
Phrase-based Statistical Machine Translation:

Models, Search, Training

Von der Fakultät für Mathematik, Informatik und
Naturwissenschaften der Rheinisch-Westfälischen Technischen
Hochschule Aachen zur Erlangung des akademischen Grades

eines Doktors der Naturwissenschaften genehmigte Dissertation

vorgelegt von

Diplom–Informatiker Richard Zens

aus

Düren

Berichter:

Professor Dr.–Ing. Hermann Ney

Professor Dr. Francisco Casacuberta

Tag der mündlichen Prüfung: Freitag, 29. Februar 2008

Diese Dissertation ist auf den Internetseiten der Hochschulbibliothek online verfügbar.

2

Moderation is a fatal thing. Nothing succeeds like excess.

Oscar Wilde – A Woman of No Importance, Third Act, 1893

3

4

Acknowledgments

At this point, I would like to express my gratitude to all the people who supported and
accompanied me during the progress of this work.

First, I would like to thank my advisor Professor Dr.-Ing. Hermann Ney, head of the
Chair of Computer Science 6 at the RWTH Aachen University. This thesis would not
have been possible without his advice, continuous interest and support.

I would also like to thank Professor Dr. Francisco Casacuberta from the Universidad
Politecnica de Valencia for agreeing to review this thesis and for his interest in this work.

All the people at the Chair of Computer Science 6 deserve my gratitude for many fruitful
discussions, helpful feedback, and for the very good working atmosphere. I want to
thank all those who helped me when writing this thesis by proofreading it, pointing out
bad formulations and requesting clarifications. Furthermore, I would like to thank the
secretaries and the system administrators for their continuous support.

I am very thankful for the friendly atmosphere and the support I received at the Advanced
Research Institute International, Kyoto, Japan during my stay in 2003. It was a very
interesting and valuable experience.

I would also like to thank all the people who made the CLSP summer research workshop
on the open source SMT toolkit ”Moses” possible: the organizers from CLSP/JHU and
all members of both teams. It was a productive and fun environment.

Grosser Dank gilt meinen Eltern, die mir das Studium der Informatik ermöglicht haben.
Desweiteren möchte ich mich bei meiner Familie und Freunden für den angenehmen Aus-
gleich zum Arbeitsleben bedanken.

5

6

Abstract

Machine translation is the task of automatically translating a text from one natural lan-
guage into another. In this work, we describe and analyze the phrase-based approach
to statistical machine translation. In any statistical approach to machine translation,
we have to address three problems: the modeling problem, i. e. how to structure the de-
pendencies of source and target language sentences; the search problem, i. e. how to find
the best translation candidate among all possible target language sentences; the training
problem, i. e. how to estimate the free parameters of the model from the training data.

We will present improved alignment and translation models. We will present alignment
models which improve the alignment quality significantly. We describe several phrase
translation models and analyze their contribution to the overall translation quality.

We formulate the search problem for phrase-based statistical machine translation and
present different search algorithm in detail. We analyze the search and show that it
is important to focus on alternative reorderings, whereas on the other hand, already a
small number of lexical alternatives are sufficient to achieve good translation quality.
The reordering problem in machine translation is difficult for two reasons: first, it is
computationally expensive to explore all possible permutations; second, it is hard to select
a good permutation. We compare different reordering constraints to solve this problem
efficiently and introduce a lexicalized reordering model to find better reorderings.

We investigate alternative training criteria for phrase-based statistical machine transla-
tion. In this context, we generalize the known word posterior probabilities to n-gram
posterior probabilities.

The resulting machine translation system achieves state-of-the-art performance on the
large scale Chinese-English NIST task. Furthermore, the system was ranked first in the
official TC-Star evaluations in 2005, 2006 and 2007 for the Chinese-English broadcast
news speech translation task.

7

Kurzfassung

Die maschinelle Übersetzung befasst sich mit dem Problem der automatischen
Übersetzung eines Textes der Quellsprache in die Zielsprache. In dieser Arbeit beschreiben
und analysieren wir den phrasenbasierten statistischen Ansatz in der maschinellen
Übersetzung. In der statistischen Übersetzung müssen im Allgemeinen drei Probleme
angegangen werden: erstens das Modellierungsproblem, d.h. wie die Abhängigkeiten
zwischen einem Satz der Quellsprache und dem entsprechenden Satz der Zielsprache
beschrieben werden; zweitens das Suchproblem, d.h. wie die beste Übersetzung unter allen
möglichen Sätzen der Zielsprache gefunden wird; und drittens das Trainingsproblem, d.h.
wie die freien Parameter des Modells bestimmt werden.

Wir beschreiben verbesserte Alignment- und Übersetzungsmodelle. Die Alignmentmod-
elle verbessern die Alignmentqualität signifikant. Es werden mehrere phrasenbasierte
Übersetzungsmodelle beschrieben und deren Beitrag zur Übersetzungsqualität analysiert.

Wir formulieren das Suchproblem für die phrasenbasierte statistische Übersetzung und
beschreiben verschiedene Suchalgorithmen im Detail. Wir analysieren die Suche und
zeigen, dass es insbesondere wichtig ist alternative Umordnungen zu berücksichtigen. An-
dererseits ist bereits eine relativ geringe Anzahl lexikalischer Alternativen ausreichend,
um gute Übersetzungen zu produzieren. Das Umordnungsproblem der maschinellen
Übersetzung ist aus zwei Gründen schwierig: erstens ist es ein kombinatorisches Problem
alle Permutationen zu testen und zweitens ist es schwierig eine geeignete Permutation
auszuwählen. Wir vergleichen verschiedene Einschränkungen um das Umordnungsprob-
lem effizient zu lösen. Desweiteren beschreiben wir ein lexikalisiertes Umordnungsmodell
das hilft bessere Umordnungen auszuwählen.

Wir untersuchen verschiedene Trainingskriterien für die phrasenbasierte statistische
Übersetzung. In diesem Kontext generalisieren wir die bekannten Wortposterior-
wahrscheinlichkeiten zu n-gramm-Posteriorwahrscheinlichkeiten.

Die Übersetzungsqualität des resultierenden Übersetzungssystems entspricht dem ak-
tuellen Stand der Technik. Desweiteren erreichte das System den ersten Rang in den
offiziellen Evaluationen der Jahre 2005, 2006 und 2007 für die Chinesisch-Englische
Übersetzungsaufgabe die im Rahmen des TC-Star Projektes der Europäischen Union
durchgeführt wurden.

8

Contents

1 Introduction 1
1.1 Machine Translation . 1
1.2 The Statistical Approach to Machine Translation 2

1.2.1 Bayes decision rule for machine translation 3
1.2.2 Log-linear model . 4
1.2.3 Phrase-based approach . 5

1.3 Related Work . 8

2 Scientific Goals 11

3 Improved Word Alignment Models 13
3.1 Introduction . 13
3.2 Review of Statistical Word Alignment Models 14
3.3 Related Work . 16
3.4 Symmetrized Lexicon Model . 16

3.4.1 Linear interpolation . 17
3.4.2 Log-linear interpolation . 17
3.4.3 Evidence trimming . 18
3.4.4 Improved training initialization . 18

3.5 Lexicon Smoothing . 19
3.6 State Occupation Probabilities . 20
3.7 Alignment Algorithms . 21
3.8 Word Alignment Experiments . 24

3.8.1 Evaluation criterion . 24
3.8.2 Experimental setup . 25
3.8.3 Lexicon symmetrization . 26
3.8.4 Generalized alignments . 28
3.8.5 Lexicon smoothing . 29
3.8.6 Non-symmetric alignments . 30
3.8.7 Symmetric alignments . 30

3.9 Conclusions . 33

4 Phrase-based Translation 35
4.1 Motivation . 35
4.2 Phrase Extraction . 36
4.3 Phrase Models . 37

4.3.1 Phrase-based model . 37
4.3.2 Phrase-count model . 38

i

Contents

4.3.3 Word-based lexicon model . 39
4.3.4 Word-based noisy-or model . 39
4.3.5 Deletion model . 40
4.3.6 Word and phrase penalty model . 40

4.4 Reordering Models . 41
4.4.1 Distortion penalty model . 41
4.4.2 Language model . 41
4.4.3 Phrase orientation model . 42

5 Search 47
5.1 Introduction . 47
5.2 Search for Text Input . 51

5.2.1 Monotonic search . 51
5.2.2 Non-monotonic search . 51
5.2.3 Pruning . 53
5.2.4 Rest score estimation . 57
5.2.5 Detailed search algorithm . 59

5.3 Search for Lattice Input . 62
5.3.1 Introduction . 62
5.3.2 Monotonic search . 63
5.3.3 Non-monotonic search . 63

5.4 Word Graph and N -best Generation . 64
5.5 Reordering Contraints . 65

5.5.1 Introduction . 65
5.5.2 ITG constraints . 66
5.5.3 IBM constraints . 72

5.6 Efficient Phrase-table Representation . 73
5.7 Phrase Matching . 76

5.7.1 Problem definition . 77
5.7.2 Algorithm . 79
5.7.3 Computational complexity . 79

6 Training 81
6.1 Introduction . 81
6.2 Evaluation Metrics . 82
6.3 N -Gram and Sentence Length Posterior Probabilities 83

6.3.1 Introduction . 83
6.3.2 N -gram posterior probabilities . 84
6.3.3 Sentence length posterior probability 84
6.3.4 Rescoring/reranking . 85

6.4 Maximum Likelihood . 86
6.4.1 Sentence-level computation . 86
6.4.2 N -gram level computation . 86

6.5 Expected Bleu Score . 87
6.5.1 Sentence-level computation . 87
6.5.2 N -gram level computation . 87

ii

Contents

7 Results 89
7.1 Evaluation Criteria . 89
7.2 Task Description and Corpus Statistics . 90

7.2.1 BTEC . 90
7.2.2 NIST: Chinese-English . 91
7.2.3 TC-Star: Chinese-English . 94
7.2.4 TC-Star: Spanish-English . 95

7.3 Phrase-table Representation . 95
7.4 Effect of different Models . 97

7.4.1 Analysis of the reordering models 104
7.4.2 Comparison with other groups . 109

7.5 Analysis of the Search . 109
7.5.1 Comparison with Moses . 115

7.6 Effect of Different Training Criteria . 117
7.7 Official TC-Star Evaluations . 119
7.8 Phrase Matching . 120

8 Conclusions 123
8.1 Summary . 123
8.2 Future Directions . 124

A Symbols & Acronyms 127
A.1 Mathematical Symbols . 127
A.2 Acronyms . 128

B Additional Results 129
B.1 Reordering Model . 129
B.2 Reordering Constraints Evaluation in Training 129
B.3 Results for Different Phrase-level Reordering Constraints 131

B.3.1 Corpus statistics . 131
B.3.2 System comparison . 132

Bibliography 135

iii

Contents

iv

List of Figures

1.1 Example of phrase-based translation and the list of used phrase pairs. . . . 6
1.2 Illustration of the phrase segmentation. 7
1.3 Illustration of Bayes architecture for machine translation. 8

3.1 Verbmobil: Examples of symmetric alignment. 21
3.2 Illustration: alignment as edge cover. 23
3.3 Verbmobil: Manual alignment examples. 24
3.4 Verbmobil: AER for different training corpus sizes. 28
3.5 Verbmobil: Alignment examples. 29

4.1 Translation example. 36
4.2 Example for phrase-based translation. 36
4.3 Word aligned sentence pair. 37
4.4 Extracted bilingual phrases. 37
4.5 Illustration of the phrase orientation. 43
4.6 Training of the lexicalized reordering model: illustration. 45

5.1 Monotonic search algorithm for text input. 52
5.2 Non-monotonic search algorithm for text input (without pruning). 54
5.3 Illustration of the search. 55
5.4 Illustration of hypotheses expansion. 57
5.5 Illustration of the search for a German input sentence. 58
5.6 Notation and functions used in the search algorithm in Figure 5.7. 60
5.7 Detailed non-monotonic search algorithm for text input. 61
5.8 Illustration of the ITG reordering constraints. 67
5.9 Illustration of the two reordering patterns that violate the ITG constraints. 68
5.10 Illustration of the Q-table. 69
5.11 Algorithm to test if a permutation is ITG-parsable. 71
5.12 Illustration of the IBM constraints. 73
5.13 Phrase-table size as a function of the training corpus size. 75
5.14 Illustration of the prefix tree. 76
5.15 Illustration for graph G and prefix tree T 77
5.16 Algorithm phrase-match. 79

7.1 NIST: Phrase-table memory usage per sentence. 97
7.2 NIST: Effect of the lattice density and N -best list size on the oracle Bleu

score. 100
7.3 NIST: Effect of the phrase orientation model scaling factor. 107
7.4 NIST: Effect of the distortion model scaling factor. 108

v

List of Figures

7.5 NIST: Effect of the distortion limit. 108
7.6 NIST: Effect of search errors. 110
7.7 NIST: Effect of the rest score estimation on the translation performance. . 111
7.8 NIST: Effect of the rest score estimation on the model score. 111
7.9 NIST: Effect of the number of lexical and coverage hypotheses. 113
7.10 NIST: Effect of lexical pruning per coverage on the Bleu score. 114
7.11 NIST: Effect of the window size for the IBM reordering constraints. 114
7.12 NIST: Comparison with Moses. 116
7.13 TC-Star: Effect of the maximum n-gram order for the ML training criterion.118
7.14 EPPS: Average number of phrase table look-ups per sentence. 120

vi

List of Tables

3.1 Corpus statistics of the Verbmobil and Canadian Hansards task. 25
3.2 AER for different lexicon symmetrization methods. 26
3.3 Effect of different lexicon symmetrization methods. 29
3.4 Effect of smoothing the lexicon probabilities. 30
3.5 AER for non-symmetric alignment methods. 31
3.6 AER for different symmetric alignments. 32

5.1 Number of permutations that can be generated with different reordering
constraints. 74

7.1 Corpus statistics of the BTEC task. 90
7.2 Corpus statistics of the Chinese-English NIST task. 92
7.3 Analysis of the Chinese vocabulary for the NIST task. 92
7.4 Language model perplexities, out-of-vocabulary words (OOV) and memory

usage in MegaByte (MB) for different LM orders for the NIST task. 93
7.5 Corpus statistics of the Chinese-English TC-Star task. 94
7.6 Corpus statistics of the Spanish-English EPPS task. 95
7.7 NIST: Effect of the maximum source phrase length on the translation per-

formance. 96
7.8 NIST: Phrase-table statistics. 96
7.9 NIST: Effect of different models on the translation quality (Bleu score). . . 98
7.10 NIST: Effect of different models on the translation quality (various error

measures). 98
7.11 NIST: Effect of different lexicon models on the translation quality. 99
7.12 NIST: Model scaling factors. 101
7.13 NIST: Translation examples showing the effect of the monotonic vs. non-

monotonic search. 102
7.14 NIST: Translation examples showing the effect of the LM order. 103
7.15 NIST: Translation examples showing the effect of the n-gram and sentence

length posterior probabilities. 103
7.16 NIST: Effect of the language model order on the translation performance . 104
7.17 BTEC: Statistics of the training and test word alignment links. 104
7.18 BTEC: Classification error rates using two orientation classes. 105
7.19 BTEC: Effect of the orientation model on the translation performance. . . 106
7.20 BTEC: Translation examples for the Chinese-English task. 107
7.21 Comparison with other groups on the Chinese-English NIST task. 109
7.22 NIST: Maximum memory usage for different system components. 113
7.23 NIST: Comparison with Moses. 115

vii

List of Tables

7.24 TC-Star: Translation results for various training criteria. 116
7.25 TC-Star: Official results of the public evaluations in 2005, 2006 and 2007. . 119
7.26 EPPS: Translation quality and time for different input conditions. 121

B.1 BTEC: classification error rates using four orientation classes. 129
B.2 Verbmobil: corpus statistics. 130
B.3 Canadian Hansards: corpus statistics. 130
B.4 Coverage for alignment constraints on the Verbmobil and Canadian Hansards.130
B.5 Statistics of the BTEC corpus. 132
B.6 Statistics of the SLDB corpus. 132
B.7 BTEC: effect of phrase-level reordering constraint. 133
B.8 Translation performance for the BTEC task (510 sentences). 133
B.9 SLDB: effect of phrase-level reordering constraint. 134
B.10 Translation performance for the SLDB task (330 sentences). 134

viii

1 Introduction

1.1 Machine Translation

Machine translation (MT) is the task of automatically translating a text from one natural
language into another. MT was one of the first envisioned applications of computers back
in the 1950’s. Even after more than 50 years of research, MT is still an open problem.

Nowadays, the demand for MT is steadily growing. In the European Union, documents
have to be translated into all official languages (currently 23). This multilinguality is con-
sidered a part of the democracy. In 2006, the European Union spend about 800 million
Euros for the translation of text documents and interpretation, e. g. of the parliamentary
speeches [EU 07]. According to news paper articles the estimate for 2007 is about 1.1 bil-
lion Eurosa. The European Union is already utilizing MT system to assist the translation
efforts; typically, the MT output is post-edited by human translators. Improved machine
translation quality could help to reduce this post-editing work.

The United Nations also translates a large number of documents into several languages.
In fact, the United Nations corpora for Chinese-English and Arabic-English are among
of the largest bilingual corpora distributed via the Linguistic Data Consortium (LDC).
Also in the private sector, there is a large demand for MT: technical manuals have to
translated into several languages. These technical manuals have strict style guidelines
and a specific terminology.

An even larger demand exists in the World Wide Web. Independent of your nationality,
most web pages are available only in a foreign language. MT can be used to get an idea
of the content of those foreign web sites. MT can help to reduce the language barrier and
enable easier communication.

There exist different approaches to address the problem of machine translation. We will

aHandelsblatt 30.04.2007

1

1 Introduction

now give a rough overview over these different methodologies.

• The Rule-based Approach.
In rule-based system, the source language text is analyzed, e.g. using parsers and/or
morphological tools, and transformed into intermediary representation. From this
representation, the target language text is generated. The rules are written by
human experts. As a large number of rules is required to capture the phenomena of
natural language, this is a time consuming process. As the set of rules grows over
time, it gets more and more complicated to extend it and ensure consistency.

• The Data-driven Approach.
In the data-driven approach, bilingual and monolingual corpora are used as main
knowledge source. Often, a further distinction is made between the example-based
approach, where the basic idea is to do translation by analogy, and the statistical
approach. In the statistical approach, MT is treated as a decision problem: given
the source language sentence, we have to decide for the target language sentence
that is the best translation. Then, Bayes rule and statistical decision theory are
used to address this decision problem.

In this work, we will follow the statistical approach to machine translation. A general
misconception about statistical machine translation (SMT) is that it implies certain types
of models, e.g. word replacement models or phrase-based models. This is not the case. A
SMT system is characterized by its use of statistical decision theory and Bayes decision
rule to minimize the number of decision errors.

The statistical approach has several advantages. Statistical decision theory is a well-
understood area which provides a sound way to combine several knowledge sources into
a global decision criterion with the goal of minimizing the number of errors. It provides
a sound framework to resolve the ambiguities of translating the source language text into
the target language. The model parameters are estimated from training data. As more
and more training data becomes available, SMT systems get better and better. There
exists freely available software to build SMT systems. Also, in recent public evaluations,
SMT systems performed very well.

1.2 The Statistical Approach to Machine Translation

[Weaver 55] proposed to use statistical methods and ideas from information theory for
MT. Despite first successful results, the problem turned out to be more complicated
than expected. The ALPAC report found in 1966 that ten years of research fell be-
hind the expectations and, thus, the funding of MT research was largely reduced. In-
creased computing power and the availability of parallel corpora, the Canadian Hansards,
paved the way for its revival in the late 1980’s with the seminal work of the IBM group
[Brown & Cocke+ 88, Brown & Cocke+ 90, Brown & Della Pietra+ 93].

2

1.2 The Statistical Approach to Machine Translation

1.2.1 Bayes decision rule for machine translation

In statistical machine translation, we are given a source language sentence fJ
1 =

f1 . . . fj . . . fJ , which is to be translated into a target language sentence eI
1 = e1 . . . ei . . . eI .

Statistical decision theory tells us that among all possible target language sentences, we
should choose the sentence which minimizes the expected loss [Duda & Hart+ 00]:

êÎ
1 = argmin

I,eI
1

{ ∑
I′,e′I

′
1

Pr(e′
I′

1 |fJ
1) · L(eI

1, e
′I′
1)

}
(1.1)

This is the Bayes decision rule for statistical machine translation. Here, L(eI
1, e

′I′
1) denotes

the loss function under consideration. It measures the loss (or errors) of a candidate

translation eI
1 assuming the correct translation is e′I

′

1 . Pr(eI
1|fJ

1) denotes the posterior
probability distribution over all target language sentences eI

1 given the specific source
sentence fJ

1 .b

Note that the Bayes decision rule explicitly depends on the loss function L(·, ·). In case
we want to minimize the sentence or string error rate, the corresponding loss function is:

L0−1(e
I
1, e

′I′
1) =

{
0 if eI

1 = e′I
′

1

1 else
(1.2)

= 1− δ(eI
1, e

′I′
1) (1.3)

Here, δ(·, ·) denotes the Kronecker-function. This loss function is called 0-1 loss as it
assign a loss of zero to the correct solution and a loss of 1 otherwise. Using the 0-1 loss,
Bayes decision can be simplified to

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1|fJ
1)
}

(1.4)

This decision rule is also called the maximum a-posteriori (MAP) decision rule. Thus, we
select the hypothesis which maximizes the posterior probability Pr(eI

1|fJ
1).

It is noteworthy that virtually all MT systems use the MAP decision rule although they
are usually not evaluated using the 0-1 loss function. The most common evaluation
criterion nowadays is the Bleu score [Papineni & Roukos+ 02], which is used in many
public evaluations such as NIST, TC-Star, and IWSLT. This results in a mismatch be-
tween the decision rule that is used to generate a translation hypothesis and the loss
function that is used to evaluate it. [Kumar & Byrne 04] presented a Bleu induced
Bayes risk decoder and reported performance gains. A similar approach was taken in
[Venugopal & Zollmann+ 05, Ehling & Zens+ 07].

bThe notational convention will be as follows: we use the symbol Pr(·) to denote general probability
distributions with (nearly) no specific assumptions. In contrast, for model-based probability distribu-
tions, we use the generic symbol p(·).

3

1 Introduction

Once we specified the Bayes decision rule for statistical machine translation, we have to
address three problems [Ney 01]:

• the modeling problem, i. e. how to structure the dependencies of source and target
language sentences;

• the search problem, i. e. how to find the best translation candidate among all
possible target language sentences;

• the training problem, i. e. how to estimate the free parameters of the models from
the training data.

In this work, we will address these problems. We will describe the modeling problem
in Chapter 3 and Chapter 4, the search problem in Chapter 5, and finally the training
problem in Chapter 6.

1.2.2 Log-linear model

In the original work on statistical machine translation [Brown & Cocke+ 90], the posterior
probability was decomposed:

Pr(eI
1|fJ

1) =
Pr(eI

1) · Pr(fJ
1 |eI

1)

P (fJ
1)

(1.5)

Note that the denominator P (fJ
1) depends only on the source sentence fJ

1 and, in case of
the MAP decision rule, can be omitted during the search:

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1) · Pr(fJ
1 |eI

1)
}

(1.6)

This is the so-called fundamental equation of statistical machine translation
[Brown & Della Pietra+ 93]. The decomposition into two knowledge sources is known
as the source-channel approach to statistical machine translation [Brown & Cocke+ 90].
It allows an independent modeling of the target language model Pr(eI

1) and the transla-
tion model Pr(fJ

1 |eI
1). The target language model Pr(eI

1) describes the well-formedness of
the target language sentence. The translation model Pr(fJ

1 |eI
1) links the source language

sentence to the target language sentence.

An alternative to the classical source-channel approach is the direct modeling of
the posterior probability Pr(eI

1|fJ
1). Using a log-linear model was proposed in

[Papineni & Roukos+ 98, Och & Ney 02].

Pr(eI
1|fJ

1) = pλM
1

(eI
1|fJ

1) (1.7)

pλM
1

(eI
1|fJ

1) =
exp

(∑M
m=1 λmhm(eI

1, f
J
1)
)

∑
e′I

′
1

exp
(∑M

m=1 λmhm(e′I
′

1 , fJ
1)
) (1.8)

4

1.2 The Statistical Approach to Machine Translation

Here, we have models hm(eI
1, f

J
1) and model scaling factors λm. Again, the denominator

represents a normalization factor that depends only on the source sentence fJ
1 . Therefore,

we can omit it during the search process in case of the MAP decision rule. The result is
a linear combination of the individual models h(·, ·):

êÎ
1 = argmax

I,eI
1

{
Pr(eI

1|fJ
1)
}

(1.9)

= argmax
I,eI

1

exp

(∑M
m=1 λmhm(eI

1, f
J
1)
)

∑
e′I

′
1

exp
(∑M

m=1 λmhm(e′I
′

1 , fJ
1)
)
 (1.10)

= argmax
I,eI

1

{
M∑

m=1

λmhm(eI
1, f

J
1)

}
(1.11)

This approach is a generalization of the source-channel approach. It has the advantage
that additional models h(·, ·) can be easily integrated into the overall system. The model
scaling factors λM

1 are trained according to the maximum class posterior criterion, e.g.,
using the GIS algorithm [Och & Ney 02]. Alternatively, one can train them with respect
to the final translation quality measured by an error criterion [Och 03]. This is the so-
called minimum error rate training (MERT).

1.2.3 Phrase-based approach

The basic idea of phrase-based translation is to segment the given source sentence into
phrases, then translate each phrase and finally compose the target sentence from these
phrase translations. An example is shown in Figure 1.1. The source language sentence
”wenn ich eine Uhrzeit vorschlagen darf?” is written along the x-axis and the English
target language sentence ”if I may suggest a time of day?” along the y-axis. The phrase
pairs are represented as boxes and the word alignment within the phrases as black squares.
The used phrase pairs are also listed in the table on the right hand side of Figure 1.1. To
introduce the notation that we will use throughout this work, the idea is also illustrated
in Figure 1.2. Formally, we define a segmentation of a given sentence pair (fJ

1 , eI
1) into K

phrase pairs:

k → sk := (ik; bk, jk), for k = 1 . . . K. (1.12)

Here, ik denotes the end position of the kth target phrase. The pair (bk, jk) denotes the
start and end positions of the source phrase that is aligned to the kth target phrase.
Phrases are defined as nonempty contiguous sequences of words. We constrain the seg-
mentations such that all words in the source and the target sentence are covered by exactly
one phrase. Thus, there are no gaps and there is no overlap. Formally:

K⋃
k=1

{bk, . . . , jk} = {1, . . . , J} (1.13)

{bk, . . . , jk} ∩ {bk′ , . . . , jk′} = ∅ ∀k 6= k′ (1.14)

5

1 Introduction

if

I

may

suggest

a

time

of

day

?

w
e
n
n

i
c
h

e
i
n
e

U
h
r
z
e
i
t

v
o
r
s
c
h
l
a
g
e
n

d
a
r
f ?

source phrase target phrase
wenn ich if I
eine Uhrzeit a time of day
vorschlagen darf may suggest
? ?

Figure 1.1: Example of phrase-based translation and the list of used phrase pairs.

For a given sentence pair (fJ
1 , eI

1) and a given segmentation sK
1 , we define the bilingual

phrases as:

ẽk := eik−1+1 . . . eik (1.15)

f̃k := fbk
. . . fjk

(1.16)

Let |ẽ| denote the length of a phrase ẽ. Sometimes we have to refer to words within a
phrase. Therefore, we define

ẽi
k = eik−1+i (1.17)

As result, we have: ẽk = ẽ1
kẽ

2
k . . . ẽ

|ẽk|
k . Using definition 1.17, we can not only refer to

words within the kth phrase, but also to words before the kth phrase. For instance, ẽ0
k

refers to eik−1
, i. e. the last word of the (k− 1)th phrase. As some models involve a special

treatment of the sentence start and sentence end, we use the following definitions:

i0 = 0 (1.18)

j0 = 0 (1.19)

iK+1 = I + 1 (1.20)

bK+1 = J + 1 (1.21)

ei = sentence start symbol if i ≤ 0 (1.22)

eI+1 = sentence end symbol (1.23)

As it should be always clear from the context if the sentence start or sentence end is
meant, we use the symbol ’$’ for both. Note that the segmentation sK

1 contains the
information about the phrase-level reordering. The segmentation sK

1 is introduced as a

6

1.2 The Statistical Approach to Machine Translation

i3

b2

j2

b1

j1

b3

j3

b4

j4 = J

i1

i2

0 = j0

0 = i0

I = i4

source positions

ta
r
g
e
t

p
o
si

ti
o
n
s

Figure 1.2: Illustration of the phrase segmentation.

hidden variable in the translation model.

Pr(eI
1|fJ

1) =
∑
sK
1

Pr(eI
1, s

K
1 |fJ

1) (1.24)

=
∑
sK
1

exp
(∑M

m=1 λmhm(eI
1, s

K
1 ; fJ

1)
)

∑
e′I

′
1 ,s′K

′
1

exp
(∑M

m=1 λmhm(e′I
′

1 , s′K
′

1 ; fJ
1)
) (1.25)

≈ max
sK
1

exp
(∑M

m=1 λmhm(eI
1, s

K
1 ; fJ

1)
)

∑
e′I

′
1 ,s′K

′
1

exp
(∑M

m=1 λmhm(e′I
′

1 , s′K
′

1 ; fJ
1)
) (1.26)

Theoretically, it is correct to sum over all possible segmentations. In practice, we use the
maximum approximation for this sum (Equation 1.26). As the denominator of this term
is independent of the target sentence eI

1, it can be omitted in the resulting MAP decision
rule:

êÎ
1 = argmax

I,eI
1

{
max

sK
1

M∑
m=1

λmhm(eI
1, s

K
1 ; fJ

1)

}
(1.27)

As a result of the maximum approximation, the models h(·) depend not only on the

7

1 Introduction

hM(eI
1, sK

1 ; fJ
1)

Preprocessing

Postprocessing

Global Search

Models

h1(e
I
1, sK

1 ; fJ
1)

hm(eI
1, sK

1 ; fJ
1)

over all

maximize

êÎ
1

fJ
1

eI
1, sK

1

M∑
m=1

λmhm(eI
1, sK

1 ; fJ
1)

. .
 .

