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Introduction

» automatic continuous sign language recognition system
» necessary for communication between deaf and hearing people
» problems

» lack of data
» early tracking decisions lead to recognition errors

Automatic Signh Language Recognition (ASLR)

» goal: find the word sequence which best expresses the observation sequence (i.e. the tracked
features)
Video Input

Feature Extraction

rWord Model Inventory‘
Global Search:

Visual Model

argmax {Pr(w;") - Pr(z{ |w)}

N
~ N
lwl

Wy
Recognized
Word Sequence

Language Model

» Bayes’ decision rule:
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» problem: early tracking decisions in preprocessing steps

System Overview

Visual Modeling
» related to the acoustic model in ASR

» HMM based, with separate GMMs, globally pooled
diag. cov. matrix

» monophone whole-word models
» pronunciation handling

Language Modeling

» according to ASR: language model should have a
greater weight than the visual model

» trigram language model using the SRILM toolkit

Features
» appearance-based image features:

» thumbnails of video sequence frames
(intensity images scaled to 32x32 pixels)

» manual features:
» fracking: hand trajectory features
» feature selection:

» concatenation of appearance-based and manual
features

» sliding window for context modeling

» dimensionality reduction by PCA and/or LDA
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Virtual Training Samples (VTS)

» lack of data problem: too few data for robust GMM
estimation

» here: several region-of-interests (ROI) are cropped
from the original video at each frame

» ROI cropping center (x, y) is shifted by ¢ pixels in x-
and y-direction

» example: for 6 = +1, the training corpus is already

enlarged by a factor of nine. 51 SR IEOEE. E
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Hand Tracking

» optimize the tracking decision considering the full sequence using dynamic programming (DP)
(see [Dreuw et. al FG2006])

» The DP tracking consists of two steps
1. obtain scores D and backpointers B
D(t,x,y)= max {(D(t—=1,x,y") =Ty, x,y)} +d(x',y', x,y, X{_1) (2)
x".y'eM(x.y)

B(t,x,y) =argmax{(D(t —1,x",y)—T (X, ¥y, x,y)}
x.y'eM(x.y)

2. traceback process reconstructs the best path t — u; = (x, y) using the score table D and the
backpointer table B starting from time step T

us—1 = B(t, u;) with ur =argmax{D(T,x,y)} (3)
(x.y)
» allows to optimze tracking decisions over full temporal context
» problem: early tracking decisions in preprocessing, optimized only w.r.t. motion, etc.

http://www—1i6.informatik.rwth—-aachen.de

Integrated Tracking and Recognition

» postpone the tracking decisions to the end of the recognition phase
» simultaneous optimization:
tracking positions u! optimal w.r.t. a tracking criterion and a hypothesized word sequence w/¥
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» problem: very high time and memory complexity

Efficient Approximations: Rescoring and Feature Adaptation

» Pr(f(X:, ur)|st, w)') depends on the quality of the hand tracking position u;
» we assume that a better tracking position is among a set of tracked candidates

n-Best Tracking List Rescoring

» by tracing back multiple times over the sorted score table
D and the backpointer table B.

» Eq. (3) changes for i =1, .., n as follows:

ui—1;= B(t,us;) with ur;= argmax D(T,x,y)
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» Visual Model in Eqg. (1) changes as follows:
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Multiple Hand Hypotheses Feature Scorer

{P(f(Xta u)|st, W1N)} - P(St|St-1, W1N)}

Multiple Hands Hypotheses

» consider at each time step t a set of n possible hand
positions {u; 1, .., Ut n}
» Visual Model in Eqg. (1) changes as follows:
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Path Distortion Model

» consider positions around given tracking path v/ within
range R

» Visual Model in Eq. (1) changes as follows:
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Experimental Results

Database
» system evaluation on the RWTH-BOSTON-104 database
» 201 sentences (161 training and 40 test)
~ vocabulary size of 104 words
» 3 speakers (2 female, 1 male)
» COrpus is annotated in glosses
» 26% of the training data are singletons

Results
» Baseline System

~eatures DEL INS SUB errors WER %

~rame (32x32) 43 6 16 65 35.62
PCA-Frame (200) 40 9 18 27 30.34

Hand (32x32) 31 7 43 81 4551
DCA-Hand (70) 40 10 21 49 44.94

» n-best list rescoring and multiple hand hypotheses (MHH)

Delay A WER([%]
M = £1 M= +10
1-best n-best MHH 1-best n-best MHH
80.34 76.97 76.40 45.51 45.51 45.51
79.78 75.28 73.03 45.51 45.51 45.51
70.79 64.61 66.29 56.18 50.56 53.37

69.10 6/7.98 65.17 63.48 60.11 58.99
91.01 83.71 65.17 91.01 83.71 65.17

» Path Distortion Model
Features / Rescoring

WER][%)]
pixel values PCA transformed
Baseline VTS Baseline VTS
Frame 32x 32 35.62 27.53 30.34 19.10

Hand (32x32) 4551 20.79 44.94 1573
+ distortion (R = 10) 41.03 16.29 56.74 12.92
+ §-penalty 35.96 15.73 3258 11.24
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