speaker aligned ROIs cropped from the
orginal frames in Figure 2 (b).

2.4 Virtual Training
In order to build a robust recognition system which can rec-
ognize continuous sign language speaker independently,
we have to cope with various difficulties: (i) coarticula-
tion: the appearance of a sign depends on the preceding
and succeeding signs. (ii) inter- and intrapersonal vari-
ability: the appearance of a particular sign can vary sig-
nificantly in different utterances of the same signer and in
utterances of different signers. To model all these variabili-
ties, a large amount of training data is necessary to estimate
the parameters of the system reliably.

Due to the lack of data in video benchmark databases
for sign language recognition, some visual models contain
only a few observations per density. Even “one-shot” train-
ing is necessary for singletons (c.f. section 4). This results
in too sharp means which do not generalize well on unseen
data.

However, for other pattern recognition problems it has
been reported that the usage of additional virtual train-
ing samples can significantly improve the system perfor-
mance [1]. Here, as only a region-of-interest (ROI) is
cropped from the original video frames, the amount of
training data can be increased by virtual training samples,
i.e. ROIs extracted at slightly shifted positions from the
original ROI position. The cropping position, i.e. the ROI
center (x,y), is shifted by ±δ pixels in x- and y-direction.
For δ = 1, the training corpus is already enlarged by a fac-
tor of nine.

The proposed virtual training samples generation can
be interpreted as distortion and adaptation on the signal
level. Each additional virtual training sample may lead to
a slightly different tracking path and thus effectively dif-
ferent tracking paths are considered in training and testing.

3 Model-Based Tracking Path
Adaptation

Most state-of-the-art systems consider tracking as a pre-
processing feature extraction part, where tracking errors
lead to recognition errors. Therefore, we propose to adapt
the tracking path to the hypothesized word sequence by a
locally distortion within a range R of the given tracking
path.

Usually the local adaptation search is chosen very

(a) (b)

Figure 3: Path adaptation: distorted hand hypotheses can
be weighted by the distance to the given tracking path (a).
The path optimal w.r.t. the tracking criterion (blue line) can
be distorted locally (b) during the search in order to obtain
tracking adapted features being optimal w.r.t. the hypothe-
sized word sequence.

small which results in smooth paths and better hand hy-
potheses matching to the visual models resulting in better
emission scores (see Figure 3).

Furthermore, it is possible to penalize locations far
away from the original tracking path. Each distortion de-
pends on the currently hypothesized word (i.e. the trained
hand models), which changes the visual model probability
in Equation 1 as follows: Pr(xT

1 ,sT
1 |wN

1 ) =

T

∏
t=1

{
max

δ∈{(x,y):
−R≤x,y≤R}

{
p(δ ) · p( f (Xt ,ut +δ )|st ,wN

1 )
}

· p(st |st−1,wN
1 )

}
with p(δ ) =

exp(−δ 2)
exp(∑δ ′−δ ′2)

.

The path distortion model prunes the search space
starting from a path being optimal to a tracking criterion
in order to obtain a distorted path according to the hypoth-
esized word sequence. Here, we assume that the tracking
may be inaccurate up to ±δ pixels and allow for compen-
sating tracking errors up to this range in the recognition
phase.

4 Experimental Results
For our experiments, we use a publicly available database
of 201 American Sign Language sentences performed by 3
different signers, 161 are used for training and 40 for test-
ing [3]. On the average, these sentences consist of 5 words
out of a vocabulary of 104 unique words. The test corpus
has one out-of-vocabulary (OOV) word. These words are
not included in the recognition vocabulary and thus can-
not be recognized. Every OOV word leads to at least one
recognition error. 26% of the vocabulary words seen in
training are singletons (i.e. words which occur only once
in the training corpus).

We use only unseen data from the test sentences for
evaluation. As we are dealing with continuous sign lan-
guage sentences (instead of isolated gestures only), the
recognition experiments are evaluated using the word er-
ror rate (WER) in the same way as it is done in speech
recognition.

In order to analyze the proposed tracking rescoring
and adaptation methods, here we focus only on the us-
age of appearance-based hand features in contrast to full
appearance-based frame features, more complex tracking
features, and their combinations as proposed by the authors
of [3].

The results using the model-based tracking path adap-
tation in combination with a visual speaker alignment



Table 1: Rescoring results using the path distortion model
for visual speaker alignment and virtual training samples.
Features / Adaptation WER[%]

Baseline VSA VTS VSA+VTS

Frame 32×32 35.62 33.15 27.53 24.72
PCA-Frame (200) 30.34 27.53 19.10 17.98

Hand (32×32) 45.51 33.15 20.79 21.91
+ distortion (R = 10) 41.03 29.78 16.29 16.85
+ δ -penalty 35.96 26.40 15.73 16.85

PCA-Hand (30) 28.65 33.15 23.60 24.16
+ distortion (R = 10) 33.15 28.65 21.35 16.85
+ δ -penalty 29.78 24.72 17.98 16.29
PCA-Hand (70) 44.94 34.27 15.73 20.22
+ distortion (R = 10) 56.74 34.83 14.61 15.73
+ δ -penalty 32.58 24.16 14.61 14.04

Table 2: System combination results using ROVER

System DEL INS SUB errors WER %

system 1 10 3 12 25 14.04
system 2 9 4 13 26 14.61
system 3 11 4 17 32 17.98
system 4 5 4 16 25 14.04

ROVER 15 0 8 23 12.9

and/or virtual training samples are shown in Table 1. It
can be seen that the proposed VSA method strongly im-
proves the results for the appearance-based frame features.
The usage of additional training data by virtual training
samples (VTS) does not always lead to improvements (es-
pecially for the PCA-Hand features without distortion).
However, a combination of both methods (i.e., virtual
training samples extracted from visually aligned speaker
sequences) leads to a WER of 14.04%, which is the best
result reported for this data in the literature so far (17.98%
in [3]).

Using the word confidences of the recognizer out-
put, multiple recognition systems can easily combined by
“rovering” over the system outputs [4]. We combined 4
different systems:
• system 1: sliding window over PCA-Frames
• system 2: sliding window over PCA-Frames and hand

trajectory (HT) features
• system 3: sliding window over PCA-Frames and hand

velocity (HV) features
• system 4: appearance-based PCA-hand patches

The results for the ROVER-based system combination
are shown in Table 2. It can clearly be seen that the
four systems, accounting well for different problems in
sign language recognition (long words, short words, fin-
ger spelling, etc.), produce different word errors, and that
a combination of the different systems leads to an improve-
ment over the individual systems.

5 Conclusion
We presented a tracking adaptation method to obtain an
adapted hand tracking path with optimized tracking posi-
tions w.r.t. recognition instead of a tracking criterion.

More robust models were trained using visual speaker

alignments (VSA), to obtain speaker adapted features, and
virtual training samples (VTS) easing the lack of data prob-
lem in vision based sign language recognition. The VSA
and VTS adapted data improved the system performance in
many cases, and the proposed method can be applied to any
vision based system. In combination with a tracking path
adaptation, the baseline WER of 44.94% on the benchmark
database was improved to 14.04% WER, which is the cur-
rently best known WER for a single system on the used
database. Furthermore, a ROVER-based system combina-
tion could improve the WER to 12.9%, which is the overall
best known WER on the used database.

Interesting will be an iterative recognition and re-
training of the system using the model adapted tracking
path, and an analysis and extension of the proposed feature
extraction methods.
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