. .
 .

Target Language Text

Source Language Text

Figure 1.3: Illustration of Bayes architecture for machine translation.

sentence pair (fJ
1 , eI

1), but also on the segmentation sK
1 , i. e. we have models h(eI

1, s
K
1 ; fJ

1).
The resulting architecture is illustrated in Figure 1.3.

During the search, the translation hypothesis is generated phrase by phrase. This can be
interpreted as a sequence of K decisions where in each step, we have to decide on a triple
(ẽk, bk, jk). In step k we translate the source positions bk, . . . , jk, i. e. the source phrase
f̃k, with the target phrase ẽk.

1.3 Related Work

As mentioned earlier, the revival of the statistical approach to machine transla-
tion began in the late 1980’s with the work of the IBM group [Brown & Cocke+ 88,
Brown & Cocke+ 90, Brown & Della Pietra+ 93]. These first approaches used a single-
word based lexicon models, i. e. the translation probabilities depend just on single words.
They introduced the concept of the word alignment, i. e. the correspondence between
source and target words. During the JHU workshop 1999 an open-source training soft-
ware for the IBM models was implemented [Al-Onaizan & Curin+ 99]. The main com-
ponent was the GIZA tool for the EM training of the word alignment models, which
was later extended to GIZA++ [Och & Ney 03]. The search algorithms were based
on stack decoding [Berger & Brown+ 96], multi-stack decoding [Wang & Waibel 97],
greedy techniques [Germann & Jahr+ 01, Germann & Jahr+ 04] or dynamic program-

8

1.3 Related Work

ming [Tillmann & Vogel+ 97, Tillmann & Ney 00, Tillmann & Ney 03].

Nowadays, the phrase-based translation approach is much more popular. Most phrase-
based systems, including the one presented here, are derived from the alignment template
approach [Och & Tillmann+ 99, Och 02, Och & Ney 04]. An alignment template is a
triple which describes the alignment between a source phrase and a target phrase. These
phrases are defined at the level of word classes. The alignment templates are extracted
from word-aligned bilingual corpora. The alignment template approach was shown to
outperform single-word based approaches in [Och & Tillmann+ 99, Och 02].

In the phrase-based approach here, we do not use word classes; the phrases are thus
defined at the word level. The extraction of the phrases from word-aligned bilingual
corpora uses the same algorithm as for the alignment templates.

A similar approach is described in [Tomás & Casacuberta 01]; there the phrase transla-
tion probabilities are estimated using the EM algorithm, but the phrase segmentation
is constrained to be monotonic. The experiments were done for Spanish-Catalan task
where this constraint might be suitable. For language pairs which are not as close, the
monotonicity constraint might be inappropriate. The phrases are identified using the
IBM model 1 lexicon. Later, this approach was extended to non-monotonic decoding
[Tomás & Casacuberta 04].

[Marcu & Wong 02] present a joint probability model for phrase-based translation. It does
not use the word alignment for extracting the phrases, but directly generates a phrase
alignment. The training is done using the EM algorithm. Decoding is done using an
extension of a greedy decoder for single-word based models. A problem of this approach
is that it does not scale well to large data tasks. Therefore, [Birch & Callison-Burch+ 06]
tried to improve the scalability, but still this approach remains applicable only for small
tasks.

In [Tillmann & Xia 03], a phrase-based unigram model is described that uses the joint
probability of source and target phrase estimated using relative frequencies. The phrase
pairs are extracted from word-aligned bilingual corpora similar to the alignment templates;
more details on the phrase extraction are presented in [Tillmann 03].

In [Koehn & Och+ 03], various aspects of phrase-based systems are compared, e. g. the
phrase extraction method, the underlying word alignment model. The public Pharaoh
decoder is described in more detail in [Koehn 04a]. During the Johns Hopkins University
summer research workshop 2006, the decoder was re-written and made publicly available
as open-source [Koehn & Hoang+ 07].

In [Vogel 03], a phrase-based system is used that allows reordering within a window of
up to three words. Improvements for a Chinese–English task are reported compared to a
monotonic search. Instead of using the relative frequency estimate, the phrase translation
probability was computed using the IBM model 1 lexicon.

An implementation of the alignment template approach and the phrase-based ap-
proach using weighted finite state transducers was presented in [Kumar & Byrne 03,
Kumar & Byrne 05]. The use of finite state techniques for MT was already pro-
posed in [Vidal 97, Knight & Al-Onaizan 98]. This approach is appealing as there
exists publicly available tools for manipulating finite state automata, for instance

9

1 Introduction

[Mohri & Pereira+, Kanthak & Ney 04].

Other translation systems model the translation process using tree structures.
These can be monolingual tree structures on the target language side as e. g. in
[Yamada & Knight 01, Yamada & Knight 02] and more recently [Galley & Hopkins+ 04,
Galley & Graehl+ 06], or bilingual (also call synchronous) tree structures as e. g. in
[Wu 96, Wu 97, Melamed 04, Chiang 05, Zollmann & Venugopal 06, Chiang 07]. Some
these approaches are based on the phrase-based approach [Chiang 05, Chiang 07] or uti-
lize methods from the phrase-based approach [DeNeefe & Knight+ 07]. Although all these
approaches are formally syntax-based, not all of them make use of linguistically motivated
non-terminals.

10

2 Scientific Goals

• Improved word alignment models.
Word aligned bilingual training corpora are the starting point for most phrase-based
systems. We present alignment models which, compared to IBM model 4, improve
the word alignment quality significantly.

• Comparison of several phrase-based models.
The overall translation model is a combination of a set of models. We investigate
several phrase-based translation models and their combinations as well as their
contributions to the overall translation quality.

• Detailed analysis of search algorithms.
We formulate the search problem for phrase-based SMT and analyze the search
space. We present different search algorithm in detail and compare the quality and
efficiency to a public available decoder.

• Efficient search for ambiguous input.
Often machine translation is a component of a larger pipeline; then the input to
the machine translation component may be ambiguous. A typical example is a
speech translation system. Taking a large number of multiple input alternatives
into account is computationally problematic. Here, we show how to do the phrase
matching of the input lattice and the phrase table in an efficient way and we will
describe search algorithms for lattice input.

• Improved reordering.
The reordering problem in MT is difficult for two reasons: first, it is computational
expensive to explore all possible permutations; second, it is hard to select a good
permutation. We compare several reordering strategies to solve this problem effi-
ciently. Additionally, we introduce a lexicalized reordering model that improves the
translation quality significantly.

• Efficient phrase-table representation.
Standard phrase-based MT systems store the whole phrase table in memory. We
introduce a phrase-table representation that is loaded on-demand from disk. This
enables online phrase-based SMT, i. e. the translation of arbitrary text without
time-consuming pre-filtering of the phrase table.

• Comparison of training criteria.
We investigate alternative training criteria for adjusting the model scaling factors
of a phrase-based SMT system. In this context, we generalize the known word
posterior probabilities to n-gram posterior probabilities. These can be also used in
a rescoring/reranking framework.

11

2 Scientific Goals

12

3 Improved Word Alignment Models

3.1 Introduction

In this chapter, we will describe improvements of the standard IBM word alignment
models.a Word-aligned bilingual corpora are an important knowledge source for many
tasks in natural language processing. Obvious applications are the extraction of bilingual
word or phrase lexica [Melamed 00, Och & Ney 00]. These applications depend heavily
on the quality of the word alignment [Och & Ney 00]. Word alignment models were first
introduced in statistical machine translation [Brown & Della Pietra+ 93]. The alignment
describes the mapping from source sentence words to target sentence words.

Using the IBM translation models IBM-1 to IBM-5 [Brown & Della Pietra+ 93], as well
as the Hidden-Markov alignment model [Vogel & Ney+ 96], we can produce alignments
of good quality. However, all these models are based on restricted alignments in the sense
that a source word can be aligned to at most one target word. This constraint is necessary
to reduce the computational complexity of the models, but it makes it impossible to align
phrases in the target language (English) such as ‘the day after tomorrow’ to one word
in the source language (German) ‘übermorgen’. Another drawback of the IBM models is
that no algorithm for computing the Viterbi alignment for the fertility-based alignment
models IBM 3-5 is known. Therefore approximation have to be used.

We will present two theoretically well-founded techniques which at least partially overcome
the negative effect of this constraint.

1. We will perform the training in both translation directions, source-to-target and
target-to-source, simultaneously. The parameter estimation is done using the EM-
algorithm. After each iteration, we compute the lexicon probabilities by combining
the lexicon counts estimated in the two directions. Thus, the proposed model utilizes
the knowledge from both training directions to improve the parameter estimation.
We will analyze a linear and a log-linear combination of lexicon counts.

2. We will present a word alignment algorithm that avoids the ”one-target word per
source word constraint” and produces symmetric word alignments. This algorithm
considers the alignment problem as a task of finding the edge cover with minimal
costs in a bipartite graph. The parameters of the IBM models and HMM, in par-
ticular the state occupation probabilities, will be used to determine the costs of
aligning a specific source word to a target word. The advantage of this approach is
that the global optimal solution can be found efficiently, whereas for the standard
IBM model 4 an efficient algorithm for finding the global optimum is not known.

aThe experiments in this chapter have been performed in cooperation with Evgeny Matusov.

13

3 Improved Word Alignment Models

Many words in the bilingual sentence-aligned texts are singletons, i. e. they occur only
once. This is especially true for the highly inflected languages such as German. As a
(partial) solution to this problem, we will smooth the lexicon probabilities of the full-form
words using a probability distribution that is estimated using the word stems. Thus, we
exploit that multiple full-form words share the same word stem and have similar meanings
and translations.

We will evaluate these methods on the German–English Verbmobil task and the French–
English Canadian Hansards task. We will show statistically significant improvements
compared to state-of-the-art results in [Och & Ney 03].

3.2 Review of Statistical Word Alignment Models

In this section, we will give an overview of the commonly used statistical word alignment
models [Brown & Della Pietra+ 93]. We are given a source language sentence f := fJ

1

which has to be translated into a target language sentence e := eI
1. According to the

classical source-channel approach, we will choose the sentence with the highest probability
among all possible target language sentences:

ê = argmax
e

{
Pr(e|f)

}
(3.1)

= argmax
e

{
Pr(e) · Pr(f |e)

}
(3.2)

This decomposition into two knowledge sources allows for an independent modeling of
target language model Pr(e) and translation model Pr(f |e). The word alignment a is
introduced as into the translation model a hidden variable:

Pr(f |e) =
∑
a

Pr(f , a|e) (3.3)

Usually, we use restricted alignments in the sense that each source word is aligned to at
most one target word. Thus, an alignment a is a mapping from source sentence positions
to target sentence positions a := aJ

1 = a1...aj...aJ , aj ∈ {0, . . . , I}. The alignment
may contain alignments aj = 0 with the ‘empty’ word e0 to account for source sentence
words that are not aligned to any target word. A detailed description of the popular
translation models IBM-1 to IBM-5 [Brown & Della Pietra+ 93], as well as the Hidden-
Markov alignment model (HMM) [Vogel & Ney+ 96] can be found in [Och & Ney 03]. All
these models include parameters p(f |e) for the single-word based lexicon. They differ in
the alignment model. Now, we sketch the structure of the seven models:

• In IBM-1 all alignments have the same probability, i.e. the distribution is uniform
with value 1

I+1
.

• IBM-2 uses a zero-order alignment model p(aj|j, I, J) where different alignment
positions are independent from each other.

14

3.2 Review of Statistical Word Alignment Models

• The HMM uses a first-order model p(aj|aj−1, I) where the alignment position aj

depends on the previous alignment position aj−1. In the homogenous version, the
distance (or distortion) of the positions is modeled, i. e. p(|aj − aj−1| | I).

• In IBM-3, we have an (inverted) zero-order alignment model p(j|aj, I, J) with an
additional fertility model p(φ|e) which describes the number of words φ aligned to
an English word e.

• In IBM-4, we have an (inverted) first-order alignment model p(j|j′, I, J) and a fer-
tility model p(φ|e).

• The models IBM-3 and IBM-4 are deficient as they waste probability mass on non-
strings. IBM-5 is a reformulation of IBM-4 with a suitably refined alignment model
to avoid deficiency.

• Model 6 is a log-linear combination of the previously described alignment models
[Och & Ney 03].

A Viterbi alignment â of a specific model is an alignment for which the following equation
holds:

â = argmax
a

{
Pr(a|f , e)

}
(3.4)

= argmax
a

{
Pr(f , a|e)

}
(3.5)

We measure the quality of an alignment model using the quality of the Viterbi alignment
compared to a manually produced reference alignment.

In Section 3.4, we will apply the lexicon symmetrization methods to the models described
previously. Therefore, we will now briefly review the standard training procedure for
the lexicon model. The EM-algorithm [Dempster & Laird+ 77] is used to train the free
lexicon parameters p(f |e).
In the E-step, the lexical counts for each sentence pair (f , e) are calculated and then
summed over all sentence pairs:

N(f, e) =
∑

s

∑
a

p(a|f s, es)
∑
i,j

δ(f, f s
j)δ(e, es

i) (3.6)

with

p(a|f s, es) =
p(a, f s|es)∑
a p(a, f s|es)

(3.7)

In the M-step the lexicon probabilities are:

p(f |e) =
N(f, e)∑

f ′
N(f ′, e)

(3.8)

15

3 Improved Word Alignment Models

3.3 Related Work

The popular IBM models for statistical machine translation are described in
[Brown & Della Pietra+ 93]. The HMM-based alignment model was introduced in
[Vogel & Ney+ 96]. A good overview of these models is given in [Och & Ney 03]. In
that article Model 6 is introduced as the log-linear interpolation of the other models. Ad-
ditionally, state-of-the-art results are presented for the Verbmobil task and the Canadian
Hansards task for various configurations. Therefore, we chose them as baseline. Com-
pared to our work, these publications kept the training of the two translation directions
strictly separate, whereas we integrate both directions into one combined training. Ad-
ditional linguistic knowledge sources such as dependeny trees or parse trees were used in
[Cherry & Lin 03, Gildea 03]. Bilingual bracketing methods were used to produce a word
alignment in [Wu 97]. [Melamed 00] uses an alignment model that enforces one-to-one
alignments. In [Toutanova & Ilhan+ 02], extensions to the HMM-based alignment model
are presented.

3.4 Symmetrized Lexicon Model

During the standard training procedure, the lexicon parameters p(f |e) and p(e|f) were
estimated independent of each other in strictly separate trainings. In this section, we
present two symmetrization methods for the lexicon model. The motivation is that a
combination of the two training directions should result in better and more reliable pa-
rameter estimates for the lexicon model than each of the individual directions. As a
starting point, we use the joint lexicon probability p(f, e) and determine the conditional
probabilities for the source-to-target direction p(f |e) and the target-to-source direction
p(e|f) as follows:

p(f |e) =
p(f, e)∑

f ′
p(f ′, e)

(3.9)

p(e|f) =
p(f, e)∑

e′
p(f, e′)

(3.10)

The nonsymmetric auxiliary Q-functions for reestimating the lexicon probabilities with
the EM-algorithm can be represented as follows. Here, NST (f, e) and NTS(f, e) denote
the collected lexicon counts for the source-to-target (ST) direction and the target-to-
source (TS) direction, respectively. Hence, NST (f, e) is the result of the E-step of the
EM-algorithm in the source-to-target direction and NTS(f, e) is the result of the E-step
in the target-to-source direction.

QST ({p(f |e)}) =
∑
f,e

NST (f, e) · log
p(f, e)∑

f ′
p(f ′, e)

(3.11)

QTS({p(e|f)}) =
∑
f,e

NTS(f, e) · log
p(f, e)∑

e′
p(f, e′)

(3.12)

16

3.4 Symmetrized Lexicon Model

3.4.1 Linear interpolation

To estimate this joint probability with the EM-algorithm, we define the auxiliary Q-
function as a linear interpolation of the Q-functions for the source-to-target and target-
to-source direction:

Qα({p(f, e)}) = α ·QST ({p(f |e)}) + (1− α) ·QTS({p(e|f)}) (3.13)

= α ·
∑
f,e

NST (f, e) · log p(f, e) + (1− α) ·
∑
f,e

NTS(f, e) · log p(f, e) (3.14)

−α ·
∑

e

NST (e) · log
∑
f ′

p(f ′, e)− (1− α) ·
∑

f

NTS(f) · log
∑

e′

p(f, e′)

The unigram counts N(e) and N(f) are determined, for each of the two translation
directions, by taking a sum of N(f, e) over f and over e, respectively:

N(f) =
∑

e

N(f, e) N(e) =
∑

f

N(f, e) (3.15)

We define the combined lexicon count Nα(f, e):

Nα(f, e) := α ·NST (f, e) + (1− α) ·NTS(f, e) (3.16)

Now, we derive the symmetrized Q-function over p(f, e) for a certain word pair (f, e).
Then, we set this derivative to zero to determine the reestimation formula for p(f, e) and
obtain the following equation:

Nα(f, e)

p(f, e)
= α · NST (e)∑

f ′
p(f ′, e)

+ (1− α) · NTS(f)∑
e′

p(f, e′)
(3.17)

We do not know a closed form solution for this equation. As approximation, we use the
following term:

p̂(f, e) =
Nα(f, e)∑

f ′,e′
Nα(f ′, e′)

(3.18)

This estimate is an exact solution, if the unigram counts for f and e are independent of
the translation direction, i. e. NST (f) = NTS(f) and NST (e) = NTS(e). We make this
approximation and, thus, linearly combine the lexicon counts after each iteration of the
EM-algorithm. Then, we normalize these counts (according to 3.9 and 3.10) to determine
the lexicon probabilities for each of the two translation directions.

3.4.2 Log-linear interpolation

We will show in Section 3.8.3 that the linear interpolation results in significant improve-
ments over the baseline system. Motivated by these experiments, we investigated also

17

3 Improved Word Alignment Models

a log-linear interpolation of the lexicon counts of the two translation directions. The
combined lexicon count Nα(f, e) is now defined as:

Nα(f, e) = NST (f, e)α ·NTS(f, e)1−α (3.19)

The normalization is done in the same way as for the linear interpolation. The linear
interpolation resembles more a union of the two lexica whereas the log-linear interpolation
is more similar to an intersection of both lexica. Thus, for the linear interpolation, a word
pair (f, e) obtains a large combined count, if the count in at least one direction is large.
For the log-linear interpolation, the combined count is large only if both lexicon counts
are large.

In the experiments, we will use the interpolation weight α = 0.5 for both the linear and
the log-linear interpolation, i. e. the two translation directions are weighted equally.

3.4.3 Evidence trimming

Initially, the lexicon contains all word pairs that cooccur in the bilingual training corpus.
The majority of these word pairs are not translations of each other. Therefore, we would
like to remove those lexicon entries. Evidence trimming is one way to do this. The
evidence of a word pair (f, e) is the estimated count N(f, e). Now, we discard a word pair
if its evidence is below a certain threshold τ . In the case of the symmetric lexicon, we can
further refine this method. For estimating the lexicon in the source-to-target direction
p̂(f |e), the idea is to keep all entries from this direction and to boost the entries that have
a high evidence in the target-to-source direction NTS(f, e). We use the following formula:

N̄ST (f, e) =

{
αNST (f, e) + (1− α)NTS(f, e) if NST (f, e) > τ

0 else
(3.20)

The count N̄ST (f, e) is now used to estimate the source-to-target lexicon p̂(f |e). With
this method, we do not keep entries in the source-to-target lexicon p̂(f |e) if their evidence
is low, even if their evidence in the target-to-source direction NTS(f, e) is high. In the
experiments, we will use τ = 0. For the target-to-source direction, we apply this method
in a similar way.

3.4.4 Improved training initialization

We can transform the symmetrized lexicon parameters p(f |e) and p(e|f) from one trans-
lation direction into the other one using the Bayes theorem:

p(e) · p(f |e) = p(f) · p(e|f) (3.21)

Using Equation 3.21, we can “swap” the parameters between the two translation direc-
tions. Thus, we initialize a more difficult translation direction with the better estimated
lexicon probabilities from the easier direction. Experimentally, it turned out to be suffi-
cient to apply formula 3.21 only after the first training iteration.

18

3.5 Lexicon Smoothing

The prior probabilities p(e) and p(f) appearing in the previous equation can be estimated
in two different ways. One way is to determine the “internal” marginal distributions
using the combined lexicon counts Nα(f, e). Another possibility is to estimate the priors
”externally” as relative word (unigram) frequencies in monolingual corpora of the source
and the target language, respectively. Using external priors may be benefial because they
can be estimated on larger monolingual corpora which are more widely available than
bilingual corpora.

3.5 Lexicon Smoothing

The lexicon model described so far is based on full-form words. For highly inflected
languages such as German this may cause problems, because compared to the word stem,
the full-form words occur less frequent in the training corpus. For instance, the token-type
ratio for German is usually much lower than for English, e.g., in Verbmobil it is 99.4 for
English and 56.3 for German. The information that multiple full-form words share the
same word stem is not used in the lexicon model. To take this information into account,
we smooth the lexicon model with a backing-off lexicon that is based on word stems. The
smoothing method we apply is absolute discounting with interpolation:

p(f |e) =
max {N(f, e)− d, 0}

N(e)
+ α(e) · β(f, ē) (3.22)

This method is well known from language modeling [Ney & Martin+ 97]. Here, ē denotes
the generalization, i.e. the word stem, of the word e. The nonnegative value d is the
discounting parameter, α(e) is a normalization constant and β(f, ē) is the normalized
backing-off distribution.

The formula for α(e) is:

α(e) =
1

N(e)

 ∑
f :N(f,e)>d

d +
∑

f :N(f,e)≤d

N(f, e)

 (3.23)

=
1

N(e)

∑
f

min{d,N(f, e)} (3.24)

This formula is a generalization of the one typically used in publications on language
modeling. This generalization is necessary, because the lexicon counts may be fractional
whereas in language modeling typically integer counts are used. Additionally, we want to
allow for discounting values d greater than one. One effect of the discounting parameter d
is that all lexicon entries with a count less than d are discarded and the freed probability
mass is redistributed among the other entries. The backing-off distribution β(f, ē) is
estimated as:

β(f, ē) =
N(f, ē)∑

f ′
N(f ′, ē)

(3.25)

19

3 Improved Word Alignment Models

Here, N(f, ē) denotes the count of the event that the source language word f and the
target language word stem ē occur together. These counts are computed by summing the
lexicon counts N(f, e) over all full-form words e which share the same word stem ē: In
the experiments, we use the discounting parameter d = 0.05.

3.6 State Occupation Probabilities

The training of all alignment models is done using the EM-algorithm. We will now have
a closer look at the E-step. In the E-step, the counts for each sentence pair (f , e) are
calculated. Here, we present this calculation on the example of the HMM. For its lexicon
parameters, the marginal probability of a target word ei to occur at the target sentence
position i as the translation of the source word fj at the source sentence position j is
estimated with the following sum:

pj(i, f |e) =
∑

a:aj=i

Pr(f , a|e) (3.26)

This value represents the likelihood of aligning fj to ei via every possible alignment a = aJ
1

that includes the alignment connection aj = i. By normalizing over the target sentence
positions, we arrive at the state occupation probability :

pj(i|f , e) =
pj(i, f |e)

I∑
i′=0

pj(i′, f |e)

(3.27)

In the M-step of the EM training, the state occupation probabilities are aggregated for all
words in the source and target vocabularies by taking the sum over all training sentence
pairs. The lexicon probabilities p(f |e) are determined by renormalization.

Similarly, the training can be performed in the inverse (target-to-source) direction, yield-
ing the state occupation probabilities pi(j|e, f).

The negated logarithms of the state occupation probabilities

w(i, j; f , e) := − log pj(i|f , e) (3.28)

can be interpreted as the costs of aligning a source word fj with a target word ei. An
alternative formulation of the word alignment task is the following: we have to find a
mapping between the source and the target words, so that each source and each target
position is covered and the total costs of the alignment are minimal.

For the models IBM-1, IBM-2 and HMM, there exist efficient algorithms to compute
the exact state occupation probabilities. For the HMM this is done using the Baum-
Welch algorithm [Baum 72]. So far, an efficient algorithm to compute the sum over all
alignments in the fertility-based models IBM-3 to IBM-5 is not known. Therefore, this
sum is approximated using a subset of promising alignments [Brown & Della Pietra+ 93,
Och & Ney 00]. In both cases, the resulting estimates are more precise than the ones
obtained by the maximum approximation, i. e. by considering only the Viterbi alignment.

20

3.7 Alignment Algorithms

noon

to

two

would

work

z
w
o
e
l
f

m
i
t
t
a
g
s

b
i
s

z
w
e
i

g
i
n
g
e

so

that

would

be

okay

.

d
a
s

w
a
e
r
e

a
l
s
o

i
n

O
r
d
n
u
n
g .

Figure 3.1: Examples of symmetric alignments with one-to-many and many-to-one con-
nections (Verbmobil task, spontaneous speech).

Instead of using the state occupation probabilities from only one training direction as costs
(Equation 3.28), we can interpolate the state occupation probabilities from the source-to-
target and the target-to-source training for each pair (i,j) of positions in a sentence pair
(f , e). This will improve the estimation of the local alignment costs. Having such sym-
metrized costs, we can employ graph alignment algorithms (cf. Section 3.7) to produce
reliable alignment connections which include many-to-one and one-to-many alignment re-
lationships. The presence of both relationship types characterizes a symmetric alignment
that can potentially improve the translation results. In Figure 3.1, we show two examples
of symmetric alignments.

Another important advantage is the efficiency of the graph algorithms used to determine
the final symmetric alignment. They will be discussed in the following section.

3.7 Alignment Algorithms

In this section, we describe the alignment extraction algorithms. We assume that for each
sentence pair (f , e) we are given a cost matrix C ∈ RJ×I .b The elements of this matrix
cji are the local costs that result from aligning source word fj to target word ei. For a
given alignment A ⊆ J × I, we define the costs of this alignment c(A) as the sum of the
local costs of all aligned word pairs:

c(A) =
∑

(j,i)∈A

cji (3.29)

Note that A is an unconstrained alignment with arbitrary alignment links. Now, our
task is to find the alignment with the minimum costs. Obviously, the empty alignment
has always costs of zero and would be optimal. To avoid this, we introduce additional

bFor notational convenience, we omit the dependency on the sentence pair (f , e) in this section.

21

3 Improved Word Alignment Models

constraints. The first constraint enforces that each source word has to be aligned to at
least one target word or alternatively to the empty word; this constraint will be called
source sentence coverage constraint. Similarly, the second constraint enforces that each
target word has to be aligned to at least one source word or the empty word. This will
be called target sentence coverage constraint.

Enforcing only the source sentence coverage, the minimum cost alignment is a mapping
from source positions j to target positions aj, including zero for the empty word. Each
target position aj can be computed as:

aj = argmin
i∈{0,...,I}

{cji} (3.30)

Thus, in each column we choose the row with the minimum costs. This method resembles
the common IBM models in the sense that the IBM models are also a mapping from
source positions to target positions. Therefore, this method is comparable to the IBM
models for the source-to-target direction. Similarly, if we enforce only the target sentence
coverage, the minimum cost alignment is a mapping from target positions i to source
positions bi. Here, we have to choose in each row the column with the minimum costs.
The complexity of these algorithms is in O(J · I).

The algorithms for determining such a non-symmetric alignment are rather simple. A
more interesting case arises, if we enforce both constraints, i.e. each source word as well
as each target word has to be aligned at least once. Even in this case, we can find the
global optimum in polynomial time.

The task is to find a symmetric alignment A, for which the costs c(A) are minimal.
This task is equivalent to finding a minimum-weight edge cover (MWEC) in a complete
bipartite graph. An edge cover of G is a set of edges E ′ such that each node of G is
incident to at least one edge in E ′. The two node sets of this bipartite graph correspond
to the source sentence positions and the target sentence positions, respectively. The costs
of an edge are the elements of the cost matrix C.

The correspondence between word alignment and an edge cover in a complete bipartite
graph is illustrated in Figure 3.2. The two sets of nodes of the graph correspond to
the source and target sentence positions, respectively. The edges correspond to potential
alignment links. In this illustration, the red edges correspond to the edge cover that
represents the alignment in the left part of the figure.

To solve the minimum-weight edge cover problem, we reduce it to the maximum-weight
bipartite matching problem. As described in [Keijsper & Pendavingh 98], this reduction
is linear in the graph size. For the maximum-weight bipartite matching problem, well-
known algorithm exist, e.g. based on the Hungarian method. The complexity of this
algorithm is in O((I + J) · I · J). We will call the solution of the minimum-weight edge
cover problem the ”MWEC algorithm”. The algorithm enforcing either source sentence
coverage or target sentence coverage will be referred to as the one-sided minimum-weight
edge cover algorithm (o-MWEC).

The elements of the cost matrix cji of a sentence pair (f , e) can be computed as a weighted

22

3.7 Alignment Algorithms

so

that

would

be

okay

.

d
a
s

w
a
e
r
e

a
l
s
o

i
n

O
r
d
n
u
n
g .

Ordnung

in

also

waere

das so

that

would

be

okay

..

Figure 3.2: Illustration: alignment as edge cover. Left: word aligned sentence pair. Right:
the same alignment as edge cover in a complete bipartite graph. The nodes
correspond to the positions in the source and target sentence, respectively.
The red edges correspond to the edge cover of the bipartite graph that is
equivalent to the alignment on the left hand side.

linear interpolation of various cost types hm:

cji =
M∑

m=1

λm · hm(j, i) (3.31)

In our experiments, we will use the negated logarithm of the state occupation probabilities
as described in Section 3.6. To obtain a more symmetric estimate of the costs, we will
interpolate both the source-to-target direction and the target-to-source direction (thus
the state occupation probabilities are interpolated log-linearly). Because the alignments
determined in the source-to-target training may substantially differ in quality from those
produced in the target-to-source training, we will use an interpolation weight α:

cji = α · w(i, j; f , e) + (1− α) · w(j, i; e, f) (3.32)

Additional feature functions can be included to compute cji; for example, one could make
use of bilingual word or phrase dictionaries.

To apply the methods described in this section, we made two assumptions: first, the
costs of an alignment can be computed as the sum of local costs. Second, the features
have to be static in the sense that we have to fix the costs before aligning any word.
Therefore, we cannot directly apply dynamic features such as the IBM-4 distortion model
in a straightforward way. One way to overcome these restrictions is the use of state
occupation probabilities; e.g. for IBM-4, they contain the distortion model.

23

3 Improved Word Alignment Models

yes

,

then

I

would

say

,

let

us

leave

it

at

that

.
j
a ,

d
a
n
n

w
u
e
r
d
e

i
c
h

s
a
g
e
n ,

v
e
r
b
l
e
i
b
e
n

w
i
r

s
o .

I

would

be

free

from

eight

am

to

three

p.m.

tomorrow

.

m
o
r
g
e
n

h
a
e
t
t
e

i
c
h

v
o
n

a
c
h
t

b
i
s

f
u
e
n
f
z
e
h
n

U
h
r

Z
e
i
t .

Figure 3.3: Manual alignment examples with S(ure) (filled dots) and P (ossible) connec-
tions for the Verbmobil task.

3.8 Word Alignment Experiments

In this section, we will present the word alignment experiments. We used the German–
English Verbmobil task and the French–English Canadian Hansards task. First, we will
describe the evaluation criterion, the alignment error rate, in Section 3.8.1. Then, we will
explain the experimental setup including the corpus statistics in Section 3.8.2. Afterwards,
we will present word alignment results for the different approaches.

3.8.1 Evaluation criterion

We use the same evaluation criterion as described in [Och & Ney 00, Och & Ney 03].
The generated word alignment is compared to a reference alignment which is produced
by human experts. The annotation scheme explicitly takes the ambiguity of the word
alignment into account. There are two different kinds of alignments: sure alignments (S)
which are used for alignments that are unambiguous and possible alignments (P) which
are used for alignments that might or might not exist. The P relation is used especially to
align words within idiomatic expressions, free translations, and missing function words.
It is guaranteed that the sure alignments are a subset of the possible alignments (S ⊆ P).
The obtained reference alignment may contain many-to-one, one-to-many and many-to-
many relationships. Figure 3.3 shows an example of a manually aligned sentence with S

24

3.8 Word Alignment Experiments

Table 3.1: Corpus statistics of the Verbmobil and Canadian Hansards task.

German English French English

Train Sentences 34K 128K
Words 329 625 343 076 2.12M 1.93M
Vocabulary 5 936 3 505 37 542 29 414
Singletons 2 600 1 305 12 986 9 572

Dictionary Entries 4 404 28 701
Test Sentences 354 500

Words 3 233 3 109 8 749 7 946
S relations 2 559 4 443
P relations 4 596 19 779

and P relations.

The quality of an alignment A is computed as appropriately redefined precision and recall
measures. Additionally, we use the alignment error rate (AER), which is derived from
the well-known F-measure.

recall =
|A ∩ S|
|S|

, precision =
|A ∩ P |
|A|

(3.33)

AER(S, P ; A) = 1− |A ∩ S|+ |A ∩ P |
|A|+ |S|

(3.34)

With these definitions a recall error can only occur if a S(ure) alignment is not found and
a precision error can only occur if a found alignment is not even P (ossible).

3.8.2 Experimental setup

We evaluated the presented word alignment methods on the Verbmobil and the Canadian
Hansards task. The German–English Verbmobil task [Wahlster 00] is a speech translation
task in the domain of appointment scheduling, travel planning and hotel reservations.
The French–English Canadian Hansards task consists of the debates in the Canadian
Parliament.

The corpus statistics for the two tasks are shown in Table 3.1. The number of running
words and the vocabularies are based on full-form words including punctuation marks.
To investigate the performance of our methods on sparse data, we also used smaller
training corpora of only 500 sentences. As in [Och & Ney 03], the first 100 sentences of
the test corpus are used as a development corpus to optimize model parameters that are
not trained via the EM algorithm, e.g. the discounting parameter for lexicon smoothing.
The statistics for the number of sure and possible connections in the manual reference
alignments is also given in Table 3.1.

We use the same training schemes (model sequences) as presented in [Och & Ney 03]:
15H5334363 for the Verbmobil task, i.e. 5 iteration of IBM-1, 5 iterations of the HMM,
3 iteration of IBM-3, . . . ; for the Canadian Hansards task, we use 15H10334363. If not

25

3 Improved Word Alignment Models

Table 3.2: AER[%] of lexicon symmetrization methods for the Verbmobil and the Cana-
dian Hansards (S→T: source-to-target direction, T→S: target-to-source direc-
tion).

Verbmobil Canadian Hansards
Corpus size: 0.5 k 34 k 0.5 k 128 k

S→T T→S S→T T→S S→T T→S S→T T→S
Baseline 16.4 21.5 5.7 10.0 25.9 27.5 12.5 12.4
Lin. 15.7 18.1 5.2 8.0 26.7 26.2 10.9 10.1
+ refinements 13.9 17.8 4.5 8.2 21.5 22.9 9.9 9.8
+ priors init. 13.8 17.5 4.6 8.3 21.4 22.9 9.6 9.9
Log-lin. 16.1 17.8 9.4 11.9 22.6 25.5 12.9 14.6
+ refinements 13.3 15.3 5.1 7.7 19.9 19.7 8.6 8.4
+ priors init. 12.8 15.2 5.2 7.7 19.9 19.9 8.6 8.3

stated otherwise, the conventional dictionary is not used. As we use the same training
and testing conditions as [Och & Ney 03], we will refer to the results presented in that
article as the baseline results.

3.8.3 Lexicon symmetrization

In Table 3.2, we present the following experiments performed for both the Verbmobil task
and the Canadian Hansards task:

• Lin.: linear interpolation of the lexicon counts after each training iteration as de-
scribed in Section 3.4.1.

• Log-lin.: log-linear interpolation of the lexicon counts as described in Section 3.4.2.

• refinements of both interpolation methods using evidence trimming as described
in Section 3.4.3.

• priors init.: training initialization with external priors trained on the full mono-
lingual corpora as described in Section 3.4.4.

We see that the refined evidence trimming results in an improvement of the AER in
most cases, especially for the log-linear interpolation. As expected, the initialization
with external priors improves the alignment quality on the small Verbmobil corpus. In
the following, we will compare our experimental results to the state-of-the-art system of
[Och & Ney 03]. From the different variants in Table 3.2, we chose for both tasks the
systems with the best AER on the development corpus, i.e. on the small corpora the
systems with improved initialization using external priors and on the large corpora the
systems with the refined evidence trimming. For notational convenience, we will refer to
these systems in the tables from now on with Lin. and Log-lin., respectively.

26

3.8 Word Alignment Experiments

In Table 3.2, we also compare both interpolation variants for the Verbmobil task
to [Och & Ney 03]. We observe notable improvements in the AER using the linear inter-
polation. A reduction of the AER is achieved for both the small and the full corpus. For
the translation direction German → English (S→T) on the full corpus, an improvement
of more than 20% relative is achieved from 5.7% for the baseline system to 4.5% using
the linear interpolation. Using the log-linear interpolation, we also observe a substantial
reduction of the AER, especially on the small corpus, e.g., a relative improvement of 22%
for the German → English (S→T) direction.

The linear interpolation outperforms the log-linear interpolation on the full Verbmobil
corpus. This can be explained as follows. The reference alignments for this task contain
a large number of sure (S) alignment points, averaging at 0.79 points per German wordc.
Thus, the automatical alignment methods producing many (reliable) alignment points
are more favorable for this task. This is exactly the case for the linear interpolation,
where reliable counts are boosted by the count symmetrization. Generally, for the linear
interpolation holds (*): if two values which differ by a high order of a magnitude are
interpolated, the result is of the same magnitude as the larger of the two values. In our
case, this causes a substantial number of symmetric lexicon counts significantly larger
than 0, and leads to a final Viterbi alignment with more reliable alignment points.

Investigating the effect of the log-linear interpolation, for which the statement (*) does not
hold, we arrive at the conclusion that the log-linear count interpolation results in fewer
lexicon counts which are significantly larger than zero. Only a few very reliable alignment
points “survive” the training, resulting in higher precision and lower recall error rates. In
case of the Verbmobil task, where the reference alignments are not sparse, this is not the
best strategy.

However, the lexicon model symmetrization with log-linear interpolation is appropriate
for the training on the small corpus. Many alignment points produced by this training are
not reliable, causing a low alignment precision. The log-linear interpolation reduces the
number of large lexicon counts significantly. So, in the end only a few very reliable
alignment points are produced. This happens at the expense of the recall, but still
improves the AER.

We also performed word alignment experiments on Verbmobil (sub)corpora of different
sizes. The results support the previous observations. With increasing training corpus
size the linear interpolation outperforms the log-linear interpolation. This is illustrated
in Figure 3.4. We observe that both symmetrization variants result in improvements for
all corpus sizes over the baseline model.

In Table 3.2, we also compare the symmetrization methods with the baseline system for
the Canadian Hansards task. Here, the log-linear interpolation with evidence trimming
performs best. For the full corpus, we achieve a relative improvement over the baseline
of more than 30% for both translation directions.

For the Canadian Hansards task, the log-linear interpolation performs better than the
linear interpolation even for the large corpus. We explain this as follows. In Table 3.1,

cThis may be attributed to the differences between German and English which demand frequent one-
to-many and/or many-to-one alignment mappings.

27

3 Improved Word Alignment Models

 4

 6

 8

 10

 12

 14

 16

 18

 100 1000 10000 100000

A
E

R

Corpus Size

baseline
linear

loglinear

Figure 3.4: AER[%] of different alignment methods as a function of the training corpus
size for the Verbmobil task (source-to-target direction).

we see that the reference alignments for the test corpus contain many possible (P) points
and only a few sure (S) alignment points. There is an average of 0.5 alignment points
per French word. Thus, reducing the number of automatically produced alignment points
is more often favorable than not, because missing a possible point does not count as an
error.

The improvements over the baseline in Table 3.2 are statistically significant at the 99%
level. This was checked with a pairwise test using bootstrap resampling [Bisani & Ney 04].

Alignment examples for the standard training and the training with the symmetrized
lexicon are shown in Figure 3.5. We see that in the standard training (on the left hand
side), the German word ’Dias’ has multiple incorrect alignment links, whereas using the
symmetrized lexicon, there is only the correct alignment link to the English word ’slides’.

3.8.4 Generalized alignments

In [Och & Ney 03] generalized alignments are used, thus, the final Viterbi alignments
of both translation directions are combined using some heuristic. Experimentally, the
best heuristic for the Canadian Hansards task is the intersection. This again confirms
that producing fewer alignment points will result in a reduced AER on the Canadian
Hansards task. For the Verbmobil task, the refined method of [Och & Ney 03] is used.
To obtain comparable results to [Och & Ney 03], we added a conventional dictionary to
the bilingual training corpus. The results are summarized in Table 3.3. We see that
both lexicon symmetrization methods yield an improvement with respect to the AER.
Additionally, we observe that precision and recall are more balanced for the symmetrized
lexicon variants, especially for the Canadian Hansards task.

28

3.8 Word Alignment Experiments

And

all

the

slides

will

be

ready

by

then

too

.

D
a

s
i
n
d

d
i
e

D
i
a
s

a
u
c
h

a
l
l
e

f
e
r
t
i
g .

And

all

the

slides

will

be

ready

by

then

too

.

D
a

s
i
n
d

d
i
e

D
i
a
s

a
u
c
h

a
l
l
e

f
e
r
t
i
g .

Figure 3.5: Verbmobil task: alignment examples for the standard training (left) and the
training with symmetrized lexicon (right).

Table 3.3: Effect of different lexicon symmetrization methods on precision, recall and the
AER for the generalized alignments for the Verbmobil task (VM) and the
Canadian Hansards task (CH).

Corpus: VM 0.5 k + dictionary CH0.5 k + dictionary
Combination: refined intersection

Precision[%] Recall[%] AER[%] Precision[%] Recall[%] AER[%]
Baseline 87.8 92.9 9.9 91.5 71.3 18.7
Lin. 90.9 92.8 8.2 86.4 82.7 15.2
Log-lin. 90.2 92.3 8.8 84.5 84.2 15.6

3.8.5 Lexicon smoothing

In Table 3.4, we present the results for the lexicon smoothing as described in Section 3.5
on the large Verbmobil corpusd. As expected, a notable improvement in the AER is
reached if the lexicon smoothing is performed for German, because many full-form words
with the same stem are present in this language. These improvements are statistically
significant at the 95% level. As expected the effect of smoothing is small or there is no

dThe word stems were determined using LingSoft tools.

29

3 Improved Word Alignment Models

Table 3.4: Effect of smoothing the lexicon probabilities on the AER[%] for the Verbmobil
task (S→T: source-to-target direction, smooth English; T→S: target-to-source
direction, smooth German).

Verbmobil
34 k 34 k + dictionary

S→T T→S S→T T→S
Baseline 5.7 10.0 4.6 8.8
+ Smoothing 5.2 9.3 4.6 8.0

effect at all if it is applied to the English part.

3.8.6 Non-symmetric alignments

In this section, we will compare the different non-symmetric alignment algorithms. We
use the state occupation probabilities from only one translation direction to determine the
word alignment. This allows for a fair comparison with the Viterbi alignment computed as
the result of the standard training procedure. In the source-to-target translation direction,
we cannot estimate the probability for the target words with fertility zero and choose to
set it to 0. In this case, the minimum weight edge cover problem is solved by the one-sided
MWEC algorithm. Like the Viterbi alignments of the standard models, the alignments
produced by this algorithm satisfy the constraint that multiple source (target) words can
only be aligned to one target (source) word.

In Table 3.5. we show the performance of the one-sided MWEC algorithm in comparison
with the experiment reported by [Och & Ney 03]. We report not only the final alignment
error rates of Model 6, but also the intermediate results for the HMM and IBM-4 training
schemes.

Consequently, we observe similar alignment quality when comparing the Viterbi and the
one-sided MWEC alignments.

As we use the state occupation probabilities of the corresponding model, we observe sim-
ilar alignment quality when comparing the Viterbi and the one-sided MWEC alignments.

We also evaluated the alignment quality after applying alignment generalization methods,
i. e. we combine the alignment of both translation directions. Experimentally, the best
generalization heuristic for the Canadian Hansards task is the intersection of the source-
to-target and the target-to-source alignments. For the Verbmobil task, the refined method
of [Och & Ney 03] is used. Again, we observed similar alignment error rates when merging
either the Viterbi alignments or the o-MWEC alignments.

3.8.7 Symmetric alignments

The heuristically generalized Viterbi alignments presented in the previous section can
potentially avoid the alignment constraints. However, the choice of the optimal gener-

30

3.8 Word Alignment Experiments

Table 3.5: AER [%] for non-symmetric alignment methods and for various models (HMM,
IBM-4, Model 6) for the Verbmobil and Canadian Hansards tasks (generaliza-
tion: refined for Verbmobil and intersection for Canadian Hansards).

Verbmobil Canadian Hansards
Alignment method HMM IBM4 M6 HMM IBM4 M6

T→S Baseline 7.6 4.8 4.6 14.1 12.9 11.9
o-MWEC 7.3 4.8 4.5 14.0 13.1 11.9

S→T Baseline 12.1 9.3 8.8 14.4 12.8 11.7
o-MWEC 12.0 9.3 8.5 14.3 13.0 11.7

Generalized Baseline 7.1 4.7 4.7 8.4 6.9 7.8
o-MWEC 6.7 4.6 4.6 8.2 7.1 7.8

alization heuristic may depend on a particular language pair and may require extensive
manual optimization. In contrast, the symmetric MWEC algorithm is a systematic and
theoretically well-founded approach to the task of producing a symmetric alignment. We
will use the best heuristic of [Och & Ney 03] as baseline for the experiments with sym-
metric alignments.

In the experiments with the symmetric MWEC algorithm, the optimal interpolation pa-
rameter α (see Equation 3.32) for the Verbmobil corpus was empirically determined as
0.8. This shows that the model parameters can be estimated more reliably in the direc-
tion from German to English. In the inverse English-to-German training direction, the
mappings of many English words to one German word are not allowed by the model-
ing constraints. This is problematic as such alignment mappings are significantly more
frequent than mappings of many German words to one English word.

The experimentally best interpolation parameter for the Canadian Hansards corpus was
α = 0.5. Thus, the model parameters estimated in the translation direction from French
to English are as reliable as the ones estimated in the direction from English to French.

Lines A (2) and B (2) of Table 3.6 show the performance of the MWEC algorithm. The
alignment error rates are slightly lower if the HMM or the full Model 6 training scheme is
used to train the state occupation probabilities on the Canadian Hansards task. On the
Verbmobil task, the improvement is more significant, yielding an alignment error rate of
4.1%.

Additional experiments were performed with a log-linear combination of the state occu-
pation probabilities of the HMM model and IBM model 4 (HMM+IBM4) as well as with
Model 6 (HMM+M6). We set the interpolation parameters for the two translation direc-
tions proportional to the optimal values determined in the previous experiments. On the
Verbmobil task, we obtain a further improvement of 19% relative over the baseline result
reported in [Och & Ney 03], reaching an AER of 3.8%.

The improvements of the alignment quality on the Canadian Hansards task are less signif-
icant. The manual reference alignments for this task contain many possible connections

31

3 Improved Word Alignment Models

Table 3.6: AER[%] for different alignment symmetrization methods and for various align-
ment models on the Canadian Hansards and the Verbmobil tasks (MWEC:
minimum weight edge cover, EW: empty word).

Canadian Hansards 128K corpus + dictionary
Symmetrization Method Models

HMM IBM4 M6 HMM + IBM4 HMM + M6
A 1 Baseline (intersection) 8.4 6.9 7.8 – –

2 MWEC 7.9 9.3 7.5 8.2 7.4
3 +global EW costs 6.6 7.4 6.9 6.4 6.4
4 o-MWEC T→S 7.3 7.9 7.4 6.7 7.0
5 S→T 7.7 7.6 7.2 6.9 6.9
6 S↔T (intersection) 7.2 6.6 7.6 6.0 7.1

Verbmobil 34K corpus + dictionary
Symmetrization Method Models

HMM IBM4 M6 HMM+IBM4 HMM+M6
B 1 Baseline (refined) 7.1 4.7 4.7 – –

2 MWEC 6.4 4.4 4.1 4.3 3.8
3 +global EW costs 5.8 5.8 6.6 6.0 6.7
4 o-MWEC T→S 6.8 4.4 4.1 4.5 3.7
5 S→T 9.3 7.2 6.8 7.5 6.9
6 S↔T (refined) 6.7 4.3 4.1 4.6 3.7

and only a few sure connections (cf. Table 3.1). Thus, automatic alignments consist-
ing of only a few reliable alignment points are favored. Because the differences in the
number of words and word order between French and English are not as dramatic as,
e.g., between German and English, the probability of the empty word alignment is not
very high. Therefore, plenty of alignment points are produced by the MWEC algorithm,
resulting in a high recall and lower precision. To increase the precision, we replaced the
empty word connection costs (previously trained as state occupation probabilities using
the EM algorithm) by a global, word- and position-independent costs depending only on
one of the involved languages. The alignment error rates for these experiments are given
in lines A (3) and B (3) of Table 3.6. The global empty word probability for the Canadian
Hansards task was empirically set to 0.45 for French and for English, and, for the Verb-
mobil task, to 0.6 for German and 0.1 for English. On the Canadian Hansards task, we
achieved further significant reduction of the AER. In particular, we reached an AER of
6.6% by performing only the HMM training. In this case the effectiveness of the MWEC
algorithm is combined with the efficiency of the HMM training, resulting in a fast and
robust alignment training procedure.

We also tested the simpler one-sided MWEC algorithm. In contrast to the experiments
presented in Section 3.8.6, we used the log-linear interpolated state occupation probabil-
ities (given by the Equation 3.32) as costs. Thus, although the algorithm is not able to

32

3.9 Conclusions

produce a symmetric alignment, it operates with symmetrized costs. In addition, we used
a combination heuristic to obtain a symmetric alignment. The results of these experiments
are presented in Table 3.6, lines A/B (4)-(6).

The performance of the one-sided MWEC algorithm turned out to be quite robust on
both tasks. However, the o-MWEC alignments are not symmetric and the achieved low
AER depends heavily on the differences between the involved languages, which may favor
many-to-one alignments in one translation direction only. For example, the alignment
quality deteriorates for the English to German Verbmobil task, because the algorithm
cannot produce alignments which map several English words to one German word, see
line B (5) of Table 3.6.

Applying the generalization heuristics (line A/B (6) of Table 3.6), we achieve an AER of
6.0% on the Canadian Hansards task when interpolating the state occupation probabil-
ities trained with the HMM and with the IBM-4 schemes. On the Verbmobil task, the
interpolation of the HMM and the Model 6 schemes yields the best result of 3.7% AER.
In the latter experiment, we reached 97.3% precision and 95.2% recall.

3.9 Conclusions

We have addressed the task of automatically generating word alignments for bilingual cor-
pora. This problem is of great importance for many tasks in natural language processing,
especially in the field of machine translation.

We have presented lexicon symmetrization methods for the five IBM and the HMM trans-
lation models. We have evaluated these methods on the Verbmobil task and the Canadian
Hansards task and compared our results to the state-of-the-art system of [Och & Ney 03].
We have shown that both the linear and the log-linear interpolation of the lexicon counts
after each iteration of the EM-algorithm result in statistically significant improvements
of the alignment quality. For the Canadian Hansards task, the AER improved by about
30% relative.

Additionally, we presented an algorithm for directly generating symmetric alignments.
We exploited state occupation probabilities derived from the IBM and HMM translation
models. We used the negated logarithms of these probabilities as local alignment costs
and reduced the word alignment problem to the graph problem of finding an minimum
weight edge cover. We presented efficient algorithms to solve this problem and evaluated
their performance. An advantage of this alignment algorithm is that it is straightforward
to include additional features. Furthermore it is guaranteed to find the optimal solution.
Thus, we do not have to worry about approximations such as the hill climbing for the
fertility-based IBM models. We showed that interpolating the alignment costs of the
source-to-target and the target-to-source translation directions can result in a significant
improvement of the alignment quality.

We also performed translation experiments using the improved word alignment models.
Although we achieved significant improvements in terms of alignment error rate, the effect
on translation quality is minimal. Similar results were obtained by [Vilar & Popović+ 06,
Ayan & Dorr 06, Fraser & Marcu 07]. One can conclude that the correlation between

33

3 Improved Word Alignment Models

AER and MT quality, e. g. measured with the Bleu score, is not strong enough. One
reason might be that the phrase-based approach can compensate alignment errors to
some extend. So, in the future, we will either need better metrics for measuring alignment
quality or we will have to tune directly w.r.t. translation quality. The latter is of course
very time consuming. An attempt for a better metric is the consistent phrase error rate
of [Ayan & Dorr 06], which measures the overlap of phrases in the generated alignment
and the reference alignment. As these phrases are the elementary units of a phrase-based
SMT system, this idea seems to be promising. Unfortunately, it turned out that even this
metric does not correlate well enough with MT quality.

34

4 Phrase-based Translation

As described in Section 1.2.1, we have to address three problems [Ney 01]:

• the modeling problem, i. e. how to structure the dependencies of source and target
language sentences;

• the search problem, i. e. how to find the best translation candidate among all possible
target language sentences;

• the training problem, i. e. how to estimate the free parameters of the models from
the training data.

In this chapter, the main focus is on the modeling problem.

As mentioned in the introduction, one core component of a phrase-based SMT system are
the bilingual phrase-pairs and their associated translation probability. In this chapter, we
will describe several models to compute the phrase translation score. We will distinguish
two types of models.

First, there are the phrase models. These depend on a single phrase-pair and do not take
the context outside the phrase pair into account. Thus, there are no dependencies across
phrase boundaries. These models will be described in Section 4.3. The second type are
the reordering models. These models do have dependencies across phrase boundaries and,
thus, take the context into account. These models will be described in Section 4.4.

4.1 Motivation

One major disadvantage of single-word based (SWB) approaches is that contextual in-
formation is not taken into account. The lexicon probabilities are based only on single
words. For many words, the translation depends heavily on the surrounding words. In the
single-word based translation approach, this disambiguation is addressed by the language
model only, which is often not capable of doing this. An example is shown in Figure 4.1.

One way to incorporate the context into the translation model is to learn translations for
whole phrases instead of single words. Here, a phrase is simply a sequence of words. So,
the basic idea of phrase-based (PB) translation is to segment the given source sentence
into phrases, then translate each phrase and finally compose the target sentence from
these phrase translations as illustrated in Figure 4.2. As seen in the last phrase pair of
the example, punctuation marks are treated as normal words.

35

4 Phrase-based Translation

Figure 4.1: Translation example.

Source was halten Sie vom Hotel Gewandhaus ?
Reference what do you think about the hotel Gewandhaus ?
SWB what do you from the hotel Gewandhaus ?
PB what do you think of hotel Gewandhaus ?

Figure 4.2: Example for phrase-based translation.

SOURCE: abends würde ich gerne entspannen und vielleicht in die Sauna gehen .

source segmentation translation
abends in the evening
würde ich gerne entspannen I would like to relax
und and
vielleicht in die Sauna gehen maybe go to the sauna
. .

TARGET: in the evening I would like to relax and maybe go to the sauna .

4.2 Phrase Extraction

The system somehow has to learn which phrases are translations of each other. Therefore,
we use the following approach: first, we train statistical alignment models using GIZA++

and compute the Viterbi word alignment of the training corpus. This is done for both
translation directions. We combine both alignments using a refined heuristic to obtain a
symmetrized word alignment matrix. This alignment matrix is the starting point for the
phrase extraction. The following criterion defines the set of bilingual phrases BP of the
sentence pair (fJ

1 ; eI
1) and the alignment matrix A ⊆ J × I that is used in the translation

system.

BP(fJ
1 , eI

1, A) =
{(

f j2
j1

, ei2
i1

)
: ∀(j, i) ∈ A : j1 ≤ j ≤ j2 ↔ i1 ≤ i ≤ i2

∧∃(j, i) ∈ A : j1 ≤ j ≤ j2 ∧ i1 ≤ i ≤ i2

}
(4.1)

This criterion is identical to the alignment template criterion described in
[Och & Tillmann+ 99]. It means that two phrases are considered to be translations of
each other, if the words are aligned only within the phrase pair and not to words outside.
The phrases have to be contiguous. Figure 4.3 is an example of a word aligned sentence
pair. Figure 4.4 shows the bilingual phrases extracted from this sentence pair according
to the defined criterion. More details on the phrase extraction can be found in [Och 02].

36

4.3 Phrase Models

Figure 4.3: Word aligned sentence pair.

well

,

hello

.

j
a ,

g
u
t
e
n

T
a
g .

Figure 4.4: Extracted bilingual phrases.

source phrase target phrase
ja well
ja, well,
ja, guten Tag well, hello
ja, guten Tag. well, hello.
, ,
, guten Tag , hello
, guten Tag. , hello.
guten Tag hello
guten Tag. hello.
. .

4.3 Phrase Models

As described in Section 1.2.2, we use a log-linear combination of several models (also called
feature functions). In this section, we will describe the models that are used in the first
pass, i. e. during the search. Not all these models are proper probability distributions.
Some are just real valued features which seem (and maybe are) useless on their own.
Nevertheless, they can be an important ingredient of the overall system.

As we will use the notation that was introduced in Section 1.2.3, we will repeat the key
elements as a reminder. We have a segmentation sK

1 of a sentence pair (fJ
1 , eI

1) into K
phrase pairs. Each sk = (ik; bk, jk) is a triple consisting of the last position ik of the kth

target phrase ẽk and the start and end positions of the kth source phrase f̃k are bk and jk,
respectively:

ẽk := eik−1+1 . . . eik (4.2)

f̃k := fbk
. . . fjk

(4.3)

4.3.1 Phrase-based model

The phrase-based translation model is the main component of our translation system.
The hypotheses are generated by concatenating target language phrases. Here, a phrase
is simply a contiguous sequence of words. The pairs of source and corresponding target
phrases are extracted from the word-aligned bilingual training corpus. The phrase extrac-
tion algorithm is described in Section 4.2. The main idea is to extract phrase pairs that
are consistent with the word alignment. Thus, the words of the source phrase are aligned
only to words in the target phrase and vice versa.

We use relative frequencies to estimate the phrase translation probabilities:

p(f̃ |ẽ) =
N(f̃ , ẽ)

N(ẽ)
(4.4)

37

4 Phrase-based Translation

Here, the number of co-occurrences of a phrase pair (f̃ , ẽ) that are consistent with the
word alignment is denoted as N(f̃ , ẽ). If one occurrence of a target phrase ẽ has N > 1
possible translations, each of them contributes to N(f̃ , ẽ) with 1/N . A target phrase can
have multiple consistent source phrases if there are non-aligned words at the boundary
of the source phrase. The reason for using the fractional count 1/N is to penalize these
ambiguous occurrences. The marginal count N(ẽ) is the number of occurrences of the
target phrase ẽ in the training corpus. Note that N(ẽ) ≥

∑
f̃ N(f̃ , ẽ), because there might

be occurrences of the target phrase with no consistent source phrase. These contribute
to the marginal count N(ẽ), but not to the joint count N(f̃ , ẽ). The resulting feature
function is:

hPhr(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

log p(f̃k|ẽk) (4.5)

To obtain a more symmetric model, we use the phrase-based model in both directions
p(f̃ |ẽ) and p(ẽ|f̃). The inverse feature function is:

hiPhr(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

log p(ẽk|f̃k) (4.6)

We use the same algorithm as for the standard direction except that source and target
side are switched. Note that because of the treatment of non-aligned words, the joint
counts for the two directions are not necessarily identical.

The relative frequency estimates typically overestimate the probabilities of rare events
as most of the longer phrases occur only once in the training corpus. To overcome this
problem, we will use additional models to smooth the phrase translation probabilities.
These will be described in the following sections.

4.3.2 Phrase-count model

The phrase-count model can explicitly penalize rare phrase pairs. The idea is to add a
certain penalty, if the joint count of a phrase pair N(f̃ , ẽ) is below a threshold τ :

hC,τ (e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

[N(f̃k, ẽk) ≤ τ] (4.7)

The corresponding model scaling factor acts as a penalty for each rare phrase pair. We
use [·] to denote a true or false statement [Graham & Knuth+ 94], i. e. the result is 1 if
the statement is true, and 0 otherwise. In general, we use the following convention:

[C] =

{
1, if condition C is true
0, if condition C is false

(4.8)

Note that this model can be used with different thresholds. In the experiments, we
typically use this model with thresholds 1, 2 and 3, each with its own model scaling
factor.

38

4.3 Phrase Models

4.3.3 Word-based lexicon model

In this section and the following ones, we use a word-based lexicon to compute the phrase
translation probabilities. For the standard direction, these have the form:

h(eI
1, s

K
1 ; fJ

1) =
K∑

k=1

jk∑
j=bk

log p(fj|ẽk) (4.9)

The models differ in the definition of p(f |ẽ). The inverse model p(e|f̃) is defined in a
similar way.

In the first variant, the word-based lexicon is used to compute a score of a phrase pair
similar to the IBM model 1. But here, we are summing only within a phrase pair and not
over the whole target language sentence. Furthermore, we just use the lexical probabilities
and omit the (uniform) alignment probabilities.

hLex(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

jk∑
j=bk

log

p(fj|e0) +

ik∑
i=ik−1+1

p(fj|ei)

 (4.10)

Here, e0 denotes the empty word. We use the IBM model 4 lexicon trained with GIZA++

as word translation probabilities p(f |e). The word-based lexicon model is also used in
both directions p(f |e) and p(e|f). The inverse feature function is:

hiLex(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

ik∑
i=ik−1+1

log

(
p(ei|f0) +

jk∑
j=bk

p(ei|fj)

)
(4.11)

4.3.4 Word-based noisy-or model

The word-based noisy-or models a disjunctive interaction, also called noisy-OR gate
[Pearl 88]. The idea is that there are multiple independent causes, in our case the tar-
get words e, that can generate an event f . It can be easily integrated into the search
algorithm. The corresponding feature function is:

hNor(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

jk∑
j=bk

log

1−
ik∏

i=ik−1+1

(1− p(fj|ei))

 (4.12)

This model can be used in both directions p(f |e) and p(e|f). The inverse feature function
is:

hiNor(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

ik∑
i=ik−1+1

log

(
1−

jk∏
j=bk

(1− p(ei|fj))

)
(4.13)

39

4 Phrase-based Translation

4.3.5 Deletion model

[Och & Gildea+ 03] presented a deletion model in a rescoring/reranking framework. It is
designed to penalize hypotheses that miss the translation of a word. For each source word,
we check if a target word with a probability higher than a given threshold τ exists. If not,
this word is considered a deletion. The model simply counts the number of deletions.

Here, we will use a within-phrase variant of the deletion model and we will use it already
during the search.

hDel(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

jk∑
j=bk

ik∏
i=ik−1+1

[p(fj|ei) < τ] (4.14)

The word translation probabilities p(f |e) are the same as for the word-based lexicon
model, i. e. the GIZA++ IBM model 4 lexicon. Here, [·] denotes a true or false statement
as in Equation 4.8. The deletion model is used in both directions. The inverse feature
function is:

hiDel(e
I
1, s

K
1 ; fJ

1) =
K∑

k=1

ik∑
i=ik−1+1

jk∏
j=bk

[p(fj|ei) < τ] (4.15)

4.3.6 Word and phrase penalty model

In addition, we use two simple heuristics, namely a word penalty and a phrase penalty:

hWP(eI
1, s

K
1 ; fJ

1) = I (4.16)

hPP(eI
1, s

K
1 ; fJ

1) = K (4.17)

These two models affect the average sentence and phrase lengths. The model scaling
factors can be adjusted to prefer longer sentences and longer phrases.

The word penalty is simply the target phrase length. In combination with the scaling
factor this results in a constant cost per produced target language word. With this
feature, we are able to adjust the sentence length. If we set a negative scaling factor,
longer sentences are more penalized than shorter ones, and the system will favor shorter
translations. Alternatively, by using a positive scaling factor, the system will favor longer
translations.

Similar to the word penalty, the phrase penalty results in a constant cost per produced
phrase. The phrase penalty is used to prefer either fewer and thus longer phrases or more
and thus shorter phrases.

In practice, the word ”penalty” is typically a bonus per word to prefer longer translations.
As the sentence length is important for the Bleu measure, these two models are, despite
their simplicity, quite important to achieve good Bleu scores.

The word penalty was already proposed in [Brown & Della Pietra+ 93] to counteract the
general preference for shorter translations.

40

4.4 Reordering Models

4.4 Reordering Models

In this section, we will describe the models that take dependencies across phrase bound-
aries into account. These models are especially important for choosing good reorderings.

4.4.1 Distortion penalty model

The reordering model of the baseline system is distance-based, i. e. it assigns costs based on
the distance (also called distortion) from the end position of a phrase to the start position
of the next phrase. This very simple reordering model is widely used, for instance in
[Och & Tillmann+ 99, Koehn 04a, Och & Ney 04].

hDist(e
I
1, s

K
1 ; fJ

1) =
K+1∑
k=1

qDist(bk, jk−1) (4.18)

with

qDist(j, j
′) = |j − j′ + 1| (4.19)

The distortion penalty model assigns costs of zero to a translation which is monotonic at
the phrase level. The more phrases are reordered, the higher the distortion penalty. As
we have defined bK+1 = J + 1 in Equation 1.21, the sum includes a jump from the last
position of the final phrase to a position ”one after the sentence end”.

Often it is combined with a limit D on the jump width:

qDist(j, j
′) =

{
|j − j′ − 1| if|j − j′ − 1| < D
∞ else

(4.20)

4.4.2 Language model

In addition to the distortion penalty model, a standard n-gram language model (LM) is
used. The purpose of the language model is to ensure the well-formedness of the target sen-
tence. Despite that an n-gram LM takes only local context into account, it turns out to be
quite powerful and hard to improve over. The language model requires only monolingual
training data; thus, compared to the translation models, it can be trained on significantly
larger volumes of data. We use the SRILM toolkit library [Stolcke 02]. Smoothing is done
using modified Kneser-Ney discounting [Kneser & Ney 95, Chen & Goodman 98].

hLM(eI
1, s

K
1 ; fJ

1) =
I+1∑
i=1

log p(ei|ei−1
i−n+1) (4.21)

The language model includes a sentence end probability, which is the (I + 1)th term in
the sum as we have defined eI+1 as the sentence boundary marker.

41

4 Phrase-based Translation

4.4.3 Phrase orientation model

4.4.3.1 Introduction

In [Och & Gildea+ 04], a lexicalized reordering model was shown to improve translation
quality. Recently, in [Tillmann & Zhang 05, Koehn & Axelrod+ 05], a variant of this
reordering model has been described that tries to predict the orientation of a phrase,
i. e. it answers the question ’should the next phrase be to the left or to the right of the
current phrase?’ This phrase orientation probability is conditioned on the current source
and target phrase and relative frequencies are used to estimate the probabilities, i. e. the
model is lexicalized.

We adopt the idea of predicting the orientation, but we propose to use a log-linear model.
The relative-frequency based approach may suffer from the data sparseness problem,
because most of the phrases occur only once in the training corpus. Our approach cir-
cumvents this problem by using a combination of phrase-level and word-level features
and by using word-classes or part-of-speech information. Maximum entropy is a suitable
framework for combining these different features with a well-defined training criterion.

In [Koehn & Axelrod+ 05] several variants of the orientation model have been tried. It
turned out that for different tasks, different models show the best performance. Here, we
let the maximum entropy training decide which features are important and which features
can be neglected. We will see that additional features do not hurt performance and can
be safely added to the model.

To make use of word level information, we need the word alignment within the phrase
pairs. This can be easily stored during the extraction of the phrase pairs from the bilingual
training corpus. If there are multiple possible alignments for a phrase pair, we use the
most frequent one.

The notation is introduced using the illustration in Figure 4.5. There is an example of
a left and a right phrase orientation. We assume that we have already produced the
three-word phrase in the lower part. Now, the model has to predict if the start position
of the next phrase j′ is to the left or to the right of the current phrase. The reordering
model is applied only at the phrase boundaries. We assume that the reordering within
the phrases is correct. Note that in our approach the phrases do not have to be adjacent.
If we limit the phrases to be adjacent, the resulting model is equivalent to the BTG model
of [Wu 97]. Such an approach was used in [Xiong & Liu+ 06].

The approach of [Ohashi & Yamamoto+ 05] and the follow-up work
[Nagata & Yamamoto+ 06] is similar to our work as it predicts four types of dis-
tortion. This is equivalent to a setting of D = 2 in the following Section 4.4.3.2.
The model were conditioned on the POS-level phrases and used relative frequencies
to estimate the distortion probabilities. In contrast, we use a richer feature set and
discriminative training to estimate the parameters.

In the remaining part of this section, we will describe the details of this reordering model.
The classes our model predicts will be defined in Section 4.4.3.2. Then, the feature
functions will be defined in Section 4.4.3.3. The training criterion and the training events
of the log-linear model will be described in Section 4.4.3.4.

42

4.4 Reordering Models

source positions

i

j’ j

left phrase orientation

source positions

j

i

j’

right phrase orientation

ta
rg

et
 p

os
it

io
ns

ta
rg

et
 p

os
it

io
ns

Figure 4.5: Illustration of the phrase orientation.

4.4.3.2 Class definition

Ideally, this model predicts the start position of the next phrase. But as predicting the
exact position is rather difficult, we group the possible start positions into classes. In the
simplest case, we use only two classes. One class for the positions to the left and one class
for the positions to the right. As a refinement, we can use four classes instead of two:
1) one position to the left, 2) more than one positions to the left, 3) one position to the
right, 4) more than one positions to the right.

In general, we use a parameter D to specify 2 ·D classes of the types:

• exactly d positions to the left, d = 1, ..., D − 1

• at least D positions to the left

• exactly d positions to the right, d = 1, ..., D − 1

• at least D positions to the right

Note that the case d = 0, i. e. to remain in the same position, is not possible as the model
is applied only at phrase boundaries and the phrases do not overlap.

Let cj,j′ denote the orientation class for a movement from source position j to source
position j′ as illustrated in Figure 4.5. In the case of two orientation classes, cj,j′ is
defined as:

cj,j′ =

{
left, if j′ < j
right, if j′ > j

(4.22)

Then, the reordering model has the form

p(cj,j′|fJ
1 , eI

1, i, j)

A well-founded framework for directly modeling the probability p(cj,j′|fJ
1 , eI

1, i, j) is maxi-
mum entropy [Berger & Della Pietra+ 96]. In this framework, we have a set of N feature

43

4 Phrase-based Translation

functions hn(fJ
1 , eI

1, i, j, cj,j′), n = 1, . . . , N . Each feature function hn is weighted with a
factor θn. The resulting model is:

pθN
1
(cj,j′|fJ

1 , eI
1, i, j) =

exp

(
N∑

n=1

θnhn(fJ
1 , eI

1, i, j, cj,j′)

)
∑

c′

exp

(
N∑

n=1

θnhn(fJ
1 , eI

1, i, j, c
′)

) (4.23)

The functional form is identical to Equation 1.8, but here we will use a large number of
binary features, whereas in Equation 1.8 usually only a very small number of real-valued
features is used. More precisely, the resulting reordering model pθN

1
(cj,j′|fJ

1 , eI
1, i, j) is used

as an additional component in the log-linear combination of Equation 1.8.

4.4.3.3 Feature definition

The feature functions of the reordering model depend on the last alignment link (j, i)
of a phrase. Note that the source position j is not necessarily the end position of the
source phrase. We use the source position j which is aligned to the last word of the target
phrase in target position i. The illustration in Figure 4.5 contains such an example. In
the three-word phrase, the second source word is aligned to the last target word.

To introduce generalization capabilities, some of the features will depend on word classes
or part-of-speech information. Let C(f) and C(e) denote the word class of a source or
target word, respectively. Then, the feature functions are of the form hn(fJ

1 , eI
1, i, j, j

′).
We consider the following binary features:

1. source words within a window around the current source position j

hf,d,c(f
J
1 , eI

1, i, j, j
′) = δ(fj+d, f) · δ(c, cj,j′)

2. target words within a window around the current target position i

he,d,c(f
J
1 , eI

1, i, j, j
′) = δ(ei+d, e) · δ(c, cj,j′)

3. word classes or part-of-speech within a window around the current source position j

hF,d,c(f
J
1 , eI

1, i, j, j
′) = δ(C(fj+d), F) · δ(c, cj,j′)

4. word classes or part-of-speech within a window around the current target position i

hE,d,c(f
J
1 , eI

1, i, j, j
′) = δ(C(ei+d), E) · δ(c, cj,j′)

Here, δ(·, ·) denotes the Kronecker-function. In the experiments, we will use d ∈ {−1, 0, 1}.
Many other feature functions are possible, e. g. combinations of the described feature func-
tions, n-gram or multi-word features, joint source and target language feature functions.

44

4.4 Reordering Models

1

2

3

4

5

1 2 3 4 5

target position source positions class
i j j′ cj,j′

0 0 1 right
1 1 2 right
2 3 5 right
4 5 4 left
5 4 6 right

Figure 4.6: Training of the lexicalized reordering model: illustration for the two-class case
(positions 0 and 6 denote sentence boundaries).

4.4.3.4 Training

To train the log-linear parameters θN
1 , we need labeled training data. We generate this

from the word-aligned bilingual training corpus. We train IBM model 4 with GIZA++

in both translation directions and symmetrize the alignments using the refined heuristic
as described in [Och & Ney 03]. Each alignment link defines an event for the maximum
entropy training. An exception are the one-to-many alignments, i. e. one source word
is aligned to multiple target words. In this case, only the topmost alignment link is
considered because the other ones cannot occur at a phrase boundary. Many-to-one
and many-to-many alignments are handled in a similar way. An example is shown in
Figure 4.6, with the word alignment on the left hand side and the source and target
positions used in the feature definitions in the previous section on the right hand side.
Here, the positions 0 and 6 denote the sentence boundaries. For instance, if we consider
the target position i = 2, we have a jump from source position j = 3 to source position
j′ = 5, i. e. we assume that a phrase ends with the alignment link (3,2) and the next
phrase starts with the alignment link (5,3). Given this information, we can list the feature
functions that are active for this pair. Note that per definition the feature functions are
independent of the phrase boundaries on the source side. In the example, it would not
matter if the next phrase pair is 4-5 on the source side and 3-5 on the target side or the
phrase pair 5-5 on the source side and 3-4 on the target side. Therefore, we do not have
to segment the training sentence pairs into phrases for training the orientation model

As training criterion, we use the maximum class posterior probability.

θ̂N
1 = argmax

θN
1

{
S∑

s=1

log pθN
1
(cj,j′|fJ

1 , eI
1, i, j)

}
(4.24)

This corresponds to maximizing the likelihood of the log-linear model. Because the opti-
mization criterion is convex, there is only a single optimum and no convergence problems
occur. To train the model parameters θN

1 , we use the Generalized Iterative Scaling (GIS)
algorithm [Darroch & Ratcliff 72] as implemented in the YASMET toolkit [Och 01]. Al-
ternative algorithms for tuning the parameters could be used instead; a comparison of
suitable algorithms is given in [Malouf 02].

In practice, the training procedure often tends to result in an overfitted model. To avoid
this, [Chen & Rosenfeld 99] have suggested a smoothing method where a Gaussian prior

45

4 Phrase-based Translation

distribution of the parameters θN
1 is assumed. This method tries to avoid very large

lambda values and prevents features that occur only once for a specific class from getting
a value of infinity.

46

5 Search

As described in Section 1.2.1, we have to address three problems [Ney 01]:

• the modeling problem, i. e. how to structure the dependencies of source and target
language sentences;

• the search problem, i. e. how to find the best translation candidate among all
possible target language sentences;

• the training problem, i. e. how to estimate the free parameters of the models from
the training data.

In this chapter, the main focus is on the search problem.

5.1 Introduction

The goal of the search is to find the maximizing argument in the Bayes decision rule. This
is also referred to as generation or decodinga. Here, we are considering the MAP decision
rule for the log-linear model (Equation 1.27):

êÎ
1 = argmax

I,eI
1

{
max

sK
1

M∑
m=1

λmhm(eI
1, s

K
1 ; fJ

1)

}
(5.1)

We have to carry out a maximization over all possible target language sentences eI
1 and

over all possible phrase segmentations sK
1 which includes the reordering of the phrases. As

the models hm(eI
1, s

K
1 ; fJ

1) can depend on the complete target sentence eI
1 and enumerating

all target language sentences is infeasible, we are facing a hard optimization problem.

We can exploit the structure of the models described in Chapter 4.

We have to select

• the number of phrases K

• the segmentation of the source sentence into phrases and the permutation of the
phrases

• the phrase translation ẽ of each source phrase f̃

aWe will use these terms interchangeably.

47

5 Search

We can interpret the search as a sequence of decisions (ẽk, bk, jk) for k = 1, . . . , K. At each
step we decide on a source phrase f̃k identified by its start and end positions (bk, jk) and
the corresponding translation ẽk. To ensure the constraints of the phrase segmentation,
namely that there are no gaps and no overlap, we keep track of the set of source positions
that are already translated (’covered’). We will call this the coverage set C ⊆ {1, . . . , J}.
We can represent the set of possible segmentations and translations as a graph where the
arcs are labeled with the decisions (ẽk, bk, jk) and the states are labeled with the coverage
sets C. The initial state of the graph is labeled with the empty coverage set C = ∅
meaning that no source word is yet translated. The goal state is labeled with the full
coverage C = {1, . . . , J}. Each path through this graph represents a possible translation
of the source sentence, which is obtained by concatenating the target phrases ẽ along the
path. Note that there are multiple paths representing the same translation with different
phrase segmentations. The size of this graph is exponential in the length of the source
sentence.

So far, we have not considered the model scores of a decision sequence. As mentioned
earlier, the phrase models described in Section 4.3 do not have dependencies across phrase
boundaries and thus can be computed for each phrase pair without context. In other
words, these model scores do not depend on the decisions taken so far, but only on a
single arc in the graph. We will use qTM(ẽk, bk, jk) to denote the weighted sum of all
phrase model scores of an arc (ẽk, bk, jk). In a typical setting, consisting of the phrase-
based model in both directions, the lexicon model in both directions and the word and
phrase penalty, this score is computed as

qTM(ẽk, bk, jk) = λPhr · log p(f̃k|ẽk) + λiPhr · log p(ẽk|f̃k)

+λLex ·
jk∑

j=bk

log p(fj|ẽk) + λiLex ·
ik∑

i=ik−1+1

log p(ei|f̃k)

+λWP · (ik − ik−1) + λPP (5.2)

The reordering models, on the other hand, take the context outside the phrase pair into
account. Thus, their model scores do depend on the decisions taken so far. Although
in principal, these models could depend on the whole decision sequence, in practice, the
models depend only on a small subset of the information. The n-gram language model,
for example, depends only on the last (n−1) words of the target sentence. The distortion
penalty model depends only on the end position of the previous source phrase.

As it is a desirable property that the score of an arc should depend only on the arc itself
and the adjacent states, we introduce copies of the states.

As we want to assign the costs to individual arcs, the score of an arc should depend only
on the arc itself and the adjacent states. Therefore, we introduce copies of the states.
We distinguish them according to the language model history and the end position of
the last phrase. The language model history is required to compute the LM score of
the expansions; the end position of the last phrase is required to compute the distortion
model score of the expansions. We will use ẽ′ ⊕ ẽ to denote the language model history
after expanding the given history ẽ′ with the phrase ẽ. The score of this language model

48

5.1 Introduction

expansion weighted with language model scaling factor is denoted as qLM(ẽ|ẽ′):

qLM(ẽ|ẽ′) = λLM ·
|ẽ|∑
i=1

log p(ẽi|ẽi−1, . . . , ẽ1, ẽ′) (5.3)

Here, ẽi denotes the ith word of the phrase ẽ. We define a similar auxiliary function for
the distortion penalty model. We use qDM(j, j′) to denote the weighted score of a jump
from source position j to source position j′:

qDM(j, j′) = λDist · |j − j′ + 1| (5.4)

An edge (ẽ, j, j′) can occur multiple times in the search graph. To avoid repeated compu-
tations, we determine the set of possible target phrases for all source phrases before the
actual search and store the target phrases along with their scores in a table E(j, j′).

The states in the search space can be identified by a triple (C, ẽ, j), where C denotes the
coverage set, ẽ denotes the language model history, and j denotes the end position of the
last source phrase. The language model history ẽ consists typically of the last (n − 1)
words of the target hypothesis. As described in [Tillmann 01, Ueffing & Och+ 02], we
can exploit the backing-off structure of the language model and reduce this to the longest
observed history. Thus, if the (n − 1)-gram does not occur in the LM training data, we
only have to keep the (n− 2)-gram. If that does not occur as well, we can further reduce
the history to the (n − 3)-gram and so on. This will lead to an improved recombination
and is especially helpful when high order n-gram language models are used. This method
is supported by the SRILM toolkit with the contextID function.

Note that the language model history is usually not identical with the target phrase ẽk

of the last decision (ẽk, bk, jk). It may be shorter if the phrase ẽk is longer than n − 1
words. It may also include words from predecessor phrases ẽk−1, ẽk−2, . . . if ẽk is shorter
than n− 1 words.

The computation of the successor states of a given state (C, ẽ, j) is call hypothesis expan-
sion. The score of such an expansion with a phrase pair (ẽ′, j′′, j′) is computed as

qTM(ẽ′, j′′, j′) + qLM(ẽ′|ẽ) + qDM(j, j′′) (5.5)

The successor state is (C ∪{j′′, . . . , j′}, ẽ⊕ ẽ′, j′). Of course, we have to ensure that there
is no overlap, i. e. that C ∩ {j′′, . . . , j′} = ∅.
The search problem can be reformulated as finding the optimum path through this search
graph. The size of the search graph is exponential in the source sentence length. It has
been shown in [Knight 99, Udupa & Maji 06] that the search problem is NP-hard. Thus,
we cannot expect to find the optimum solution efficiently in all cases. Therefore, we have
to use approximations to find a solution efficiently.

The search algorithm should find a good solution, i. e. one that is close to the optimum,
with limited computation time. Additionally, it should be possible to adjust the tradeoff
between speed and quality. Thus, the should be no principal limitation of the search
algorithm and if we spend enough computation time it should find the optimum solution.

Here, we use two techniques to achieve these goals:

49

5 Search

• dynamic programming [Bellman 57]

• beam search [Jelinek 98]

The idea of dynamic programming is to first solve small subproblems and then use these
solutions of the subproblems to compute a solution for the whole problem. Using dynamic
programming, we can reduce the number of path that we have to explore in the search
graph without giving up optimality. The idea of beam search is that at each step, we
expand only the promising partial hypotheses and discard the hypotheses that are unlikely
to lead to the optimum solution. In contrast to dynamic programming, beam search
involves approximations and thus may result in suboptimal solutions.

We will use the following terms:

• Lexical hypothesis (C, ẽ, j). A lexical hypothesis is identified by a coverage C, a
language model history ẽ and a source sentence position j.

• Coverage hypothesis C. We will use the term coverage hypothesis to refer to the
set of all lexical hypotheses with the same coverage C.

The number of coverage hypotheses indicates how many alternative reorderings are in-
vestigated during the search. The number of lexical hypotheses is the total number of
hypotheses. The number of lexical hypotheses per coverage hypothesis indicates the lex-
ical alternatives that are taken into account.

As we will show in Section 5.2.1, the monotonic search problem can be solved quite
efficiently. The drawback is that reordering can happen only within the phrases. If we
want to permit reordering of phrases, the search problem becomes NP-hard, as shown
for single-word based models in [Knight 99, Udupa & Maji 06]. The reordering problem
in MT is similar to the traveling salesman problem and can therefore be solved with a
variant of the Held-Karp algorithm [Held & Karp 62] as shown in [Tillmann & Ney 00].
The disadvantage is that the computational complexity is exponential in the sentence
length. Therefore, an unconstrained search is often impractical. An alternative is to limit
the reordering according to some reordering constraints. We will describe and compare
several reordering constraints in Section 5.5.

The remaining part of this chapter is structured as follows: first we will describe search
algorithms for text input and lattice input in Section 5.2 and Section 5.3, respectively.
Afterward, we will describe the generation of word graphs and N -best lists in Section 5.4.
Then, we will analyze different reordering constraints in Section 5.5. Finally, we will
describe efficient data structures for the phrase table and a phrase matching algorithm
for lattice input in Section 5.6 and Section 5.7, respectively.

50

5.2 Search for Text Input

5.2 Search for Text Input

5.2.1 Monotonic search

The monotonic search problem can be efficiently solved using dynamic programming.
The resulting complexity is linear in the source sentence length. The segmentation is
constrained such that both, the source sentence and the target sentence, are processed in
monotonic order. As a result, we obtain:

bk = jk−1 + 1 , k = 1, ..., K. (5.6)

As there is no reordering of phrases, the distortion penalty model is not used for monotonic
translation. Furthermore, the possible coverage sets are limited and of the form {1, . . . , j}
which means that the source sentence has been translated up to position j. For the
maximization problem in Equation 5.1, we define the quantity Q(j, ẽ) as the maximum
score of a phrase sequence that ends with the language model history ẽ and covers positions
1 to j of the source sentence. Q̂ is the score of the optimum translation. The $ symbol
denotes the sentence boundary marker. We obtain the following dynamic programming
recursion:

Q(0, $) = 0 (5.7)

Q(j, ẽ) = max
j′ : j−Ls≤j′<j
ẽ′′,ẽ′ : ẽ′⊕ẽ′′=ẽ

{
Q(j′, ẽ′) + qTM(ẽ′′, j′ + 1, j) + qLM(ẽ′′|ẽ′)

}
(5.8)

Q̂ = max
ẽ

{
Q(J, ẽ) + qLM($; ẽ)

}
(5.9)

Here, Ls denotes the maximum phrase length in the source language and E(j, j′) denotes
the set of possible phrase translations of the source phrase f̃ = fj, ..., fj′ . During the
search, we store back-pointers to the previous best decision B(·, ·) and to the maximizing
arguments A(·, ·). These are used to trace back the best decisions and generate the
translation after performing the search.

The pseudo code of the algorithm is shown in Figure 5.1. Let Ve denote the vocabulary
size of the target language and, thus, Ve

n−1 is the maximum number of language model
histories ẽ of an n-gram language model. Let E denote the maximum number of phrase
translation candidates for a source language phrase. Then, the resulting algorithm has a
worst-case complexity of O(J ·Ls ·Ve

n−1 ·E). Using efficient data structures and taking into
account that not all possible target language phrases can occur in translating a specific
source language sentence, we can perform a very efficient search.

Note that only the sequence of phrases is monotonic. Within the phrase pairs arbitrary
reorderings are possible. This monotonic algorithm is especially useful for language pairs
that have a similar word order, e. g. Spanish-English or French-English.

5.2.2 Non-monotonic search

For language pairs with different sentence structures, e. g. Japanese-English, monotonic
search is not adequate. Therefore, we will describe an algorithm for non-monotonic

51

5 Search

INPUT: source sentence fJ
1 , translation options E(j, j′) for 1 ≤ j ≤ j′ ≤ J ,

models qTM(·) and qLM(·)
0 Q(0, $) = 0 ; all other Q(·, ·) entries are initialized to −∞
1 FOR j = 1 TO J DO

2 FOR j′ = max{0, j − Ls} TO j − 1 DO

3 FOR ALL LM histories ẽ′ DO

4 FOR ALL phrase translations ẽ′′ ∈ E(j + 1, j′) DO

5 score = Q(j′, ẽ′) + qTM(ẽ′′, j + 1, j′) + qLM(ẽ′′|ẽ′)
6 ẽ = ẽ′ ⊕ ẽ′′

7 IF score > Q(j, ẽ)

8 THEN Q(j, ẽ) = score

9 B(j, ẽ) = (j′, ẽ′)

10 A(j, ẽ) = ẽ′′

Figure 5.1: Monotonic search algorithm for text input.

search in this section. For single-word based models, this search strategy is described
in [Tillmann & Ney 03]. The idea is that the search proceeds synchronously with the
number of the already translated source positions. Here, we use a phrase-based version
of this idea.

During the search, we generate the translation phrase by phrase, i. e. the search is mono-
tonic in the target language. In the case of monotonic decoding, the processing on the
source side was monotonic as well. To permit reordering, the processing on the source
language side may now be non-monotonic. Thus, we can jump forth and back within
the source sentence. As mentioned in Section 1.2.3, each source phrase is translated by
exactly one target phrase. To avoid that multiple phrases translate the same source po-
sition, we keep track of the source positions which are already translated. As mentioned
earlier, this is the coverage C ⊆ {1, ..., J}. If a position j is in the coverage, thus the
source word at that position fj is already translated; it has been ’covered’ by a phrase.
Internally, the coverage is represented as a bit vector of the size of the source sentence.

As mentioned earlier, the states of the search graph can be identified by a triple (C, ẽ, j)
with the coverage set C, the language model history ẽ and the end position of the last
source phrase j. We use the auxiliary quantity Q(C, ẽ, j) to denote the maximum score
of a path leading from the initial state to the state (C, ẽ, j).

The dynamic programming recursion equations are:

Q(∅, $, 0) = 0 (5.10)

Q(C, ẽ, j) = max
j′′,j′:j′≤j<j′+Ls∧{j′,...,j}⊆C

ẽ′,ẽ′′:ẽ′⊕ẽ′′=ẽ

{
Q(C \ {j′, ..., j}, ẽ′, j′′) + qTM(ẽ′′, j′, j)

+ qLM(ẽ′′|ẽ′) + qDM(j′′, j′)
}

(5.11)

Q̂ = max
ẽ,j

{
Q({1, ..., J}, ẽ, j) + qLM($|ẽ) + qDM(j, J + 1)

}
(5.12)

52

5.2 Search for Text Input

Again, Ls denotes the maximum phrase length in the source language. To avoid repeated
computations we have to traverse the search graph in a topological order. Thus, before we
process a node, i. e. expand the hypothesis, we have to make sure that we have visited all
predecessor nodes. We call the number of covered source positions of a partial hypothesis
its source cardinality c. We can easily guarantee the topological order by processing the
nodes according to their source cardinality. Therefore this processing scheme is also called
source cardinality synchronous search.

There are multiple ways to implement a solution to the dynamic programming equations
presented in the previous section. The pseudo-code for the non-monotonic search algo-
rithm is presented in Figure 5.2. Let E(j′, j) denote the set of possible phrase translations
of the source phrase f̃ = fj′ , ..., fj. The input is the source sentence fJ

1 , the translation
options E(j, j′) for all source phrases, i. e. 1 ≤ j ≤ j′ ≤ J . The auxiliary quantity
Q(C, ẽ, j) is used as in the dynamic programming recursion, i. e. the maximum score of a
partial translation with coverage C, language model history ẽ and end position of the last
source phrase j. In addition, we store backpointers B(·) to the previous best decision as
well as the maximizing arguments A(·), i. e. the best target phrases. For each cardinality
c, we have a loop over all possible source phrase lengths l. Then, we have a loop over
the possible predecessor coverages C ′ with cardinality c − l. The next loop goes over
all possible start position j, thus effectively we select a source phrase f̃ = fj, ..., fj+l.
We also check the ”no overlap” constraint in line 4. The coverage after the expansion is
C = C ′ ∪ {j, ..., j + l}. Then, we loop over all existing predecessor states ẽ′, j′ and all
translation options ẽ′′ ∈ E(j, j + l). Eventually, we compute the score of the expansion
in line 8. If this score is better than the existing one, we update this as well as the
backpointer and the pointer to the maximizing argument.

Phrase pairs (f̃ , ẽ) are usually used multiple times in line 8. To avoid repeated compu-
tations, we generate the set of possible translations E(j, j′) for each phrase in the source
sentence before the search along with their phrase model scores qTM(ẽ, j, j′).

The computational complexity of the described algorithm in Figure 5.2 is in

O
(∑J

c=1 Ls ·
(

J
c

)
· J · V n−1

e · E
)

which can be simplified to O(J · Ls · E · V n−1
e · 2J)

by taking into account that
∑J

c=0

(
J
c

)
= 2J .

In Figure 5.3, we show an illustration of the search. For each cardinality, we have a list
of coverage hypotheses, here represented as boxes. For each coverage hypothesis, we have
a list of lexical hypotheses, here represented as circles. We generate a specific lexical
hypothesis (the black circle) with cardinality c by expanding shorter hypotheses. The
hypotheses with cardinality c − 1 are expanded with one-word phrases, the hypotheses
with cardinality c− 2 are expanded with two-word phrases etc..

5.2.3 Pruning

The algorithm in Figure 5.2 solves the maximization problem, but it has an exponen-
tial complexity. To speed up the translation process, we use a beam search strat-
egy [Jelinek 98] and apply pruning at several levels. We use two variants for each
of the levels: threshold pruning (also called beam pruning) and histogram pruning

53

5 Search

INPUT: source sentence fJ
1 , translation options E(j, j′) for 1 ≤ j ≤ j′ ≤ J ,

models qTM(·), qLM(·) and qDM(·)
0 Q(∅, $, 0) = 0 ; all other Q(·, ·, ·) entries are initialized to −∞
1 FOR cardinality c = 1 TO J DO

2 FOR source phrase length l = 1 TO min{Ls, c} DO

3 FOR ALL coverages C ′ ⊂ {1, ..., J} : |C ′| = c− l DO

4 FOR ALL start positions j ∈ {1, ..., J} : C ′ ∩ {j, ..., j + l} = ∅ DO

5 coverage C = C ′ ∪ {j, ..., j + l}
6 FOR ALL states ẽ′, j′ ∈ Q(C ′, ·, ·) DO

7 FOR ALL phrase translations ẽ′′ ∈ E(j, j + l) DO

8 score = Q(C ′, ẽ′, j′) + qTM(ẽ′′, j, j + l) + qLM(ẽ′′|ẽ′) + qDM(j′, j)

9 language model state ẽ = ẽ′ ⊕ ẽ′′

10 IF score > Q(C, ẽ, j + l)

11 THEN Q(C, ẽ, j + l) = score

12 B(C, ẽ, j + l) = (C ′, ẽ′, j′)

13 A(C, ẽ, j + l) = ẽ′′

Figure 5.2: Non-monotonic search algorithm for text input (without pruning).

[Steinbiss & Tran+ 94]. Histogram pruning means that we keep the best N hypothe-
ses, e. g. we could limit the total number of hypotheses to 10 000. Threshold pruning
means that we keep a hypothesis only if its score is close to the best one. An advantage
of threshold pruning is that it adjusts itself to the amount of ambiguity. If the ambiguity
is high, i. e. many hypotheses have a similar score, we keep many hypotheses in the beam.
Whereas if the ambiguity is low, i. e. there is one or a few dominant hypotheses, we keep
only a few hypotheses in the beam. A drawback of threshold pruning is that there is no
upper limit on the number of hypotheses in the beam. Thus, in principle, the beam could
get arbitrarily large. Histogram pruning is a simple way of limiting the beam size.

We use the following pruning strategies:

1. Observation Pruning. Here, we limit the number of translation options per
source phrase. This is done before the actual search starts. Let τo denote the
observation pruning threshold and let q(j, j′) denote the maximum score of any
phrase translation ẽ of the source phrase fj, . . . , fj′ :

q(j, j′) = max
ẽ

{
qTM(ẽ, j, j′) + qLM(ẽ)

}
(5.13)

Here, qLM(ẽ) denotes the weighted LM score of target phrase ẽ without any given
history, i. e. we use the unigram score of the first word, the bigram score of the
second word and so on. We keep a target phrase ẽ as possible phrase translation of
the source phrase fj, . . . , fj′ if:

qTM(ẽ, j, j′) + qLM(ẽ) + τo ≥ q(j, j′) (5.14)

54

5.2 Search for Text Input

c−1c−2 c c+1

Lexical Hypothesis

Coverage Hypothesis

Legend:

Figure 5.3: Illustration of the search. For each cardinality, we have a list of coverage
hypotheses (boxes). For each coverage hypothesis, we have a list of lexical
hypotheses (circles). A hypothesis with cardinality c can be generated by ex-
panding a hypothesis of cardinality c−1 with a one-word phrase, by expanding
a hypothesis of cardinality c− 2 with a two-word phrase etc..

Additionally, we apply observation histogram pruning with parameter No. Thus, if
there are more than No target phrases for a particular source phrase, then we keep
only the top No candidates.

2. Lexical Pruning per Coverage. Here, we consider all lexical hypotheses that
have the same coverage C. The hypotheses may differ, for instance, in their language
model history ẽ or the end position of the last phrase j. Here, we include a rest
score estimate R(C, j) which is a estimate for completing the hypothesis (mainly for
the distortion model which depends on j). A detailed description of the rest score
estimate will be given in Section 5.2.4. Let τL denote the pruning threshold and let
Q(C) denote the maximum score of any hypothesis with coverage C:

Q(C) = max
ẽ,j

{
Q(C, ẽ, j) + R(C, j)

}
(5.15)

Then, we keep a hypothesis with score Q(C, ẽ, j) if:

Q(C, ẽ, j) + R(C, j) + τL ≥ Q(C) (5.16)

55

5 Search

Additionally, we apply histogram pruning with parameter NL. Thus, if there are
more than NL hypotheses for a particular coverage C, then we keep only the top
NL candidates.

3. Lexical Pruning per Cardinality. Here, we consider all lexical hypotheses with
a given cardinality c. Thus, we also compare hypotheses with different coverages.
Here, we include a rest score estimate R(C, j) which is a estimate for completing
the hypothesis. A detailed description of the rest score estimate will be given in
Section 5.2.4. Let τc denote the pruning threshold and let Q(c) denote the maximum
score of any hypothesis with cardinality c:

Q(c) = max
C:|C|=c,

ẽ,j

{
Q(C, ẽ, j) + R(C, j)

}
(5.17)

Then, we keep a hypothesis with score Q(C, ẽ, j) if:

Q(C, ẽ, j) + R(C, j) + τc ≥ Q(c) (5.18)

Additionally, we apply histogram pruning with parameter Nc. Thus, if there are
more than Nc hypotheses for a particular cardinality c, then we keep only the top
Nc candidates.

4. Coverage Pruning per Cardinality. Here, we consider all coverage hypotheses
with a given cardinality c. As defined in Equation 5.15, Q(C) is the maximum
score of any hypothesis with coverage C. We will use this value as score of the
coverage hypothesis C. Let τc denote the pruning threshold, then we keep a coverage
hypothesis with score Q(C) if:

Q(C) + τC ≥ Q(c) (5.19)

Here, Q(c) denotes the maximum score of any hypothesis with cardinality c as
defined in Equation 5.17. Additionally, we apply histogram pruning with parameter
NC . Thus, if there are more than NC coverage hypotheses for a particular cardinality
c, we keep only the top NC candidates. Note that if we prune a coverage hypothesis
C, we remove all lexical hypotheses with coverage C.

Using these pruning techniques the computational costs can be reduced significantly with
almost no loss in translation quality. Note that the threshold pruning parameters depend
on the model scaling factors λM

1 . The effect of doubling all lambdas is the same as
dividing the threshold pruning parameters by two. Thus, if we modify the model scaling
factor, this may affect the search space. This will be important during the training of
the model scaling factors. One remedy is to normalize the model scaling factors, e. g.
using the L1 norm. Alternatively, we could rely on histogram pruning and do no or only
very conservative threshold pruning. A detailed analysis of these effects is presented in
[Cettolo & Federico 04]. Typical values for the histogram pruning are 50 to 200 for the
observation pruning, 5 to 50 for the coverage pruning and 500 to 20 000 for the cardinality
pruning. Note that the pruning is somewhat more fine-grained than in Pharaoh which
does not use coverage pruning. We will see later in the result section that coverage

56

5.2 Search for Text Input

1 2 4 63 5 1 2 4 63 5

Figure 5.4: Illustration of hypotheses expansion. Left: Pharaoh-style. Right: this work.

pruning is important to adjust the relation between hypotheses with different reorderings
(coverage hypotheses) and hypotheses with different lexical choice (lexical hypotheses).

Because of the histogram pruning, the computational complexity of the search is now
linear in the sentence length, though with a rather large constant factor. This comes at the
expense that we can no longer guarantee to find the global optimum. The experimental
results seem to indicate that this is not a serious problem and the translation quality
suffers only marginally.

Note that in outermost loop over the cardinalities c, in contrast to the implementation in
Pharaoh [Koehn 04a] or [Tillmann 06], we do not expand hypotheses with cardinality c,
but generate hypotheses with cardinality c by expanding shorter hypotheses. As a result,
all generated hypotheses have the same cardinality c. This has advantages for pruning.
Additionally, we avoid the problem of the Pharaoh implementation that the stacks for
higher cardinalities can grow quite large and may have to be pruned multiple times. The
two types of hypotheses expansion are illustrated in Figure 5.4.

An illustration of the search graph is shown in Figure 5.5. This graph is generated
from left to right, i. e. with increasing cardinality. The nodes represent the different
coverage hypotheses. Here, we have represented the coverage as a bitvector. For each
coverage hypothesis, we have a list of lexical hypotheses identified by the end position
of the current phrase in the left part of the nodes and the language model state in the
right part of the nodes. The edges are labeled with the target phrases. Dashed edges
indicate recombination. Each lexical hypothesis, except for the root node, has exactly
one non-dashed inbound edge. This edge is used as back pointer B(·) and the label is the
maximizing argument A(·). Pruning is applied for each cardinality. The pruned nodes
are not expanded and, thus, do not have outbound edges.

5.2.4 Rest score estimation

During the pruning, we compare hypotheses which cover different parts of the source
sentence. Here, it is important to use a rest score estimate for completing the hypothesis.
Without such a rest score estimate, the search would first focus on the easy-to-translate
part of the source sentence. This is of course undesirable. As rest score estimation, we
use the heuristic functions described in [Och 02].

For the observation pruning, we used the score q(j, j′) of the best phrase translation of

57

5 Search

Cardinality

0 1 2 3 4 5 6 7

0000000
0 $

1000000
1
1

if
when

if

when

0001000
4 day

time of day

0010000
3
3

a
the

the

a

1100000
2 I

if I

0011000
4 daya time of day

0000110
6 suggest

may suggest

I
I

1011000
4 day

a time of day

time of day

1101000
4
4

day
time

time of day

time

1100110
6 suggest

may suggest

1111000
4
2

day
I

a time of day

0111000
2 I

I

if I

0010110
3
3

a
the

a
the

0011110
4 day

a time of day

time of day

1100111
7 ?

?

1110110
3 a

a

1111110
4
6

day
suggest

a time of day

1111001
7 ?

?
?

may suggest

may suggest

time of day

1111111
7 ?

?
?

Figure 5.5: Illustration of the search. German input sentence: ’Wenn ich eine Uhrzeit
vorschlagen darf?’. English translation: ’If I may suggest a time of day?’. In
each node, we store the coverage (here as bitvector), the end position of the
current phrase and the language model history (here: bigram). Dashed edges
are recombined. Best path marked in red. Scores are omitted.

a source phrase fj, . . . , fj′ (defined in Equation 5.13)b. We implemented two variants
of using this quantity to estimate the rest score of a coverage C ⊂ {1 . . . J}. The first
variant follows [Koehn 03] and estimates the rest score for sequences of uncovered source
positions. The second variant follows [Och 02] and estimates the rest score for individual
uncovered source positions. We define q∗(j, j′) as the maximum score for translating
source positions j . . . j′:

q∗(j, j′) = max

{
q(j, j′), max

j≤k<j′
{q∗(j, k) + q∗(k + 1, j′)}

}
(5.20)

This recursive definition takes alternative phrase segmentations into account. The val-
ues of q∗(j, j′) can computed using dynamic programming in a straightforward way. To

bNote the the language model score is not necessarily an optimistic rest score estimate. Nevertheless,
the experiments show that including the LM score estimate is helpful.

58

5.2 Search for Text Input

use this auxiliary function for the rest score estimation of a hypothesis with coverage
C ⊂ {1 . . . J}, we sum up the rest score estimates for the sequences of uncovered source
positions:

RSeq(C) =
∑

(j,j′)∈C̄

q∗(j, j′) (5.21)

Here, C̄ denotes the set of sequences of uncovered source positions. A sequence is only
contained in C̄ if it is of maximum length, formally:

C̄ =
{
(j, j′)|j ≤ j′ ∧ {j . . . j′} ⊆ {1 . . . J} \ C (5.22)

∧(j = 1 ∨ j − 1 ∈ C) ∧ (j′ = J ∨ j′ + 1 ∈ C)
}

For the second variant, we define q∗(j) as the maximum score for translating the source
position j:

q∗(j) = max
j′≤j≤j′′

q(j′, j′′)

j′′ − j′ + 1
(5.23)

To estimate the rest score of a hypothesis, we have to sum up this quantity over the
uncovered source positions:

RPos(C) =
∑

j∈{1...J}\C

q∗(j) (5.24)

In addition, we use a rest score estimation for the distortion model as described in [Och 02].
Thus, we compute the minimum number of jumps to complete the hypotheses. The idea
is that we jump from the end position of the current phrase j back to the first uncovered
position. Then, we process the remaining part of the sentence from left to right and jump
over all covered sequences. The rest score estimate for the distortion penalty model is:

j0(C) = min{j | 1 ≤ j ≤ J ∧ j 6∈ C} (5.25)

RDist(C, j) = λDist ·
(
|j − j0(C) + 1|+ |C| − j0(C) + 1

)
(5.26)

Here, j0(C) denotes the first uncovered position in the coverage set C. The jump distance
from the current position j to the first uncovered position j0(C) is |j − j0(C) + 1|. The
number of covered positions to the right of position j0(C) is |C| − j0(C) + 1. This is
the number of source positions that we have to jump over to reach the sentence end. An
algorithm for computing this value for a coverage represented as a bit vector is described
in [Och 02].

The overall rest score estimate R(C, j) is obtained as the sum of the distortion and
translation/language model rest score estimate:

R(C, j) = RDist(C, j) + RSeq(C) (5.27)

5.2.5 Detailed search algorithm

The detailed search algorithm including pruning is shown in Figure 5.7. The notation
and functions used in this algorithm are shown in Figure 5.6. We use ’CONTINUE’ and

59

5 Search

Q(C, ẽ, j) score of hypothesis (C, ẽ, j), i. e. the hypothesis with
coverage C, LM history ẽ and source sentence position j

B(C, ẽ, j) back pointer of hypothesis (C, ẽ, j)
A(C, ẽ, j) maximizing argument of hypothesis (C, ẽ, j)
Ls maximum source phrase length
R(C, j) rest score estimate (Eq. 5.27)
qTM(ẽ, j, j′) weighted translation model score for translating source

phrase fj, . . . , fj′ with target phrase ẽ (Eq. 5.2)
qTM(j, j′) best translation model score for translating source

phrase fj, . . . , fj′ , i. e. qTM(j, j′) = maxẽ qTM(ẽ, j, j′)
qLM(ẽ|ẽ′) weighted LM score of phrase ẽ given LM history ẽ′ (Eq. 5.3)
qDM(j, j′) weighted distortion score for a jump from source position j

to source position j′ (Eq. 5.4)
purgeCardinality c free memory of cardinality c except trace back information
pruneCardinality c apply coverage and cardinality pruning to all hypotheses

with cardinality c
x isTooBadForCoverage C check if score x cannot survive coverage or cardinality pruning

Figure 5.6: Notation and functions used in the search algorithm in Figure 5.7.

’BREAK’ with the usual C/C++ semantics, i. e. ’CONTINUE’ will stop the current loop
iteration and continue with the next iteration; ’BREAK’ will stop the whole loop.

The function ’pruneCardinality c’ applies coverage and cardinality pruning to all hypothe-
ses with cardinality c. In the function ’purgeCardinality c’, we free the memory (except
trace back information) of all hypotheses with cardinality c. For example, the coverage
sets and the LM histories are not needed anymore and thus the memory can be reused.

The basic concept of the algorithm is the same as in Figure 5.2. An important aspect
is to move as many computations as possible outside of the inner loops. This way, we
can avoid redundant computations. For instance, the rest score estimate can already be
computed when we know the new coverage C and the source position j + l in line 8.

We also included pruning of hypotheses. Coverage and cardinality pruning is applied after
we generated all hypotheses of the current cardinality c in line 22. Additionally, we apply
pruning at earlier stages. We stop the expansion if we know that the resulting hypotheses
would be pruned anyway. This is done in the function ’x isTooBadForCoverage C’.
This way, we can avoid unnecessary computations and speed up the search significantly.
Therefore, we store for each coverage C the score of its best lexical hypothesis. This score
is updated whenever we generate a lexical hypothesis with coverage C and a better score.
For this on-the-fly pruning to be effective, it is important that promising candidates are
processed first. Therefore, we process the coverage hypotheses in line 4 and the lexical
hypotheses in line 7 in order of their scores, i. e. the best ones first. As already mentioned,
the translation options E(·, ·) are sorted once before the search.

In particular, we check the partial scores at the following points:

• Line 9: at this point, we have accumulated the score of the predecessor hypothesis
Q(C ′, ẽ′, j′), the distortion model score qDM(j′, j), the rest score estimate of the new

60

5.2 Search for Text Input

INPUT: source sentence fJ
1 , translation options E(j, j′) for 1 ≤ j ≤ j′ ≤ J ,

models qTM(·), qLM(·) and qDM(·)
0 Q(∅, $, 0) = 0 ; all other Q(·, ·, ·) entries are initialized to −∞
1 FOR cardinality c = 1 TO J DO

2 IF c > Ls THEN purgeCardinality c− Ls − 1

3 FOR source phrase length l = 1 TO min{Ls, c} DO

4 FOR ALL coverages C ′ ⊂ {1, ..., J} : |C ′| = c− l DO

5 FOR ALL start positions j ∈ {1, ..., J} : C ′ ∩ {j, ..., j + l} = ∅ DO

6 coverage C = C ′ ∪ {j, ..., j + l}
7 FOR ALL states ẽ′, j′ ∈ Q(C ′, ·, ·) DO

8 partial score q = Q(C ′, ẽ′, j′) + qDM(j′, j)

9 IF q + R(C, j + l) + qTM(j, j + l) isTooBadForCoverage C

10 THEN CONTINUE

11 FOR ALL phrase translations ẽ′′ ∈ E(j, j + l) DO

12 partial score q′ = q + R(C, j + l) + qTM(ẽ′′, j, j + l)

13 IF q′ isTooBadForCoverage C THEN BREAK

14 score = q + qTM(ẽ′′, j, j + l) + qLM(ẽ′′|ẽ′)
15 IF score+R(C, j + l) isTooBadForCoverage C THEN CONTINUE

16 language model state ẽ = ẽ′ ⊕ ẽ′′

17 IF score > Q(C, ẽ, j + l)

18 THEN Q(C, ẽ, j + l) = score

19 B(C, ẽ, j + l) = (C ′, ẽ′, j′)

20 A(C, ẽ, j + l) = ẽ

21 pruneCardinality c

Figure 5.7: Detailed non-monotonic search algorithm for text input. Lines that changed
compared to the algorithm in Figure 5.2 have line numbers in boldface.

hypothesis and an optimistic estimate of the translation model score qTM(j, j + l).
If this score is too bad for the coverage hypothesis C, there is no need to process
any of the possible phrase translations.

• Line 13: at this point, we have computed the score except for the language model.
If this score is already too bad, there is no need to compute the LM score.

• Line 15: at this point, the full score of the expansion is known. If we can prune a
hypothesis here, we can directly reuse the memory and there is no need to check for
recombination.

61

5 Search

5.3 Search for Lattice Input

5.3.1 Introduction

Machine translation systems are often used in a pipeline, i. e. the input to the MT system is
the output of another imperfect natural language processing system. A typical example is
spoken language translation, where the output of an automatic speech recognition (ASR)
system is used as the input to a MT system. The traditional approach is to ignore the
problem and translate only the 1-best output. This is a simple and efficient solution,
but has the disadvantage that the MT system cannot recover from errors of the ASR
system. A tighter integration was already proposed in e. g. [Ney 99]. More recently, e. g.
in [Bertoldi & Federico 05], it was shown that taking alternative transcriptions of the
ASR system into account can improve the translation quality. Therefore, we would like
to take the ambiguity of the input explicitly into account.

Despite spoken language translation, there are several other interesting problems which
could benefit from such an approach.

• Reordering. Alternative reorderings are represented as a lattice; this reordering
lattice is then translated. This allows for a decoupling of the reordering from the
core search algorithm. This way it is easy to exchange the reordering strategy
without modifying the core search algorithm.

• Chinese word segmentation. In Chinese, the words are not separated by white-space
and the segmentation of the Chinese character sequence into words is ambiguous.
It has been shown in previous work, [Xu & Matusov+ 05], that it is beneficial for
MT quality to consider alternative word segmentation.

• Named entity recognition and translation. Assuming we know which parts of the
input sentence are named entities, we could use a special named entity transla-
tion/transliteration module for them. On the other hand, it would be very un-
desirable to translate a non-named-entity with this dedicated translation module.
As current named entity recognition systems are not perfect, taking hard decision
before the translation process is suboptimal.

Other possible applications include punctuation insertion, spelling correction, paraphras-
ing, part-of-speech tagging.

The basic idea is to represent the alternative input possibilities in form of a lattice. This
is a representation that can encode arbitrary symbol sequences in a compact and efficient
way. It allows for a tight coupling of the MT module with the upstream natural language
processing applications.

The input lattice is a directed acyclic graph with one start node and one goal node.
The nodes are numbered from 1 (initial node) to J (final node). The numbering must
be consistent with a topological order of the graph. The edges are labeled with source
language words and optionally with costs, e. g. the acoustic and language model costs in
case of an ASR lattice.

62

5.3 Search for Lattice Input

5.3.2 Monotonic search

Monotonic search on the input lattice can be solved similar to the monotonic search
problem for text input. Instead of traversing the source positions, we traverse the nodes
of the input lattice from 1 to J . When visiting a node j the topological order guarantees
that all its predecessors have already been processed. The quantity Q(j, ẽ) is defined
as the maximum score of a phrase sequence ending with language model history ẽ and
translating a path from the initial node 1 to node j.

We obtain the following dynamic programming recursion:

Q(1, $) = 0 (5.28)

Q(j, ẽ) = max
j′<j,ẽ′,ẽ′′:ẽ=ẽ′⊕ẽ′′

{
Q(j′, ẽ′) + qTM(ẽ′′, j′, j) + qLM(ẽ′′|ẽ′)

}
(5.29)

Q̂ = max
ẽ

{
Q(J, ẽ) + qLM($|ẽ)

}
(5.30)

Here, qTM(ẽ′′, j′, j) denotes the translation score for translating a path from node j′ to
node j with the target phrase ẽ. This is very similar to the qTM(·) function for text input,
except that now, we have nodes instead of positions and we include the costs of the path
in the input lattice, e. g. the acoustic and LM costs in case of an ASR lattice. Note
that there may be multiple paths from node j′ to node j. Thus, there may be multiple
(distinct) source phrases along those paths. If the same target phrase can be generate
from multiple source phrases, we choose the one with the maximum score. The set of
possible translations of all paths from node j′ to node j will be denoted as E(j′, j). In
Section 5.7, we will show how we can efficiently generate these sets for all pairs (j′, j).

5.3.3 Non-monotonic search

As the reordering problem for lattice input is computationally even more demanding than
for text input, we implemented rather strict reordering constraints. We apply the IBM or
’skip’ reordering constraints as described in [Berger & Brown+ 96, Tillmann & Ney 00]
for single-word based models. The idea is that we process the lattice in an almost mono-
tonic way, but it is allowed to skip a source phrase and to insert the translation later.
As we have to memorize which phrase has been skipped, the search space is increased
considerably. Therefore, we typically allow only one phrase to be skipped at a time. In
[Kumar & Byrne 05] local reordering constraints have been used to translate lattices in a
FST framework.

We will use S ⊂ {(j, j′)|1 ≤ j < j′ ≤ J} to denote the set of skipped phrases. We define
the auxiliary quantity Q(j, ẽ,S) as the maximum score of a hypothesis which ends in node
j, has language model history ẽ and has skipped the blocks in S.

63

5 Search

Q(1, $, ∅) = 0 (5.31)

Q(j, ẽ,S) = max

{
max
j′<j

ẽ′,ẽ′′:ẽ=ẽ′⊕ẽ′′

{
Q(j′, ẽ′,S) + qTM(ẽ′′, j′, j) + qLM(ẽ′′|ẽ′)

}
, (5.32)

max
(j′,j′′):(j′,j′′) 6∈S

ẽ′,ẽ′′:ẽ=ẽ′⊕ẽ′′

{
Q(j, ẽ′,S ∪ {(j′, j′′)}) + qTM(ẽ′′, j′, j′′) + qLM(ẽ′′|ẽ′)

}
Q(j, ẽ,S ∪ {(j′, j)}) = Q(j′, ẽ,S) (5.33)

Q̂ = max
ẽ

{
Q(J, ẽ, ∅) + qLM($; ẽ)

}
(5.34)

The first one of the two inner max operations in Equation 5.32 is the monotonic expansion
similar to Equation 5.29 in monotonic search. In the second max operation, a block (j′, j′′)
that has been skipped at an earlier stage is translated. In Equation 5.33, we skip a block
(j′, j).

The search algorithms for lattice input described in this section were successfully used
for speech translation [Matusov & Popović+ 04, Matusov & Ney 05, Zens & Bender+ 05,
Matusov & Zens+ 06], reordering [Zens & Och+ 02, Zens & Bender+ 05,
Matusov & Zens+ 06, Zhang & Zens+ 07a, Zhang & Zens+ 07b], integrated Chinese
word segmentation [Xu & Matusov+ 05].

5.4 Word Graph and N-best Generation

In some situations, we are not only interested in the single best MT output hypothesis,
but also in alternative translations. For example in the rescoring/reranking framework,
which might be the most popular usage of N -best lists, we apply additional models to
improve the MT quality. Those additional models are typically hard to apply during the
search, either because of the high computational demands or because they require that
the translation hypothesis is fully generated. For instance, the IBM model 1 p(fJ

1 |eI
1)

involves a sum over the target positions, which is not applicable to partial hypotheses.

To compute the single-best or N -best translation hypotheses under the MAP decision
rule (Equation 1.11), a proper normalization of the log-linear model is not required, i. e.
we could discard the denominator in Equation 1.8. Nevertheless, for some applications
we need to have a properly normalized probability distribution over the target language
sentences. Examples are the estimation of confidence measures based on word posterior
probabilities [Ueffing 05], and MBR decoding [Kumar & Byrne 04]. The sum over all
possible target language sentences is approximated using the word graph (also called
lattice) or the N -best translation candidates. Note that the word graph typically contains
many more hypotheses than the N -best list and is thus preferable. Nevertheless, the N -
best list may contain already enough translation candidates to get reliable estimates.
Also, the computation of statistics on an N -best list is typically simpler than on a word
graph.

64

5.5 Reordering Contraints

The generation of word graphs and N -best lists for MT is described in [Ueffing & Och+ 02]
for the single-word based IBM model 4, for phrase-based models in [Koehn 03,
Zens & Ney 05, Hasan & Zens+ 07]. Decoding is very similar to the standard single-best
search. The difference is that we keep the back-pointers to the recombined hypotheses
instead of deleting them. As a result, the nodes in the search graph can have multiple
incoming edges and not just one as in single-best search. Therefore, we do not generate
a tree of translation hypotheses, but a graph of translation hypotheses; in fact it is a
directed acyclic graph (dag).

Given this graph, we can extract the N best translation candidates, i. e. paths in the
lattice, using standard finite state toolkits, e. g. [Kanthak & Ney 04]. Alternatively, we
can use an extension of the A* algorithm as described in [Ueffing & Och+ 02]. Also,
k shortest path algorithms, e. g. [Eppstein 01]. In the experiments, we will use the A*
algorithm as described in [Ueffing & Och+ 02].

To ensure that the word graph contains translation candidates that are significantly better
than the single-best translation hypothesis, we compute the oracle Bleu score of the lat-
tice. Given the reference translations, we select the path that maximizes the Bleu score.
This gives an upper bound for the Bleu score. We use a variant of the method described
in [Dreyer & Hall+ 07], where the oracle Bleu score for different permutations was com-
puted. We traverse the word graph in topological order and keep track of the following
information: the counts of the matching n-grams and the length of the hypothesis. Using
this, we can compute the Bleu score. Here, we also include the brevity penalty. This was
not required in [Dreyer & Hall+ 07], as all permutations have the same length. When we
have processed a word graph, we trace back the best path and print the target sentence.
After processing all word graphs of a test set, we compute the Bleu score on the extracted
sentences.

To compute the oracle Bleu score on N -best lists, we use a greedy algorithm as described
in [Och & Gildea+ 04]. We process the test set sentence-wise and accumulate the n-gram
counts. After each sentence, we take a greedy decision and choose the n-gram counts
that, if combined with the already accumulated n-gram counts, result is the largest Bleu
score. This gives a conservative approximation of the true oracle Bleu score.

5.5 Reordering Contraints

5.5.1 Introduction

In this section, we will focus on the reordering problem. As the word order in source
and target language may differ, the search algorithm has to allow certain reorderings. As
mentioned before, the generation of a translation hypothesis is computationally expensive
if arbitrary reorderings are allowed. To reduce the search space, we can apply suitable
reordering constraints. Although unconstrained reordering looks perfect from a theoretical
point of view, we find that in practice constrained reordering shows better performance.
The possible advantages of reordering constraints are:

1. The search problem is simplified. As a result there might be fewer search errors.

65

5 Search

2. Unconstrained reordering is only helpful if we are able to estimate the reordering
probabilities reliably, which is unfortunately not the case.

In this section, we will describe two variants of reordering constraints in detail. The first
constraints are based on the IBM constraints for single-word based translation models
[Berger & Brown+ 96]. The second constraints are based on inversion transduction gram-
mars (ITG) [Wu 95, Wu 96, Wu 97, Wu & Wong 98]. We show a connection between the
ITG constraints and the since 1870 known Schröder numbers.

In this section, we will discuss the reordering constraints from a theoretical point of view.
We will answer the question of how many reorderings are permitted for the ITG con-
straints as well as for the IBM constraints. Since we are only interested in the number
of possible reorderings, the specific word identities are of no importance here. Further-
more, we assume a one-to-one correspondence between source and target words. Thus,
we are interested in the number of reorderings, i. e. permutations, that satisfy the chosen
constraints. First, we will consider the ITG constraints. Afterward, we will describe the
IBM constraints.

5.5.2 ITG constraints

5.5.2.1 Description

In this section, we describe the ITG constraints [Wu 95, Wu 97]. The ITG constraints
were introduced in [Wu 95]. The applications were, for instance, the segmentation of
Chinese character sequences into Chinese words and the bracketing of the source sentence
into sub-sentential chunks. In [Wu 96] the baseline ITG constraints were used for sta-
tistical machine translation. The resulting algorithm is similar to the one presented in
Section 5.5.2.4, but [Wu 96] used a single-word based lexicon model as initialization. In
[Vilar 98, Vilar & Vidal 05] a model similar to Wu’s method was considered.

Here, we interpret the input sentence as a sequence of blocks. In the beginning, each
position is a block of its own. Then, the reordering process can be interpreted as follows:
we select two consecutive blocks and merge them to a single block by choosing between
two options: either keep the target phrases in monotonic order or invert the order. This
idea is illustrated in Figure 5.8. The dark boxes represent the two blocks to be merged.
Once two blocks are merged, they are treated as a single block and they can be only
merged further as a whole. It is not allowed to merge one of the subblocks again.

An alternative description is a binary bracketing of the input sequence with two types
of brackets. Dependent on the type of bracket, the two subparts are concatenated in
monotonic [·] or in inverted 〈·〉 order. An example is

〈[AB][〈CD〉E]〉

which represents the permutation DCEAB.

66

5.5 Reordering Contraints

source positions

ta
rg

et
 p

os
iti

on
s

without inversion with inversion

source positions

ta
rg

et
 p

os
iti

on
s

Figure 5.8: Illustration of the ITG reordering constraints: monotonic and inverted con-
catenation of two consecutive blocks.

5.5.2.2 Analysis

Now, we investigate, how many permutations are obtainable with this method. A per-
mutation derived by the preceding method can be represented as a binary tree where the
inner nodes are colored either black or white. At black nodes the resulting sequences
of the children are inverted. At white nodes they are kept in monotonic order. This
representation is equivalent to the parse trees of the simple grammar in [Wu 97].

We observe that a given permutation may be constructed in several ways by the preceding
method. For instance, let us consider the identity permutation of 1, 2, ..., n. Any binary
tree with n nodes and all inner nodes colored white (monotonic order) is a possible repre-
sentation of this permutation. To obtain a unique representation, we pose an additional
constraint on the binary trees: if the right son of a node is an inner node, it has to be
colored with the opposite color. With this constraint, each of these binary trees is unique
and equivalent to a parse tree of the ’canonical-form’ grammar in [Wu 97].

In [Shapiro & Stephens 91], it is shown that the number of such binary trees with n nodes
is the (n − 1)th large Schröder number Sn−1. The (small) Schröder numbers have been
first described by Schröder in 1870 as the number of bracketings of a given sequence, the
so-called Schröder’s second problem [Schröder 70]. The large Schröder numbers are just
twice the Schröder numbers. Schröder remarked that the ratio between two consecutive
Schröder numbers approaches 3 + 2

√
2 = 5.8284... . A second-order recurrence for the

large Schröder numbers is:

(n + 1)Sn = 3(2n− 1)Sn−1 − (n− 2)Sn−2

with n ≥ 2 and S0 = 1, S1 = 2.

The Schröder numbers have many combinatorial interpretations. Here, we will mention
only two of them. The first one is another way of viewing the ITG constraints. The number

67

5 Search

1

2

3

4

a b c d
1

2

3

4

a b c d

Figure 5.9: Illustration of the two reordering patterns that violate the ITG constraints:
(3142) on the left and (2413) on the right.

of permutations of the sequence 1, 2, ..., n, which avoid the subsequences (3142) and (2413),
is the large Schröder number Sn−1. More details on forbidden subsequences can be found
in [West 95]. The interesting point is that a search with the ITG constraints cannot
generate a word-reordering that contains one of these two subsequences. In [Wu 97],
these forbidden subsequences are called ’inside-out’ transpositions. Thus, a reordering
violates the ITG constraints if and only if it contains (3142) or (2413) as a subsequence.
This means, if we select four columns and the corresponding rows from the alignment
matrix and we obtain one of the two patterns illustrated in Figure 5.9, this reordering
cannot be generated with the ITG constraints.

Another interpretation of the Schröder numbers is given in [Knuth 73]: the number of
permutations that can be sorted with an output-restricted double-ended queue (deque)
is exactly the large Schröder number. Additionally, Knuth presents an approximation for
the large Schröder numbers:

Sn ≈ c · (3 +
√

8)n · n−
3
2 (5.35)

where c is set to 1
2

√
(3
√

2− 4)/π. This approximation function confirms the result of

Schröder, and we obtain Sn ∈ Θ((3 +
√

8)n), i. e. the Schröder numbers grow like (3 +√
8)n ≈ 5.83n.

5.5.2.3 Extended ITG constraints

In this section, we will extend the ITG constraints. This extension will go beyond basic
reordering constraints. We already mentioned that the use of contiguous phrases within
the ITG approach is straightforward. The only thing we have to change is the initialization
of the Q-table. Now, we will extend this idea to phrases that are non-contiguous in the
source language. For this purpose, we adopt the view of the ITG constraints as a bilingual
grammar as, e.g., in [Wu 97]. For the baseline ITG constraints, the resulting grammar is:

A → [AA] | 〈AA〉 | f/e | f/ε | ε/e (5.36)

Here, [AA] denotes a monotonic concatenation and 〈AA〉 denotes an inverted concatena-
tion. Let us now consider the case of a source phrase consisting of two parts f1 and f2.

68

5.5 Reordering Contraints

j
l

jr

e
b

e
t

Figure 5.10: Illustration of the Q-table.

Let e denote the corresponding target phrase. We add the productions

A → [e/f1 A ε/f2] | 〈e/f1 A ε/f2〉 (5.37)

to the grammar. The probabilities of these productions are, dependent on the translation
direction, p(e|f1, f2) or p(f1, f2|e), respectively. Obviously, these productions are not in
the normal form of an ITG, but with the method described in [Wu 97], they can be
normalized. These extension are especially useful for the negation in French-English
(”ne ... pas”,”not”) and in case of German-English for split German verb prefixes (e. g.
”fahren ... los”,”leave”).

5.5.2.4 Dedicated search algorithm

The ITG constraints allow for a polynomial-time search algorithm, as described in
[Wu 97]. It is based on the following dynamic programming recursion equations. During
the search a table Qjl,jr,eb,et is constructed. Here, Qjl,jr,eb,et denotes the probability of the
best hypothesis translating the source words from position jl (left) to position jr (right)
which begins with the target language word eb (bottom) and ends with the word et (top).
This is illustrated in Figure 5.10.

The initialization, denoted as Q0
jl,jr,eb,et

, is done with the phrase-based model described
in Section 4.3. We introduce a new parameter pm (m=̂ monotonic), which denotes the
probability of a monotonic combination of two partial hypotheses. Here, we formulate
the recursion equation for a bigram language model, but of course, the same method can
also be applied for higher order language models.

Qjl,jr,eb,et = max
jl≤k<jr,

e′,e′′

{
Q0

jl,jr,eb,et
,

Qjl,k,eb,e′ ·Qk+1,jr,e′′,et · p(e′′|e′) · pm,

Qk+1,jr,eb,e′ ·Qjl,k,e′′,et · p(e′′|e′) · (1− pm)
}

The resulting algorithm is similar to the CYK-parsing algorithm [Kasami 65, Younger 67].
It has a worst-case complexity of O(J3 · V 4

e). Here, J is the length of the source sentence

69

5 Search

and Ve is the vocabulary size of the target language. Using the methods described in
[Huang & Zhang+ 05], it is possible to reduce this worst case complexity, but if the re-
sulting algorithm is faster in practice, especially in the context of pruning, was left open.

5.5.2.5 Integration into beam search algorithm

For the ITG constraints a CYK-style search algorithm exists as described in the previous
section. A disadvantage of that algorithm is that the language model history has to be
consider at the beginning and the end of each interval.

It would be more practical with respect to language model recombination to have an
algorithm that generates the target sentence phrase by phrase. The idea is to start with
the beam search decoder for unconstrained search and modify it in such a way that it will
produce only reorderings that do not violate the ITG constraints. Now, we describe one
way to obtain such a decoder.

We have to modify the beam search decoder such that it cannot produce the two patterns
that violate the ITG constraints. We implement this in the following way. We define a
span to be a contiguous sequence of source positions. We organize the coverage in form of a
stack of spans where each of them is ITG parsable. When we generate the next phrase, we
put the corresponding span of source positions on the stack. If the two topmost elements
of the stack are adjacent, i. e. we can combine them either in monotonic or inverted order,
we do so and put the resulting span back on the stack. The combination step is repeated
until the two topmost elements of the stack are no longer adjacent to each other. A
permutation is ITG parsable if the final stack contains only one element, namely {1, ..., J}.
The pseudo-code of the algorithm is shown in Figure 5.11. Here, the array B[·] denotes
the start positions of the spans (B=begin) and the array E[·] denotes the end positions,
thus the jth span starts at position B[j] and ends at position E[j]. The variable S is
the current size of the arrays. This was implemented in the publicly available RWTH
FSA toolkitc to generate permutation graphs [Kanthak & Ney 04, Kanthak & Vilar+ 05].
A similar idea is used in [Zhang & Huang+ 06] for synchronous binarization of grammar
rules.

A drawback of this approach is that the decision if a permutation is ITG parsable or
not is done at the very end. We can do better by utilizing our knowledge about the
forbidden subsequences (3142,2413) to speed up the procedure and discard many partial
permutation early during the generation. To avoid the forbidden patterns in Figure 5.9,
we have to constrain the placement of the third phrase, because once we have placed
the first three phrases we also have determined the position of the fourth phrase as the
remaining uncovered position. Using the coverage and the information about the current
source sentence position jc and a candidate source position jn to be translated next, we
can determine if the permutation will eventually violate the ITG constraints. We check

chttp://www-i6.informatik.rwth-aachen.de/∼kanthak/fsa.html

70

5.5 Reordering Contraints

INPUT: permutation π1, ..., πJ of 1, ..., J

0 ARRAY B, E; INT S = 0;

1 FOR j = 1 TO J DO

2 S = S + 1

3 B[S] = πj; E[S] = πj

4 WHILE (S ≥ 2 ∧ (E[S − 1] = B[S] ∨B[S − 1] = E[S]))

5 IF (E[S − 1] = B[S])

6 THEN E[S − 1] = E[S]

7 ELSE B[S − 1] = B[S]

8 DELETE B[S], E[S]

9 S = S − 1

10 IF S=1 THEN ACCEPT ELSE REJECT

Figure 5.11: Algorithm to test if a permutation is ITG-parsable.

the following constraints:

case a) jn < jc (5.38)

∀jn < j < jc : j ∈ C → j + 1 ∈ C

case b) jc < jn (5.39)

∀jc < j < jn : j ∈ C → j − 1 ∈ C

The constraints in Equation 5.38 and Equation 5.39 enforce the following: imagine, we
go from the current position jc to the position to be translated next jn. Then, it is not
allowed to move from an uncovered position to a covered one.

Equation 5.38 and Equation 5.39 are necessary conditions for the ITG constraints. Thus,
if the conditions are violated, the resulting permutation violates the ITG constraints. It
is rather easy to see that any reordering that violates the constraint in Equation 5.38
will generate the pattern on the left-hand side in Figure 5.9. The conditions to violate
Equation 5.38 are the following: the new candidate position jn is to the left of the current
position jc, e. g. positions (a) and (d). Somewhere in between there has to be an covered
position j whose successor position j + 1 is uncovered, e. g. (b) and (c). Therefore, any
reordering that violates Equation 5.38 generates the pattern on the left-hand side in
Equation 5.9, thus it violates the ITG constraints.

Using Equation 5.38 and Equation 5.39 we can discard many permutations at an early
stage and therefore speed up the processing significantly.

5.5.2.6 Baxter permutations

Using the techniques from the previous section, the ITG constraints can be integrated
into a standard beam search decoder. Nevertheless, we have to build the stack with
the spans which results in some overhead. To avoid this overhead, we relax the ITG

71

5 Search

constraints. If we just rely on Equation 5.38 and Equation 5.39, we will generate the so-
called Baxter permutations. These are a superset of the ITG permutations, e. g. (25314)
is a Baxter permutation but not an ITG permutation. The Baxter permutations first
arose in the context of commuting functions [Baxter 64]. They can be characterized as all
permutations that avoid the barred subsequences (253̄14, 413̄52) [Dulucq & Guibert 96].
Thus, the subsequences (2413) and (3142) are forbidden except if they can be expanded
to (25314) or (41352), respectively.

The number of Baxter permutations Bn of a sequence 1, ..., n is [Chung & Graham+ 78]:

Bn =
2

n(n + 1)2

n∑
k=1

(
n + 1

k − 1

)(
n + 1

k

)(
n + 1

k + 1

)
(5.40)

During the search, we can efficiently verify if the conditions in Equation 5.38 and in
Equation 5.39 are violated or not. This can be done in line 7/8 of the search algorithm
in Figure 5.7. Thus, the beam search decoder can be easily restricted to the Baxter
permutations.

5.5.3 IBM constraints

In this section, we will describe the IBM constraints [Berger & Brown+ 96] which are
based on permutations with restricted displacement [Lehmer 70]. Here, we mark each
position in the source sentence either as covered or uncovered. In the beginning, all source
positions are uncovered. Now, we process the source positions from left to right. We are
allowed to skip a position and come back to it later. According to the IBM constraints
the next position has to be one of the first k uncovered positions, i. e. at any time there
are no more than k− 1 skipped positions: Let C ⊆ {1, ..., J} denote the coverage, then it
violates the IBM constraints, if:

|C|+ k ≤ max C (5.41)

The IBM constraints are illustrated in Figure 5.12. Here, the source sentence positions
are along the x-axis. Yet uncovered positions are marked with unfilled circles, the already
covered positions with filled circles. The uncovered positions that are candidates for
extension are marked with unfilled squares.

For most of the target positions there are k permitted source positions. Only toward the
end of the sentence this is reduced to the number of remaining uncovered source positions.
Let n denote the length of the input sequence and let rn denote the permitted number of
permutations with the IBM constraints. Then, we obtain:

rn =

{
kn−k · k! n > k

n! n ≤ k
(5.42)

Typically, k is set to 4. In this case, we obtain an asymptotic upper and lower bound of
4n, i. e. rn ∈ Θ(4n). Despite that the number of permutations is exponential, there exists
efficient algorithms to use these constraints during the search (cf. [Tillmann & Ney 00,
Tillmann & Ney 03] for single-word based models).

72

5.6 Efficient Phrase-table Representation

J

uncovered position

covered position

uncovered position for extension

1 j

Figure 5.12: Illustration of the IBM constraints (from [Tillmann & Ney 00]).

For the phrase-based translation approach, we use the same idea. In the single-word based
version, it is permitted to skip up to k − 1 positions, here, it is permitted to skip up to
k − 1 blocks. Thus, we allow up to k − 1 gaps in the coverage. Note that we do not have
to fill these gaps with a single phrase; multiple phrases are permitted. If we set k = 1, we
obtain a search that is monotonic at the phrase level as a special case. For a coverage C,
we check the following condition:∣∣{j > 1 | j ∈ C ∧ j − 1 6∈ C}

∣∣ < k (5.43)

This ensures that the number of gaps is less than k. The integration of the IBM constraints
into the beam search algorithm is rather straightforward. We just have to test that the
coverage C does not violate the IBM constraints, e. g. in line 6 of the search algorithm
in Figure 5.7 This reduces the possible successor states in the search graph and therefore
speeds up the search.

In Table 5.1, the number of permutations are listed that can be generated with different
reordering constaints as a function of the length of the input sequence. A very helpful
resource for the analysis of these reordering constraints was the On-Line Encyclopedia of
Integer Sequencesd.

5.6 Efficient Phrase-table Representation

In phrase-based statistical machine translation, a huge number of source and target phrase
pairs is memorized in the so-called phrase-table. For medium sized tasks and phrase
lengths, these phrase-tables already require several GBs of memory or even do not fit at
all. In Figure 5.13, we show the number of bilingual phrase pairs as a function of the

dhttp://www.research.att.com/∼njas/sequences

73

5 Search

Table 5.1: Number of permutations that can be generated with different reordering con-
straints.

n IBM ITG Baxter
k = 2 3 4 5

1 1 1 1 1 1 1
2 2 2 2 2 2 2
3 3 6 6 6 6 6
4 5 14 24 24 22 22
5 8 31 78 120 90 92
6 13 73 230 504 394 422
7 21 172 675 1 902 1 806 2 074
8 34 400 2 069 6 902 8 558 10 754
9 55 932 6 404 25 231 41 586 58 202
10 89 2 177 19 708 95 401 206 098 326 240
11 144 5 081 60 216 365 116 1 037 718 1 882 960
12 233 11 854 183 988 1 396 948 5 293 446 11 140 560
13 377 27 662 563 172 5 316 192 27 297 738 67 329 992
14 610 64 554 1 725 349 20 135 712 142 078 746 414 499 438
15 987 150 639 5 284 109 76 227 216 745 387 038 2 593 341 586

training corpus size for the Chinese-English NIST task. Here, we limited the length of the
source phrases to five words and the number of translation candidates per source phrase
to 50. We observe that the number of phrase pairs increases steadily with the training
corpus size.

If the source text, which is to be translated, is known in advance, a common trick is to filter
the phrase-table and keep a phrase pair only if the source phrase occurs in the text. This
filtering is time-consuming as we have to go over the whole phrase-table. Furthermore,
we have to repeat this filtering step whenever we want to translate a new source text.

To address these problems, we will use an efficient representation of the phrase-table
with two key properties: on-demand loading and a prefix tree structure for the source
phrases. The prefix tree structure exploits the redundancy among the source phrases.
Using on-demand loading, we will load only the small fraction of the overall phrase-table
into memory that is actually needed. The majority of the phrase-table will remain on
disk.

The on-demand loading is employed on a per sentence basis, i. e. we load only the phrase
pairs that are required for one sentence into memory. Therefore, the memory requirements
are low, e. g. less than 25MB for the Chinese-English NIST task. Another advantage of
the on-demand loading is that we are able to translate new source sentences without
filtering.

A potential problem is that this on-demand loading might be too slow. To overcome
this, we use a binary format which is a memory map of the internal representation used
during decoding. Additionally, we load coherent chunks of the tree structure instead of
individual phrases, i. e. we have only few disk access operations. In our experiments, the

74

5.6 Efficient Phrase-table Representation

100M

10M

1M

100K

10K
10M1M100K10K1K

P
hr

as
e

P
ai

rs

Training Corpus Size [Sentences]

Figure 5.13: Phrase-table size as a function of the training corpus size for the Chinese-
English NIST task.

on-demand loading is not slower than the traditional approach.

In this section, we will describe the proposed representation of the phrase-table. A prefix
tree, also called trie, is an ordered tree data structure used to store an associative array
where the keys are symbol sequences. In the case of phrase-based MT, the keys are
source phrases, i. e. sequences of source words and the associated values are the possible
translations of these source phrases. In a prefix tree, all descendants of any node have a
common prefix, namely the source phrase associated with that node. The root node is
associated with the empty phrase.

The prefix tree data structure is quite common in automatic speech recognition. There,
the lexicon, i. e. the mapping of phoneme sequences to words, is usually organized as a
prefix tree [Ney & Haeb-Umbach+ 92].

We convert the list of source phrases into a prefix tree and, thus, exploit that many
of them share the same prefix. This is illustrated in Figure 5.14 (left). Within each
node of the tree, we store a sorted array of possible successor words along with pointers
to the corresponding successor nodes. Additionally, we store a pointer to the possible
translations.

One property of the tree structure is that we can efficiently access the successor words of
a given prefix. This will be a key point to achieve an efficient phrase matching algorithm
in Section 5.7.2. When looking for a specific successor word, we perform a binary search
in the sorted array. Alternatively, we could use hashing to speed up this lookup. We have
chosen an array representation as this can be read very fast from disk. Additionally, with
the exception of the root node, the branching factor of the tree is small, i. e. the potential
benefit from hashing is limited. At the root node, however, the branching factor is close

75

5 Search

a b a c
a a b b
a b b c
a b c c
b c a
b a c a b
b a a c a c
b a b

a

b

c

a

b

a

b

c

a

c

a

b

c

b

c

a b a c
a a b b
a b b c
a b c c
b c a
b a c a b
b a a c a c
b a b

a

b

c

a

b

a

b

c

a

c

a

b

c

b

c

Figure 5.14: Illustration of the prefix tree. Left: list of source phrases and the corre-
sponding prefix tree. Right: list of matching source phrases for sentence ’c a
a c’ (bold phrases match, phrases in italics are loaded in memory) and the
corresponding partially loaded prefix tree (the dashed part is not in memory).

to the vocabulary size of the source language, which can be large. As we store the words
internally as integers and virtually all words occur as the first word of some phrase, we
can use the integers directly as the position in the array of the root node. Hence, the
search for the successors at the root node is a simple table lookup with direct access, i. e.
in O(1).

If not filtered for a specific test set, the phrase-table becomes huge even for medium-sized
tasks. Therefore, we store the tree structure on disk and load only the required parts
into memory on-demand. This is illustrated in Figure 5.14 (right). Here, we show the
matching phrases for the source sentence ’c a a c’, where the matching phrases are set in
bold and the phrases that are loaded into memory are set in italics. The dashed part of
the tree structure is not loaded into memory. Note that some nodes of the tree are loaded
even if there is no matching phrase in that node. These are required to actually verify
that there is no matching phrase. An example is the ’bc’ node in the lower right part of
the figure. This node is loaded to check if the phrase ’c a a’ occurs in the phrase-table.
The translations, however, are loaded only for matching source phrases.

We made an implementation of this phrase-table representation publicly available in the
Moses toolkit [Koehn & Hoang+ 07]e. In the following section, we will present a phrase
matching algorithm for lattice input which utilizes the prefix-tree structure of the phrase-
table described in this section.

5.7 Phrase Matching

In speech translation, the input to the MT system is not a sentence, but a lattice represent-
ing alternative ASR transcriptions. As pointed out in [Mathias & Byrne 06], one problem
in speech translation is that we have to match the phrases of our phrase-table against
the input lattice. This results in a combinatorial problem as the number of phrases in a
lattice increases exponentially with the phrase length. We will present a phrase matching

ehttp://www.statmt.org/moses

76

5.7 Phrase Matching

j��
��

sG
j,n��

��

sG
j,1��

��

sG
j,Nj��

��

-�
�

�
�

�
���

@
@

@
@

@
@@R

fG
j,1

fG
j,n

fG
j,Nj

.

.

.

.

.

.

.

.

.

.

.

.

k��
��

sT
k,m��

��

sT
k,1��

��

sT
k,Mk��

��

-�
�

�
�

�
���

@
@

@
@

@
@@R

fT
k,1

fT
k,m

fT
k,Mk

.

.

.

.

.

.

.

.

.

.

.

.

Figure 5.15: Illustration for graph G and prefix tree T . Left: graph node j with successor
nodes sG

j,1, ..., s
G
j,n..., s

G
j,Nj

and corresponding edge labels fG
j,1, ..., f

G
j,n, ..., f

G
j,Nj

.

Right: prefix tree node k with successor nodes sT
k,1, ..., s

T
k,m, ..., sT

k,Mk
and cor-

responding edge labels fT
k,1, ..., f

T
k,m, ..., fT

k,Mk
.

algorithm that effectively solves this combinatorial problem exploiting the prefix tree data
structure of the phrase-table. This algorithm enables the use of significantly larger input
lattices in a more efficient way resulting in improved translation quality.

5.7.1 Problem definition

In this section, we will introduce the notation and state the problem of matching source
phrases of an input graph G and the phrase-table, represented as prefix tree T . The input
graph G has nodes 1, ..., j, ..., J . The outgoing edges of a graph node j are numbered with
1, ..., n, ..., Nj, i. e. an edge in the input graph is identified by a pair (j, n). The source
word labeling the nth outgoing edge of graph node j is denoted as fG

j,n and the successor
node of this edge is denoted as sG

j,n ∈ {1, ..., J}. This notation is illustrated in Figure 5.15.

We use a similar notation for the prefix tree T with nodes 1, ..., k, ...,K. The outgoing
edges of a tree node k are numbered with 1, ...,m, ..., Mk, i. e. an edge in the prefix tree is
identified by a pair (k,m). The source word labeling the mth outgoing edge of tree node
k is denoted as fT

k,m and the successor node of this edge is denoted as sT
k,m ∈ {1, ..., K}.

Due to the tree structure, the successor nodes of a tree node k are all distinct:

sT
k,m = sT

k,m′ ⇔ m = m′ (5.44)

Let k0 denote the root node of the prefix tree and let f̃k denote the prefix that leads to
tree node k. Furthermore, we define E(k) as the set of possible translations of the source
phrase f̃k. These are the entries of the phrase-table, i.e.:

E(k) =
{

ẽ
∣∣∣ p(ẽ|f̃k) > 0

}
(5.45)

77

5 Search

We will need similar symbols for the input graph. Therefore, we define F (j′, j) as the set
of source phrases of all paths from graph node j′ to node j, or formally:

F (j′, j) =

{
f̃
∣∣∣ ∃(ji, ni)

I
i=1 : f̃ = fG

j1,n1
, ..., fG

jI ,nI
∧ j1 = j′ ∧

I−1∧
i=1

sG
ji,ni

= ji+1 ∧ sjI ,nI
= j

}
(5.46)

Here, the conditions ensure that the edge sequence (ji, ni)
I
i=1 is a proper path from

node j′ to node j in the input graph and that the corresponding source phrase is
f̃ = fG

j1,n1
, ..., fG

jI ,nI
. This definition can be expressed in a recursive way; the idea is

to extend the phrases of the predecessor nodes by one word:

F (j′, j) =
⋃

(j′′,n):sG
j′′,n=j

{
f̃fG

j′′,n

∣∣∣ f̃ ∈ F (j′, j′′)
}

(5.47)

Here, the set is expressed as a union over all inbound edges (j′′, n) of node j. We concate-
nate each source phrase f̃ that ends at the start node of such an edge, i. e. f̃ ∈ F (j′, j′′),
with the corresponding edge label fG

j′′,n. Additionally, we define E(j′, j) as the set of
possible translations of all paths from graph node j′ to graph node j, or formally:

E(j′, j) =

{
ẽ
∣∣∣ ∃f̃ ∈ F (j′, j) : p(ẽ|f̃) > 0

}
(5.48)

=
⋃

k:f̃k∈F (j′,j)

E(k) (5.49)

=
⋃

(j′′,n):sG
j′′,n=j

⋃
k:f̃k∈F (j′,j′′)
m:fG

j′′,n
=fT

k,m

E(sT
k,m) (5.50)

Here, the definition was first rewritten using Equation 5.45 and then using Equation 5.47.
Again, the set is expressed recursively as a union over the inbound edges. For each inbound
edge (j′′, n), the inner union verifies that there exists a corresponding edge (k,m) in the
prefix tree with the same label, i. e. fG

j′′,n = fT
k,m.

Our goal is to find all non-empty sets of translation options E(j′, j). The naive approach
would be to enumerate all paths in the input graph from node j′ to node j, then lookup the
corresponding source phrase in the phrase-table and add the translations, if there are any,
to the set of translation options E(j′, j). This solution has some obvious weaknesses: the
number of paths between two nodes is typically huge and the majority of the corresponding
source phrases do not occur in the phrase-table.

We omitted the probabilities for notational convenience. The extensions are straightfor-
ward. Note that we store only the target phrases ẽ in the set of possible translations
E(j′, j) and not the source phrases f̃ . This is based on the assumption that the mod-
els which are conditioned on the source phrase f̃ are independent of the context outside
the phrase pair (f̃ , ẽ). This assumption holds for the standard phrase and word transla-
tion models. Thus, we have to keep only the target phrase with the highest probability.
It might be violated by lexicalized distortion models (dependent on the configuration);
in that case we have to store the source phrase along with the target phrase and the
probability, which is again straightforward.

78

5.7 Phrase Matching

Figure 5.16: Algorithm phrase-match for matching source phrases of input graph G and
prefix tree T . Input: graph G, prefix tree T , translation options E(k) for
all tree nodes k; output: translation options E(j′, j) for all graph nodes j′

and j.

0 FOR j′ = 1 TO J DO

1 stack.push(j′, k0)

2 WHILE not stack.empty() DO

3 (j, k) = stack.pop()

4 E(j′, j) = E(j′, j) ∪ E(k)

5 FOR n = 1 TO Nj DO

6 IF (fG
j,n = ε)

7 THEN stack.push(sG
j,n, k)

8 ELSE IF (∃m : fG
j,n = fT

k,m)

9 THEN stack.push(sG
j,n, s

T
k,m)

5.7.2 Algorithm

The algorithm for matching the source phrases of the input graph G and the prefix tree
T is presented in Figure 5.16. Starting from a graph node j′, we explore the part of the
graph which corresponds to known source phrase prefixes and generate the sets E(j′, j)
incrementally based on Equation 5.50. The intermediate states are represented as pairs
(j, k) meaning that there exists a path in the input graph from node j′ to node j which
is labeled with the source phrase f̃k, i. e. the source phrase that leads to node k in the
prefix tree. These intermediate states are stored on a stack. After the initialization in
line 1, the main loop starts. We take one item from the stack and update the translation
options E(j′, j) in line 4. Then, we loop over all outgoing edges of the current graph node
j. For each edge, we first check if the edge is labeled with an ε in line 6. In this special
case, we go to the successor node in the input graph sG

j,n, but remain in the current node
k of the prefix tree. In the regular case, i. e. the graph edge label is a regular word, we
check in line 8 if the current prefix tree node k has an outgoing edge labeled with that
word. If such an edge is found, we put a new state on the stack with the two successor
nodes in the input graph sG

j,n and the prefix tree sT
k,m, respectively.

5.7.3 Computational complexity

In this section, we will analyze the computational complexity of the algorithm. The
computational complexity of lines 5-9 is in O(Nj log Mk), i. e. it depends on the branching
factors of the input graph and the prefix tree. Both are typically small. An exception is the
branching factor of the root node k0 of the prefix tree, which can be rather large, typically
it is the vocabulary size of the source language. But, as described in Section 5.6, we can
access the successor nodes of the root node of the prefix tree in O(1), i. e. in constant
time. So, if we are at the root node of the prefix tree, the computational complexity

79

5 Search

of lines 5-9 is in O(Nj). Using hashing at the interior nodes of the prefix tree would
result in a constant time lookup at these nodes as well. Nevertheless, the sorted array
implementation that we chose has the advantage of faster loading from disk which seems
to be more important in practice.

An alternative interpretation of lines 5-9 is that we have to compute the intersection of
the two sets fG

j and fT
k , with

fG
j =

{
fG

j,n

∣∣ n = 1, ..., Nj

}
(5.51)

fT
k =

{
fT

k,m

∣∣m = 1, ...,Mk

}
. (5.52)

Assuming both sets are sorted, this could be done in linear time, i. e. in O(Nj + Mk). In
our case, only the edges in the prefix tree are sorted. Obviously, we could sort the edges
in the input graph and then apply the linear algorithm, resulting in an overall complexity
of O(Nj log Nj + Mk). As the algorithm visits nodes multiple times, we could do even
better by sorting all edges of the graph during the initialization. Then, we could always
apply the linear time method. On the other hand, it is unclear if this pays off in practice
and an experimental comparison has to be done which we will leave for future work.

The overall complexity of the algorithm depends on how many phrases of the input graph
occur in the phrase-table. In the worst case, i. e. if all phrases occur in the phrase-
table, the described algorithm is not more efficient than the naive algorithm which simply
enumerates all phrases. Nevertheless, this does not happen in practice and we observe an
exponential speed up compared to the naive algorithm, as will be shown in Section 7.8.
We made an implementation of this algorithm for confusion networks publicly available
in the Moses toolkit [Koehn & Hoang+ 07] f.

fhttp://www.statmt.org/moses

80

6 Training

As described in Section 1.2.1, we have to address three problems [Ney 01]:

• the modeling problem, i. e. how to structure the dependencies of source and target
language sentences;

• the search problem, i. e. how to find the best translation candidate among all possible
target language sentences;

• the training problem, i. e. how to estimate the free parameters of the models from
the training data.

In this chapter, the main focus is on the training problem.

We address the problem of training the free parameters of a statistical machine translation
system. We present novel training criteria based on maximum likelihood estimation and
expected loss computation.

6.1 Introduction

We will compare a variety of training criteria for statistical machine translation. In par-
ticular, we are considering criteria for the log-linear parameters or model scaling factors,
i.e. the λM

1 in Equation 1.8. We will introduce new training criteria based on maximum
likelihood estimation and expected loss computation.

In the following, we will discuss the so-called training problem [Ney 01]: how do we train
the free parameters λM

1 of the model? The current state-of-the-art is to use minimum
error rate training (MERT) as described in [Och 03]. The free parameters are tuned to
directly optimize the evaluation criterion on a development set.

Except for the MERT, the training criteria that we will consider are additive at the
sentence-level. Thus, the training problem for a development set with S sentences can be
formalized as:

λ̂M
1 = argmax

λM
1

S∑
s=1

F (λM
1 , (eI

1, f
J
1)s) (6.1)

Here, F (·, ·) denotes the training criterion that we would like to maximize and (eI
1, f

J
1)s

denotes a sentence pair in the development set. The optimization is done using the
Nelder-Mead, or downhill simplex, algorithm [Nelder & Mead 65] from the Numerical
Recipes book [Press & Teukolsky+ 02]. This is a general purpose optimization procedure
with the advantage that it does not require the derivative information.

81

6 Training

In [Och & Ney 02], the log-linear weights λM
1 were tuned to maximize the mutual infor-

mation criterion (MMI). The current state-of-the-art is to optimize these parameters with
respect to the final evaluation criterion; this is the so-called minimum error rate training
[Och 03]. [Shen & Sarkar+ 04] compared different algorithms for tuning the log-linear
weights in a reranking framework and achieved results comparable to the standard min-
imum error rate training. [Tillmann & Zhang 06] describe a perceptron style algorithm
for training millions of features. Here, we focus on the comparison of different training
criteria. An annealed minimum risk approach is presented in [Smith & Eisner 06] which
outperforms both maximum likelihood and minimum error rate training. The parame-
ters are estimated iteratively using an annealing technique that minimizes the risk of an
expected log-BLEU approximation, which is similar to the one presented here.

We will describe the details of the different training criteria in Section 6.4 and 6.5. As the
training criteria are based on the used loss function (or evaluation metric), we will first
discuss evaluation metrics in the following section.

6.2 Evaluation Metrics

The automatic evaluation of machine translation is currently an active research area.
There exists a variety of different metrics, e.g., word error rate, position-independent word
error rate, Bleu score [Papineni & Roukos+ 02], NIST score [Doddington 02], METEOR
[Banerjee & Lavie 05, Lavie & Agarwal 07], GTM [Turian & Shen+ 03]. Each of them
has advantages and shortcomings.

A popular metric for evaluating machine translation quality is the Bleu score. It has
certain shortcomings for comparing different machine translation systems, especially if
comparing conceptually different systems, e.g. phrase-based versus rule-based systems, as
shown in [Callison-Burch & Osborne+ 06]. On the other hand, Callison-Burch concluded
that the Bleu score is reliable for comparing variants of the same machine translation
system. As we are going to compare variants of a phrase-based SMT system and as
Bleu is currently the most popular metric, we have chosen it as our primary evaluation
metric. Nevertheless, most of the methods we will present can be easily adapted to other
automatic evaluation metrics.

In the following, we will briefly review the computation of the Bleu score as some of the
training criteria are motivated by this. The Bleu score is a combination of the geometric
mean of n-gram precisions and a brevity penalty for too short translation hypotheses.
The Bleu score for a translation hypothesis eI

1 and a reference translation êÎ
1 is computed

as:

Bleu(eI
1, ê

Î
1) = BP(I, Î) ·

4∏
n=1

Precn(eI
1, ê

Î
1)

1/4 (6.2)

82

6.3 N -Gram and Sentence Length Posterior Probabilities

with

BP(I, Î) =

{
1 if I ≥ Î

exp (1− I/Î) if I < Î
(6.3)

Precn(eI
1, ê

Î
1) =

∑
wn

1

min{C(wn
1 |eI

1), C(wn
1 |êÎ

1)}∑
wn

1

C(wn
1 |eI

1)
(6.4)

Here, C(wn
1 |eI

1) denotes the number of occurrences, i. e. the count, of an n-gram wn
1 in

a sentence eI
1. The denominators of the n-gram precisions evaluate to the number of

n-grams in the hypothesis, i.e. I − n + 1.

The n-gram counts for the Bleu score computation are usually collected over a whole
document. For our purposes, a sentence-level computation is preferable. A problem with
the sentence-level Bleu score is that the score is zero if not at least one four-gram matches.
As we would like to avoid this problem, we use the smoothed sentence-level Bleu score
as suggested in [Lin & Och 04]. Thus, we increase the nominator and denominator of
Precn(·, ·) by one for n > 1. Note that we will use the sentence-level Bleu score only
during training. The evaluation on the development and test sets will be carried out
using the standard Bleu score, i.e. at the corpus level. As the MERT baseline does not
require the use of the sentence-level Bleu score, we use the standard Bleu score for training
the baseline system.

In the following, we will describe several criteria for training the log-linear parameters
λM

1 of our model. These criteria are based on N -gram and sentence length posterior
probabilities which will be introduced in the next section. For notational convenience,
we assume that there is just one reference translation. Nevertheless, the methods can be
easily adapted to the case of multiple references.

6.3 N-Gram and Sentence Length Posterior Probabilities

6.3.1 Introduction

Word posterior probabilities are a common approach for confidence estimation in auto-
matic speech recognition, e.g., [Wessel 02]. This idea has been adopted to estimate con-
fidences for machine translation, e.g. [Blatz & Fitzgerald+ 03, Ueffing & Macherey+ 03,
Blatz & Fitzgerald+ 04, Ueffing 05].

We will generalize this idea and introduce n-gram posterior probabilities. Additionally,
we will introduce a sentence length model based on posterior probabilities. These are
needed for some of the training criteria. Additionally, they can be used as additional
models in a rescoring/reranking framework.

83

6 Training

6.3.2 N-gram posterior probabilities

The idea is similar to the word posterior probabilities: we sum up the sentence posterior
probabilities for each occurrence of an n-gram. We define the fractional count NλM

1
(wn

1 , fJ
1)

of an n-gram wn
1 for a source sentence fJ

1 as its weighted frequency:

NλM
1

(wn
1 , fJ

1) =
∑
I,eI

1

I−n+1∑
i=1

pλM
1

(eI
1|fJ

1) · δ(ei+n−1
i , wn

1) (6.5)

The sum over the target language sentences is limited to a lattice or an N -best list, i. e.
the N best translation candidates according to the baseline model. In this equation, we
use the Kronecker function δ(·, ·), i.e. the term δ(ei+n−1

i , wn
1) evaluates to one if and only

if the n-gram wn
1 occurs in the target sentence eI

1 starting at position i.

The n-gram posterior distribution is obtained by normalizing the weighted frequency
counts NλM

1
(wn

1 , fJ
1) and smoothing with a uniform distribution over all possible n-grams.

pλM
1

(wn
1 |fJ

1) = α ·
NλM

1
(wn

1 , fJ
1)∑

w′n1
NλM

1
(w′n

1 , f
J
1)

+ (1− α) · 1

V n
e

(6.6)

As before, Ve denotes the vocabulary size of the target language; thus, V n
e is the number

of possible n-grams in the target language. Note that the widely used word posterior
probabilities are obtained as a special case, namely if n is set to one.

To predict the number of occurrences c within a translation hypothesis, we use relative
frequencies smoothed with a Poisson distribution. The mean of the Poisson distribution
µ(wn

1 , fJ
1 , λM

1) is chosen to be the mean of the unsmoothed distribution.

pλM
1

(c|wn
1 , fJ

1) = β ·
NλM

1
(c, wn

1 , fJ
1)

NλM
1

(wn
1 , fJ

1)
+ (1− β) · µ(wn

1 , fJ
1 , λM

1)c · e−c

c!
(6.7)

with

µ(wn
1 , fJ

1 , λM
1) =

∑
c

c ·
NλM

1
(c, wn

1 , fJ
1)

NλM
1

(wn
1 , fJ

1)
(6.8)

Note that in case the mean µ(wn
1 , fJ

1 , λM
1) is zero, we do not need the distribution

pλM
1

(c|wn
1 , fJ

1). The smoothing parameters α and β are both set to 0.9.

6.3.3 Sentence length posterior probability

The common phrase-based translation systems, such as [Och & Tillmann+ 99,
Koehn 04a], do not use an explicit sentence length model. Only the simple word penalty
goes into that direction. It can be adjusted to prefer longer or shorter translations.

Here, we will use the posterior probability of a specific target sentence length I as length
model:

pλM
1

(I|fJ
1) =

∑
eI
1

pλM
1

(eI
1|fJ

1) (6.9)

84

6.3 N -Gram and Sentence Length Posterior Probabilities

Note that the sum is carried out only over target sentences eI
1 with the specific length I.

Again, the candidate target language sentences are limited to a lattice or an N -best list.

6.3.4 Rescoring/reranking

A straightforward application of the posterior probabilities is to use them as additional
features in a rescoring/reranking approach. N -best lists are suitable for easily applying
several rescoring techniques since the hypotheses are already fully generated. In compar-
ison, word graph rescoring techniques need specialized tools which can traverse the graph
accordingly.

The n-gram posterior probabilities can be used similar to an n-gram language model:

hn(fJ
1 , eI

1) =
1

I
log

(
I∏

i=1

p(ei|ei−1
i−n+1, f

J
1)

)
(6.10)

with:

p(ei|ei−1
i−n+1, f

J
1) =

NλM
1

(ei
i−n+1, f

J
1)

NλM
1

(ei−1
i−n+1, f

J
1)

(6.11)

Note that the models do not require smoothing as long as they are applied to the same
N -best list they are trained on.

If the models are used for unseen sentences, smoothing is important to avoid zero prob-
abilities. We use a linear interpolation with weights αn and the smoothed (n − 1)-gram
model as generalized distribution.

pn(ei|ei−1
i−n+1, f

J
1) = αn ·

C(ei
i−n+1, f

J
1)

C(ei−1
i−n+1, f

J
1)

+ (1− αn) · pn−1(ei|ei−1
i−n+2, f

J
1) (6.12)

An alternative usage of the n-gram posterior probabilities in rescoring is to simply ac-
cumulate the logarithm of the posterior probabilities of the n-grams of the translation
candidate:

hn(fJ
1 , eI

1) =
1

I − n + 1

I−n+1∑
i=1

log pλM
1

(ei+n−1
i |fJ

1) (6.13)

Experimentally, it turned out that both variants yield similar results, but the second
one seems to be somewhat more stable. Therefore, we will use Equation 6.13 in the
experiments.

The usage of the sentence length posterior probability for rescoring is even simpler. The
resulting feature is:

hL(fJ
1 , eI

1) = log pλM
1

(I|fJ
1) (6.14)

Again, the model does not require smoothing as long as it is applied to the same N -best
list it is trained on. If it is applied to other sentences, smoothing becomes important. We
propose smoothing the sentence length model with a Poisson distribution.

pβ(I|fJ
1) = β · p(I|fJ

1) + (1− β) · µI exp(−µ)

I!
(6.15)

85

6 Training

We use a linear interpolation with weight β. The mean of the Poisson distribution µ is
chosen to be the mean of the unsmoothed length model:

µ =
∑

I

I · pλM
1

(I|fJ
1) (6.16)

6.4 Maximum Likelihood

6.4.1 Sentence-level computation

A popular approach for training parameters is maximum likelihood (ML) estimation.
Here, the goal is to maximize the joint likelihood of the parameters and the training data.
For log-linear models, this results in a nice optimization criterion which is convex and has
a single optimum. It is equivalent to the maximum mutual information (MMI) criterion.
We obtain the following training criterion:

FML−S(λM
1 , (eI

1, f
J
1)) = log pλM

1
(eI

1|fJ
1) (6.17)

A problem that we often face in practice is that the correct translation eI
1 might not be

among the candidates that our MT system produces. Therefore, [Och & Ney 02] defined
the translation candidate with the minimum word-error rate as pseudo reference trans-
lation. This has some bias towards minimizing the word-error rate. Here, we will use
the translation candidate with the maximum Bleu score as pseudo reference to bias the
system towards the Bleu score. However, as pointed out in [Och 03], there is no reason
to believe that the resulting parameters are optimal with respect to translation quality
measured with the Bleu score.

The goal of this sentence-level criterion is to discriminate the single correct translation
against all the other ”incorrect” translations. This is problematic as, even for human
experts, it is very hard to define a single best translation of a sentence. Furthermore,
the alternative target language sentences are not all equally bad translations. Some of
them might be very close to the correct translation or even equivalent whereas other
sentences may have a completely different meaning. The sentence-level ML criterion does
not distinguish these cases and is therefore a rather harsh training criterion. To overcome
these limitation, we propose an n-gram level computation of the log-likelihood, which will
be described in the next section.

6.4.2 N-gram level computation

As an alternative to the sentence-level ML estimation, we performed experiments with
an n-gram level ML estimation. Here, we limit the order of the n-grams and assume con-
ditional independence among the n-gram probabilities. We define the following training
criterion for a target language sentence eI

1 given a source language sentence fJ
1 :

FML−N(λM
1 , (eI

1, f
J
1)) =

N∑
n=1

I−n+1∑
i=1

log pλM
1

(ei+n−1
i |fJ

1) (6.18)

86

6.5 Expected Bleu Score

Here, we use the n-gram posterior probability pλM
1

(ei+n−1
i |fJ

1) as defined in Section 6.3.2.

An advantage of the n-gram level computation is that we do not have to define pseudo-
references as for the sentence-level ML estimation. We can easily compute this criterion
for the human reference translation. Furthermore, this criterion has the desirable property
that it takes partial correctness into account, i. e. it is not as harsh as the sentence-level
criterion.

6.5 Expected Bleu Score

According to statistical decision theory, one should maximize the expected gain (or equiv-
alently minimize the expected loss). For machine translation, this means that we should
optimize the expected Bleu score, or any other preferred evaluation metric.

6.5.1 Sentence-level computation

The expected Bleu score for a given source sentence fJ
1 and a reference translation êÎ

1 is
defined as:

E[Bleu|êÎ
1, f

J
1] =

∑
eI
1

Pr(eI
1|fJ

1) · Bleu(eI
1, ê

Î
1) (6.19)

Here, Pr(eI
1|fJ

1) denotes the true probability distribution that eI
1 is a correct translation of

the given source sentence fJ
1 . As this probability distribution is unknown, we approximate

it using the log-linear translation model pλM
1

(eI
1|fJ

1) from Equation 1.8. Furthermore, the

computation of the expected Bleu score involves a sum over all possible translations eI
1.

This sum is approximated using an N -best list, i. e. the N best translation hypotheses
of the MT system. Thus, the training criterion for the sentence-level expected Bleu
computation is:

FEB−S(λM
1 , (êÎ

1, f
J
1)) =

∑
eI
1

pλM
1

(eI
1|fJ

1) · Bleu(eI
1, ê

Î
1) (6.20)

An advantage of the sentence-level computation is that it is straightforward to plug in
alternative evaluation metrics instead of the Bleu score. Note that the minimum error rate
training [Och 03] uses only the target sentence hypothesis with the maximum posterior
probability whereas here, the whole probability distribution is taken into account.

6.5.2 N-gram level computation

In this section, we describe a more fine grained computation of the expected Bleu score by
exploiting its particular structure. Hence, this derivation is specific for the Bleu score but
should be easily adaptable to other n-gram based metrics. We can rewrite the expected
Bleu score as:

87

6 Training

E[Bleu|êÎ
1, f

J
1] = E[BP|Î , fJ

1] ·
4∏

n=1

E[Precn|êÎ
1, f

J
1]1/4 (6.21)

We assumed conditional independence between the brevity penalty BP and the n-gram
precisions Precn. Note that although these independence assumptions do not hold, the
resulting parameters might work well for translation. In fact, we will show that this
criterion is among the best performing ones in Section 7.6. This type of independence
assumption is typical within the naive Bayes classifier framework [Wasserman 05]. The
resulting training criterion that we will use in Equation 6.1 is then:

FEB−N(λM
1 , (êÎ

1, f
J
1)) = EλM

1
[BP|Î , fJ

1] ·
4∏

n=1

EλM
1

[Precn|êÎ
1, f

J
1]1/4 (6.22)

We still have to define the estimators for the expected brevity penalty EλM
1

[BP|Î , fJ
1] as

well as the expected n-gram precision EλM
1

[Precn|êÎ
1, f

J
1]:

EλM
1

[BP|Î , fJ
1] =

∑
I

BP(I, Î) · pλM
1

(I|fJ
1) (6.23)

EλM
1

[Precn|êÎ
1, f

J
1] =

∑
wn

1

pλM
1

(wn
1 |fJ

1)
∑
c

min{c, C(wn
1 |êÎ

1)} · pλM
1

(c|wn
1 , fJ

1)∑
wn

1

pλM
1

(wn
1 |fJ

1)
∑
c

c · pλM
1

(c|wn
1 , fJ

1)
(6.24)

Here, we use the sentence length posterior probability pλM
1

(I|fJ
1) as defined in Section 6.3.3

and the n-gram posterior probability pλM
1

(wn
1 |fJ

1) as described in Section 6.3.2. Addition-
ally, we predict the number of occurrences c of an n-gram. This information is necessary
for the so-called clipping in the Bleu score computation, i.e. the min operator in the nom-
inator of formulae Equation 6.4 and Equation 6.24. The denominator of Equation 6.24 is
the expected number of n-grams in the target sentence, whereas the nominator denotes
the expected number of correct n-grams.

88

7 Results

7.1 Evaluation Criteria

Recently, research has focused on MT evaluation metrics which resulted in a variety
of different metrics. Nevertheless, so far, a single generally accepted criterion for the
evaluation of machine translation does not exist. Therefore, we use a variety of different
criteria.

• Error rates:

– WER (word error rate):
The WER is computed as the minimum number of substitution, insertion and
deletion operations that have to be performed to convert the generated sen-
tence into the reference sentence. This performance criterion is widely used in
automatic speech recognition.

– PER (position-independent word error rate) [Tillmann & Vogel+ 97]:
A shortcoming of the WER is that it requires a perfect word order. The word
order of an acceptable sentence can be different from that of the target sentence,
so that the WER measure alone could be misleading. The PER compares the
words in the two sentences ignoring the word order.

– TER (translation edit rate) [Snover & Dorr+ 06]:
The TER is an extension of the WER. In addition to the standard edit op-
erations substitutions, insertions and deletions a new operation is introduced:
shifts of whole phrases are permitted.

• Accuracy measures:

– Bleu score [Papineni & Roukos+ 02]:
This score measures the precision of unigrams, bigrams, trigrams and fourgrams
with respect to a reference translation with a penalty for too short sentences.

– NIST score [Doddington 02]:
This score is similar to Bleu. It is a weighted n-gram precision in combination
with a penalty for too short sentences.

If available, we use multiple reference to compute these criteria. In our experiments, we
use the Bleu score as primary criterion. It has been shown that the Bleu score has a high
correlation with human judgement. The Bleu score is also use in many MT evaluations

89

7 Results

Table 7.1: Corpus statistics of the BTEC task (OOV: out-of-vocabulary tokens).

Arabic Chinese Japanese English
Train Sentence pairs 20 000

Running words 180 075 176 199 198 453 189 927
Vocabulary size 15 371 8 687 9 277 6 870

Singletons 8 319 4 006 4 431 2 888

C-Star’03 Sentences 506
Running Words 3 552 3 630 4 130 3 823

OOV 133 114 61 65

as official criterion. The Bleu and NIST scores are computed using the mteval-v11b.pla

tool. Note that there is a difference in the way the brevity penalty is computed in
the mteval-v11b.pl compared to the original implementation from IBM. In the IBM
implementation, the reference length which is closest to the hypothesis length is chosen,
whereas in the mteval-v11b.pl tool always the shortest reference length is chosen. If not
mentioned otherwise, we will report all error measures case-insensitive.

Recently, the Bleu score has been critized, e. g. in [Callison-Burch & Osborne+ 06], for
favoring statistical systems over non-statistical system (or maybe better phrase-based
systems over non-phrasebased system). On the other hand, they have also shown that
the Bleu score is appropriate for comparing variants of the same system. As we are going
to compare variants of a phrase-based SMT system, the Bleu score is well suited for our
purposes.

We also conducted statistical significance tests and report statistical confidence intervals.
These were computed using bootstrap resampling [Koehn 04b, Zhang & Vogel 05]. The
tool for computing the confidence intervals was kindly provided by the National Research
Council Canada.

7.2 Task Description and Corpus Statistics

7.2.1 BTEC

The Basic Travel Expression Corpus (BTEC) [Takezawa & Sumita+ 02] is a multilingual
speech corpus which contains tourism-related sentences similar to those that are found in
phrase books. We use the Arabic-English, the Chinese-English and the Japanese-English
data. The corpus statistics are shown in Table 7.1. This corpus was made available to
the IWSLT 2005 evaluation participants.

As the BTEC is a rather clean corpus, the preprocessing consisted mainly of tokenization,
i.e., separating punctuation marks from words. Additionally, we replaced contractions
such as it’s or I’m in the English corpus and we removed the case information. For

ahttp://www.nist.gov/speech/tests/mt/resources/scoring.htm

90

7.2 Task Description and Corpus Statistics

Arabic, we removed the diacritics and we split common prefixes: Al, w, f, b, l. There was
no special preprocessing for the Chinese and the Japanese training corpora.

7.2.2 NIST: Chinese-English

Additional experiments were carried out on the large data track of the Chinese-English
NIST task. The corpus statistics of the bilingual training corpus are shown in Table 7.2.
The language model was trained on the English part of the bilingual training corpus
and additional monolingual English data from the GigaWord corpus. We use modified
Kneser-Ney smoothing as implemented in the SRILM toolkit [Stolcke 02]. We use the
default setting for discarding low-frequency n-grams, which means that singletons are
discarded for order three and higher. Each evaluation set consists of 100 news stories
from different news agencies. The NIST 2004 evaluation set additionally contains 50
editorials and 50 speeches. For the four English reference translations of the evaluation
sets, the accumulated statistics are presented. As larger test sets yield more reliable
results, we will also report results on the combined NIST 2003-2005 evaluation sets. For
these experiments, we concatenated the three sets and compute the error measures on the
resulting larger corpus. We also report the number of out-of-vocabulary (OOV) words for
each evaluation set. Note that the OOVs are counted after word segmentation; it may
happen that, for instance, an unknown word is incorrectly segmented into two known
words. This explains the very small number of OOVs. A human inspection showed that
most of them are English abbreviations.

The data is preprocessed in the following way. We word segment the Chinese corpus using
the LDC word segmentation tool. The English corpus is tokenized, i. e. we separate words
and punctuation marks, and converted to lowercase. Then, we apply text normalization,
e. g. of abbreviations, contractions. We detect numbers and dates and replace them with
a special number or date token, respectively. This is done for the Chinese and the English
corpus. Long sentence pairs pose a problem for the GIZA++ training and are therefore split
into shorter segments using the method described in [Xu & Zens+ 05, Xu & Zens+ 06].
The original eight million sentence pairs are split into about 20 million segments.

The LDC word segmenter uses a word list with about 44K entries. Therefore, the Chinese
vocabulary size of 251K maybe somewhat surprising. In Table 7.3, we show an analysis
of the Chinese vocabulary. It turns out that many entries in the Chinese vocabulary are
non-Chinese words or numbers. Nevertheless, these account only for a small fractions
of the Chinese corpus. About 96.9% of the Chinese corpus are Chinese words (82.0%),
punctuation marks (13.5%) or number/date categories (2.4%). For this analysis, we used
the following simplifying definitions. Chinese words are defined as entries that consist of
Chinese characters. Punctuation marks are all entries consisting of a single punctuation
mark, e. g. ?!,();:. Non-Chinese words are all entries that start with a letter. Categories
are the two labels for number and date expressions. Numbers are all entries that start
with a digit, but are not recognized as a number during the preprocessing.

We generate word alignments using GIZA++ in both directions and combine the two
alignments using a refined heuristic. From this word-aligned bilingual corpus, we extract
the phrase pairs using the method described in Section 4.2. To increase the likelihood that

91

7 Results

Table 7.2: Corpus statistics of the Chinese-English NIST task (OOV: out-of-vocabulary
tokens).

Chinese English
Train Sentence pairs 8M

Segments after splitting 20M
Running words 249M 269M
Vocabulary size 251K 431K
Singletons 110K 161K

Eval 2002 Sentences 878 3 512
Running Words 25K 105K
OOV 3

2003 Sentences 919 3 676
Running Words 26K 122K
OOV 13

2004 Sentences 1 788 7 152
Running Words 52K 245K
OOV 17

2005 Sentences 1 082 4 328
Running Words 33K 148K
OOV 7

Table 7.3: Analysis of the Chinese vocabulary for the NIST task.

Types Tokens
absolute relative [%] absolute relative [%]

Chinese words 48K 19.1 204.1M 82.0
Punctuation marks 26 <0.1 33.7M 13.5
Non-Chinese words 127K 50.6 5.9M 2.4
Categories 2 <0.1 3.4M 1.4
Numbers 76K 30.3 1.7M 0.7
Other <1K 0.3 0.1M <0.1

the number and date categories are aligned to each other, we add an artificial sentence
pair per category consisting only of the category label and assign a high weight to this
sentence pair. Due to alignment errors, it may still happen that an extracted phrase pair
is inconsistent w.r.t the categories, e. g. the source contains a number category, but the
target phrase does not. We remove those phrase pairs.

As the MT system is trained on lower case data, we have to restore the case information
after translation. This is done using the SRI disambig tool and a fourgram language
model (trained with case information of course).

Language Model. As mentioned before, the language model is trained on additional
monolingual data from GigaWord Second Edition (LDC2005T12). As the GigaWord

92

7.2 Task Description and Corpus Statistics

Table 7.4: Language model perplexities, out-of-vocabulary words (OOV) and memory us-
age in MegaByte (MB) for different LM orders for the NIST task.

NIST test set
Order 2002 2003 2004 2005 Memory [MB]

3 94.8 97.5 90.1 101.8 594
4 82.8 86.3 79.0 88.5 2 191
5 80.5 83.8 76.9 86.3 4 898
6 79.5 83.5 76.6 86.1 8 044

OOV 1284 (1.2%) 1 534 (1.4%) 1 527 (0.7%) 1 470 (1.1%)

Second Edition data overlaps with the periods from which the NIST evaluation data was
chosen, we excluded all data from those months. Furthermore, we found only the Xinhua
and Agence-France Press parts of GigaWord useful. We apply the same preprocessing
as for the English part of the bilingual training data, including the categorization of
numbers and dates. The overall language model training data consists of about 29.5
million sentences and of about 653 million words.

In Table 7.4, we show the perplexities of different n-gram orders for the references of
the NIST evaluation sets 2002-2005. Additionally, we show the memory usage of the
language models. For this purpose, we filter the n-grams of the language model using the
vocabulary of the MT system. This way, we load only n-grams that may be used during
translation and reduce the memory consumption.

We observe that, compared to the fourgram, the fivegram and sixgram LM yield only
small reductions of the perplexity, but increase the memory consumption considerably.
Therefore, most of our experiments will be carried out using the fourgram LM.

Standard System. The majority of translation experiments was carried out on the
NIST task. Therefore, we now describe the system that is used as starting point in those
experiments.

• We use the following models:

– the phrase-based model in both directions p(f̃ |ẽ) and p(ẽ|f̃), cf. Section 4.3.1

– the noisy-or lexicon model in the direction p(e|f̃), cf. Section 4.3.4

– the word and phrase penalty, cf. Section 4.3.6

– the distortion penalty model, cf. Section 4.4.1

– the fourgram language model, cf. Section 4.4.2

– the phrase orientation model, cf. Section 4.4.3

• Search: we use a distortion limit of 10, in addition we use the phrase-level IBM
constraints with window 1. We will show later that rather small beam sizes are
sufficient. Nevertheless, to be on the save side, we use rather conservative pruning
and limit the beam to 16 lexical hypotheses per coverage hypothesis and 4096 total

93

7 Results

Table 7.5: Corpus statistics of the Chinese-English TC-Star task (OOV: out-of-vocabulary
tokens).

Chinese English
Train Sentence pairs 7M

Running words 197M 238M
Vocabulary size 224K 389K
Singletons 99K 165K

Dev Sentences 1 019 2 038
Running words 26K 51K
OOV 3

Eval 2006 Sentences 1 232 2 464
Running words 30K 62K
OOV 0

2007 Sentences 917 1 834
Running words 21K 45K
OOV 1

hypotheses per source word, i. e. we use lexical pruning per coverage with a histogram
size of NL = 16 and lexical pruning per cardinality with a histogram size of Nc =
4096. We use the 50 most promising target phrases per source phrase, i. e. we use
observation histogram pruning with size No = 50. No other pruning is applied in
the standard system. A rest score estimate is used for the translation models, the
language model and the distortion model. This estimate is computed per sequence
of uncovered positions (cf. Equation 5.21).

7.2.3 TC-Star: Chinese-English

We perform translation experiments on the Chinese-English TC-Star task. This is a
broadcast news speech translation task used within the European Union project TC-Starb.
The bilingual training data consists of virtually all publicly available LDC Chinese-English
corpora. The sixgram language model was trained on the English part of the bilingual
training data and additional monolingual English parts from the GigaWord corpus.

Annual public evaluations were carried out for this task within the TC-Star project. We
will report results on manual transcriptions, i. e. the so-called verbatim condition, of the
official evaluation test sets of the years 2006 and 2007. There are two reference translations
available for the development and test sets. The corpus statistics are shown in Table 7.5.

bhttp://www.tc-star.org

94

7.3 Phrase-table Representation

Table 7.6: Corpus statistics of the Spanish-English EPPS task.

Train Spanish English
Sentence pairs 1.2M
Running words 31M 30M
Vocabulary size 140K 94K

Test confusion networks Full Pruned
Sentences 1 071
Avg. length 23.6
Avg. / max. depth 2.7 / 136 1.3 / 11
Avg. number of paths 1075 264K

7.2.4 TC-Star: Spanish-English

The experiments for speech translation were conducted on the European Parliament Ple-
nary Sessions (EPPS) task. This is a Spanish-English speech-to-speech translation task
collected within the TC-Star project. The training corpus statistics are presented in
Table 7.6. The phrase-tables for this task were kindly provided by FBK-IRST.

We evaluate the phrase-match algorithm described in Section 5.7 in the con-
text of confusion network (CN) decoding [Bertoldi 05, Bertoldi & Federico 05,
Shen & Zens+ 06, Bertoldi & Zens+ 07], which is one approach to speech translation.
CNs [Mangu & Brill+ 00] are interesting for MT because the reordering can be done
similar to text input. For more details on CN decoding, please refer to [Shen & Zens+ 06,
Bertoldi & Zens+ 07]. Note that the phrase-match algorithm is not limited to CNs, but
can work on arbitrary word graphs.

Statistics of the CNs are also presented in Table 7.6. We distinguish between the full CNs
and pruned CNs. The pruning parameters were chosen such that the resulting CNs are
similar in size to the largest ones in [Bertoldi & Federico 05]. The average depth of the
full CNs, i. e. the average number of alternatives per position, is about 2.7 words whereas
the maximum is as high as 136 alternatives.

7.3 Phrase-table Representation

In this section, we present an empirical analysis of the described data structure for the
large data track of the Chinese-English NIST task. In Table 7.7, we present the trans-
lation quality as a function of the maximum source phrase length. We observe a large
improvement when going beyond length 1, but this flattens out very fast. Using phrases
of lengths larger than 4 or 5 does not result in significant improvements. Even a length
limit of 3, as proposed by [Koehn & Och+ 03], would result in good translation quality.
In the following experiments on this task, we will use a limit of 5 for the source phrase
length.

In Table 7.8, we present statistics about the extracted phrase pairs for the Chinese–English

95

7 Results

Table 7.7: Effect of the maximum source phrase length on the translation performance
for the Chinese-English NIST task (NIST 2002 test set, 878 sentences).

max. source phrase length BLEU[%] TER[%] NIST WER[%] PER[%]
1 29.7 64.1 8.60 73.1 47.8
2 37.4 56.2 9.89 62.3 40.2
3 38.4 55.1 9.86 60.4 39.8
4 38.7 54.9 9.85 60.1 39.6
5 38.7 54.8 9.83 60.0 39.6
∞ 38.6 55.0 9.83 60.2 39.9

Table 7.8: Phrase-table statistics for the Chinese-English NIST task. The number of
target phrases per source phrase is limited to 50.

src number of distinct avg. tgt
len src phrases src-tgt pairs candidates

total singletons total singletons
1 251 076 61 461 (24%) 3 033 385 757 953 (25%) 12.1
2 5 822 431 2 487 004 (43%) 33 125 407 10 438 214 (32%) 5.7
3 22 900 515 13 537 198 (59%) 65 418 364 25 210 538 (39%) 2.9
4 33 769 124 23 954 096 (71%) 67 645 416 34 721 727 (51%) 2.0
5 33 596 403 26 440 833 (79%) 57 472 848 36 784 830 (64%) 1.7

total 96 339 549 66 480 592 (69%) 226 695 420 107 913 262 (48%) 2.4

NIST task as a function of the source phrase length, in this case for length 1-5. The phrases
are not limited to a specific test set. We show the number of distinct source phrases, the
number of distinct source-target phrase pairs and the average number of target phrases
(or translation candidates) per source phrase. We also show the number and percentage of
singletons for each phrase length. We have limited the number of translation candidates
per source phrase to 50 (observation histogram pruning). Thus, for each source phrase,
we store only the 50 most promising target phrases. This explains why the number of
singletons for the source-target phrase pairs is rather low. We store a total of about 96
million distinct source phrases and more than 226 million distinct source-target phrase
pairs in the described data structure. Without limiting the translation candidates to the
top 50, the total number of phrase pairs would be 519 million. If loaded completely, this
phrase-table would require large amounts of memory. As we use a binary format that
resembles the data structures in memory, we can use the file sizes as an estimate. In
this case, the required memory would be about 15GB. Although this is possible with
nowadays computers, it would be waste of memory as most phrase-pairs are not required
to translate a specific text. Additionally, the loading time would be quite long. On the
other hand, using on-demand loading, we are able to utilize all these phrase pairs with
minimal memory usage and virtually no initialization time.

96

7.4 Effect of different Models

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 26

 0 20 40 60 80 100

M
em

or
y

us
ag

e
[M

eg
aB

yt
e]

Percentage of test set

Figure 7.1: Phrase-table memory usage per sentence (sorted) for the Chinese-English
NIST task (2002-2005 test sets, 4667 sentences).

In Figure 7.1, we show the memory usage of the described phrase-table data structure per
sentence for the four NIST test set 2002-2005. We translated each sentence and measured
the memory consumption of the phrase-table. The sentences were sorted according to
the memory usage. The maximum amount of memory for the phrase-table is 24MB.
Compared to the 15GB for storing the whole phrase-table, this is a reduction of about
three orders of a magnitude. Storing all phrase pairs for the 2002 NIST test set in memory
requires about 1.7GB of memory, i. e. using the described data structures, we not only
avoid the limitation to a specific test set, but we also reduce the memory requirements
by about two orders of a magnitude.

Another important aspect that should be considered is translation speed. In our experi-
ments, the translation time using the described data structure is not significantly slower
than the traditional approach. We attribute this to the fact that we use a binary format
that is a memory map of the data structure used internally and that we load the data
in rather large, coherent chunks. Additionally, there is virtually no initialization time for
the phrase-table which decreases the overhead of parallelization and therefore speeds up
the development cycle.

7.4 Effect of different Models

To investigate the effect of different phrase models, we carried out experiments on the
Chinese-English NIST task; the corpus statistics are in Table 7.2. The NIST 2002 set was
used to tune the model scaling factors. The NIST evaluation sets of the years 2003-2005
are used as blind test set. The Bleu scores are reported in Table 7.9; we also report the
Bleu score for the combination of all three test set (’all’). The 95% confidence interval

97

7 Results

Table 7.9: Effect of different models on the translation quality (BLEUr4n4[%]) for the
Chinese-English NIST task.

Dev. Test
Search Models 2002 2003 2004 2005 all

monotonic 4-gram LM + phrase model p(f̃ |ẽ) 31.9 30.6 29.1 29.5 29.6
+ word penalty 32.0 30.7 31.3 30.3 30.8

+ phrase model p(ẽ|f̃) 33.4 32.6 31.3 31.1 31.5
+ phrase penalty 34.0 33.1 31.7 30.9 31.8

+ noisy-or word lexicon p(e|f̃) 35.4 34.4 34.1 33.3 34.0
non- + distortion penalty 37.4 36.1 36.9 35.1 36.3

monotonic + phrase orientation 38.7 37.6 38.0 36.2 37.6
+ 6-gram instead of 4-gram 38.8 38.1 38.9 36.8 38.1

lattice + n-gram/length posteriors 40.6 39.8 39.9 37.8 39.5

Table 7.10: Effect of different models on the translation quality for the Chinese-English
NIST task (’all’ test set, 3789 sentences). The results are in percent except
for the NIST score.

Search Models BLEU TER NIST WER PER

monotonic 4-gram LM + phrase model p(f̃ |ẽ) 29.6 61.0 8.79 64.1 44.2
+ word penalty 30.8 61.7 9.22 66.1 44.4

+ phrase model p(ẽ|f̃) 31.5 59.7 9.07 63.2 43.1
+ phrase penalty 31.8 59.0 9.07 62.6 42.6

+ noisy-or word lexicon p(e|f̃) 34.0 57.7 9.64 61.9 41.0
non- + distortion penalty 36.3 57.1 10.04 62.0 39.8

monotonic + phrase orientation 37.6 56.0 10.12 60.5 39.8
+ 6-gram instead of 4-gram 38.1 55.8 10.26 60.3 39.7

lattice + n-gram/length posteriors 39.5 54.9 10.36 59.4 39.2

for the development set is 1.08% Bleu, whereas for the test set (’all’) the 95% confidence
interval is 0.54% Bleu. The difference in the size of the confidence intervals is due to the
different sizes of the two sets. In Table 7.10, we reported additional error measures for
the combined test set (’all’).

We started with a simple system using just a fourgram language model and the phrase
model p(f̃ |ẽ) and then added models one by one. To reduce the computational require-
ments, the first set of experiments were carried out using monotonic decoding and a
fourgram language model. As we are comparing only phrase models that mainly affect
the lexical choice, this should not affect the conclusions. The effect of non-monotonic
decoding and higher order language models is then shown in the lower part of Table 7.9
and Table 7.10.

98

7.4 Effect of different Models

Table 7.11: Effect of different lexicon models on the translation quality for the Chinese-
English NIST task (’all’ test set, 3789 sentences). The results are in percent
except for the NIST score.

Model BLEU TER NIST WER PER
IBM-1 p(f |ẽ) 33.1 58.4 9.31 62.2 42.0

p(e|f̃) 33.4 57.5 9.49 61.2 41.0
both 32.9 57.9 9.34 61.6 41.5

Noisy-or p(f |ẽ) 33.2 58.0 9.48 62.0 41.4

p(e|f̃) 34.0 57.7 9.64 61.9 41.0
both 33.9 57.3 9.61 61.4 40.7

Both, the phrase translation model p(ẽ|f̃) and the lexicon model p(e|f̃) result in an
improvement of 1.4 Bleu points on the NIST 2002 set. We found that using the noisy-
or word lexicon p(e|f̃) performed best among the different word-based lexicon models
described in Section 4.3. Using an additional lexicon model, e. g. p(f |ẽ), did not result
in further significant improvements. It is preferable to have fewer models, as there is less
chance of overfitting; therefore, we do not use a lexicon for the p(f |ẽ) direction. The
translation results for these alternative lexicon models on the ’all’ test set are shown in
Table 7.11. [Foster & Kuhn+ 06] also found that the noisy-or lexicon model, which they
call Zens-Ney smoothing, outperforms the IBM-style word lexicon variant.

The effect of different reordering models is shown in the lower part of Table 7.9 and
Table 7.10. Using non-monotonic decoding with the distortion penalty model, we obtain
a Bleu score of 36.3% on the ’all’ test set, which is an improvement of about 2.3 Bleu
points over the monotonic decoding. Adding the orientation model results in an additional
improvement of 1.3 Bleu points on the ’all’ test set. Replacing the fourgram language
model with a sixgram, we obtain a Bleu score of 38.1%. Adding the n-gram and sentence
length posterior probabilities, we observe an improvement of 1.4 Bleu points on the ’all’
test set from 38.1% Bleu to 39.5% Bleu. Here, we used the n-gram posterior probabilities
of unigram, bigram, trigrams and fourgrams, i. e. for n = 1, 2, 3, 4. The n-gram and
sentence length posterior probabilities were computed on lattices and used during the
N -best list generation to rank the candidates.

To ensure that the lattices and the N -best lists contain good translation candidates, we
will present oracle Bleu scores for the lattices and the N -best lists. Thus, we select the
translation candidate which results in the best Bleu score from the lattice or N -best list,
respectively. Note that in these experiments we make use of the reference translations
to select the best hypotheses. Thus, it is not possible to apply this to unseen test data.
The purpose of these experiments is to ensure that the lattices and N -best lists contain
translation candidates that are significantly better than the single-best hypotheses. This
is important if the lattices and N -best lists are used in a rescoring/reranking framework
as the oracle Bleu score is the theoretical upper bound that can be achieved. As pointed
out in [Och & Gildea+ 04], the oracle Bleu score is a very optimistic upper bound.

99

7 Results

Figure 7.2: Effect of the lattice density and N -best list size on the oracle Bleu score for
the Chinese-English NIST task (NIST 2002 test set, 878 sentences).

In Figure 7.2, we show the effect of the lattice density and the N -best list size on the
oracle Bleu score on the Chinese-English NIST task. The lattice density is computed as
the number of edges in the lattice divided by the number of source words in the input
text. As the edges are labeled with phrases, the lattice density can be less than 1. The
oracle Bleu score grows logarithmic with the lattice density and reaches about 70% Bleu.
Also for the N -best lists, the oracle Bleu score grow logarithmic with the size, or linear
in log N . For the 16K-best list an oracle Bleu score of about 60% is reached.

In all these experiments, the average phrase length of the phrases that are used to generate
the best translation hypotheses ranges between 1.9 and 2.1 words per phrase, both for
the source phrases and for the target phrases. The model scaling factors that were used
in these experiments are reported in Table 7.12. We normalized them using the L1 norm,
i. e. the absolute values sum up to one. Each line corresponds to one setting.

In Table 7.13, we show some translation examples comparing monotonic and non-
monotonic search. In case of monotonic search, the word order is often incorrect. In
Table 7.14, we present some translation examples and compare the results using a tri-
gram LM and a sixgram LM. Some translation examples showing the effect of the n-gram
and sentence length posteriors are in Table 7.15.

100

7.4 Effect of different Models

Table 7.12: Model scaling factors for the Chinese-English NIST task. Each line represents
one setting. The model scaling factors are normalized such that the absolute
values sum up to one (L1 norm).

LM p(f̃ |ẽ) WP p(ẽ|f̃) PP p(e|f̃) Dist Orient
0.55 0.45 – – – – – –
0.46 0.33 -0.21 – – – – –
0.30 0.16 -0.28 0.25 – – – –
0.18 0.08 -0.18 0.19 -0.38 – – –
0.22 0.13 -0.43 0.07 -0.07 0.08 – –
0.21 0.13 -0.41 0.06 -0.06 0.08 0.05 –
0.13 0.08 -0.26 0.04 -0.04 0.04 0.02 0.38

101

7 Results

Table 7.13: Translation examples showing the effect of the monotonic vs. non-monotonic
search on the Chinese-English NIST task.

Reference The Israelis prime minister’s office comdemned the shooting incident.
monotonic Israeli prime minister’s office on the shooting incident condemned.
non-monotonic The Israeli prime minister’s office condemned the shooting incident.

Reference When he attends a meeting in Madrid on the 10th of this month, he
said, he will use the opportunity to meet with senior officials from the
United States, the EU and Russia to discuss the grave situation in the
Middle East.

monotonic He said that on 10th, he will use in Madrid in the presence of the US,
EU and Russian leaders meet to discuss the Middle East is grim
situation.

non-monotonic He said that at the meeting in Madrid on 10th, he will use the
opportunity to meet with senior officials of the United States, the
European Union and Russia to discuss the grave situation in the
Middle East region.

Reference The explosion took place near the ”green line” that separates Israel
and the West Bank.

monotonic The explosion occurred near the separation of Israel and the West
Bank’s ”green line” areas.

non-monotonic The explosion occurred near the ”green line” separating Israel and
the West Bank areas.

Reference He said the refugees’ re-integration into society is one of the top
priorities on the interim government’s agenda.

monotonic He said that the reintegration of refugees in the interim government’s
priority task.

non-monotonic He said that the reintegration of refugees is one of the major tasks of
the interim government.

102

7.4 Effect of different Models

Table 7.14: Translation examples showing the effect of the LM order on the Chinese-
English NIST task (2002 test set).

Reference Most U.S. allies have openly opposed any attack on Iraq.
3-gram The United States’ European allies are mostly open opposition to

attack Iraq.
6-gram Most European allies of the United States openly opposed to attack

Iraq.

Reference Annan will discuss middle east situation with U.S., Russia and
European Union

3-gram And the United States, Russia and the EU held talks with Annan
will discuss the Mideast situation

6-gram Annan will hold talks with the United States, Russia and the
European Union to discuss Mideast situation

Reference This talk may be the first step Israel has made in withdrawing its
troops from the Palestinian controlled territories.

3-gram The talks could be an Israeli withdrawal from Palestinian-controlled
areas in the first step.

6-gram The talks could be the first step towards the Israeli troop withdrawal
from Palestinian-controlled areas.

Table 7.15: Translation examples showing the effect of the n-gram and sentence length
posterior probabilities on the Chinese-English NIST task.

Reference China expressed its strong displeasure with the act of the Japanese
leader.

w/o posteriors China strongly dissatisfied with the Japanese leader of this action.
w/ posteriors The Chinese side has expressed strong dissatisfaction with this action

of the Japanese leader

Reference They are the largest refugee group since the end of the Korea war.
w/o posteriors Since the end of Korean war fled their largest group.
w/ posteriors They are the largest number of refugees since the end of the Korean

war.

Reference US embassy in Italy received a postal parcel with white powder in it.
w/o posteriors The United States embassy in Italy before bags containing white

powder
w/ posteriors The US embassy in Italy received mail bags containing white powder

103

7 Results

Table 7.16: Effect of the language model order on the translation performance for the
Chinese-English NIST task (’all’ test set, 3789 sentences).

LM Order BLEU[%] TER[%] NIST WER[%] PER[%]
3 34.1 57.2 9.52 61.0 40.9
4 37.6 56.0 10.12 60.5 39.8
5 38.0 55.9 10.24 60.4 39.7
6 38.1 55.8 10.26 60.3 39.7

Table 7.17: Statistics of the training and test word alignment links for the BTEC task.

Arabic-English Chinese-English Japanese-English
Training 144K 140K 119K
Test 16.2K 15.7K 13.2K

7.4.1 Analysis of the reordering models

7.4.1.1 Language model

In Table 7.16, we show the effect of the language model order on the translation per-
formance. Increasing the language model order improves translation quality. There is a
large improvement of 3.5 Bleu points when going from a trigram to a fourgram language
model. Further improvements are obtained by increasing the language model order up
to a sixgram, though the improvement is only 0.5 Bleu points. Taking into account that
the memory consumption of the fourgram is only about 2GB compared to about 8GB
for the sixgram (cf. Table 7.4), the fourgram language model provides a good tradeoff
between performance and memory consumption. Therefore, we performed most of our
experiments using the fourgram language model.

7.4.1.2 Phrase orientation model

Training. To train and evaluate the phrase orientation model, we use the word aligned
bilingual training corpus. For evaluating the classification power of the orientation model,
we partition the corpus into a training part and a test part. In our experiments on the
BTEC task, we use about 10% of the corpus for testing and the remaining part for training
the feature weights of the orientation model with the GIS algorithm using YASMET [Och 01].
The statistics of the training and test alignment links is shown in Table 7.17. The number
of training events ranges from 119K for Japanese-English to 144K for Arabic-English.
As the orientation model is independent of the phrase boundaries, there is no need to
assume a phrase segmentation. The classification error rate is defined as the number of
correct predictions divided by the total number of predictions.

The word classes for the class-based features are trained using the mkcls tool [Och 99].
In the experiments, we use 50 word classes. Alternatively, we could use part-of-speech

104

7.4 Effect of different Models

Table 7.18: Classification error rates [%] using two orientation classes for the BTEC task
(W: words, C: classes).

Arabic-English Chinese-English Japanese-English
Baseline 6.3 12.7 26.2

Lang. Window W C W+C W C W+C W C W+C

Tgt d = 0 4.7 5.3 4.4 9.3 10.4 8.9 13.6 15.1 13.4
d ∈ {0, 1} 4.5 5.0 4.3 8.9 9.9 8.6 13.7 14.9 13.4
d ∈ {−1, 0, 1} 4.5 4.9 4.3 8.6 9.5 8.3 13.5 14.6 13.3

Src d = 0 5.6 5.0 3.9 7.9 8.3 7.2 12.2 11.8 11.0
d ∈ {0, 1} 3.2 3.0 2.6 4.7 4.7 4.2 10.1 9.7 9.4
d ∈ {−1, 0, 1} 2.9 2.5 2.3 3.9 3.5 3.3 9.0 8.0 7.8

Src d = 0 4.3 3.9 3.7 7.1 7.8 6.5 10.8 10.9 9.8
+ d ∈ {0, 1} 2.9 2.6 2.5 4.6 4.5 4.1 9.3 9.1 8.6

Tgt d ∈ {−1, 0, 1} 2.8 2.1 2.1 3.9 3.4 3.3 8.7 7.7 7.7

information for this purpose.

Classification results. Next, we present the classification results for the orientation
model described in Section 4.4.3. In Table 7.18, we present the classification results for
three language pairs on the BTEC task. In these experiments, we used two orientation
classes, which means that the model has to predict if the next position should be to the
left or to the right.

As baseline we always choose the most frequent orientation class; this is done independent
of the context. For Arabic-English, the baseline is with 6.3% already very low. For
Chinese-English, the baseline is with 12.7% about twice as large. The most differences in
word order occur for Japanese-English with a baseline classification error rate of 26.2%.
This seems to be reasonable as Japanese has usually a different sentence structure, subject-
object-verb compared to subject-verb-object in English.

For each language pair, we present results for several combination of features. The three
columns per language pair indicate if the features are based on the words (column label
’W’), on the word classes (column label ’C’) or on both (column label ’W+C’). We also
distinguish if the features depend on the target sentence (’Tgt’), on the source sentence
(’Src’) or on both (’Src+Tgt’).

For Arabic-English, using features based only on words of the target sentence the classi-
fication error rate can be reduced to 4.5%. If the features are based only on the source
sentence words, a classification error rate of 2.9% is reached. Combining the features
based on source and target sentence words, a classification error rate of 2.8% can be
achieved. Adding the features based on word classes, the classification error rate can be
further improved to 2.1%. For the other language pairs, the results are similar except
that the absolute values of the classification error rates are higher.

We observe the following:

105

7 Results

Table 7.19: Effect of the orientation model on the translation performance for the BTEC
task.

Language Pair Reordering WER[%] PER[%] NIST BLEU[%]
Arabic-English Distortion 24.1 20.9 10.0 63.8

+ Phrase orientation 23.6 20.7 10.1 64.8
Chinese-English Distortion 50.4 43.0 7.67 44.4

+ Phrase orientation 49.3 42.4 7.36 45.8
Japanese-English Distortion 32.1 25.2 8.96 56.2

+ Phrase orientation 31.2 25.2 9.00 56.8

• The features based on the source sentence perform better than features based on
the target sentence.

• Combining source and target sentence features performs best.

• Increasing the window always helps, i. e. additional context information is useful.

• Often the word-class based features outperform the word-based features.

• Combining word-based and word-class based features performs best.

• In general, adding features does not hurt the performance.

These are desirable properties of an suitable reordering model. The main point is that
these are fulfilled not only on the training data, but on unseen test data. There seems to
be no overfitting problem.

For four orientation classes, the classification error rates are a factor 2-4 larger than for two
orientation classes. Despite that, we observe the same tendencies as for two orientation
classes. The detailed results are reported in Appendix B, Table B.1. Again, using more
features does not hurt the performance.

Translation results. In Table 7.19, we show the translation results for the BTEC task.
In these experiments, the reordering model uses two orientation classes, i. e. it predicts
either a left or a right orientation. The features for the phrase orientation model are
based on the source and target language words within a window of one. The word-class
based features are not used for the translation experiments. The phrase orientation model
achieves small but consistent improvement for all the evaluation criteria. The baseline
system, i. e. using the distortion-based reordering, was among the best systems in the
IWSLT 2005 evaluation campaign [Eck & Hori 05]. Note that only the model scaling
factors of Equation 1.8 are optimized using the Downhill Simplex algorithm. The feature
weights of the reordering model are trained using the GIS algorithm as described in
Section 4.4.3.4.

Some translation examples are presented in Table 7.20. We observe that the system using
the phrase orientation model produces more fluent translations.

106

7.4 Effect of different Models

Table 7.20: Translation examples for the Chinese-English BTEC task.

System Translation
Distortion I would like to check out time one day before.
Phrase orientation I would like to check out one day before the time.
Reference I would like to check out one day earlier.
Distortion I hate pepper green.
Phrase orientation I hate the green pepper.
Reference I hate green peppers.
Distortion Is there a subway map where?
Phrase orientation Where is the subway route map?
Reference Where do they have a subway map?

Additional translation experiments were carried out on the large data track of the Chinese-
English NIST task. The results were already reported in Table 7.9 and in Table 7.10. We
observed a significant improvement over the distortion-based reordering model on all test
sets. On the ’all’ test set, for instance, the Bleu score improved by 1.3 Bleu points. For
the translation experiments on the Chinese-English NIST task, we used two orientation
classes and the following features: source word, target word, source-target word pair at
the current position, i. e. d = 0. We also tried additional features, e. g. using a larger
window or word classes, but these did not lead to further improvements.

Scaling factor. In Figure 7.3, we show the effect of the model scaling factor for the
phrase orientation model on the Chinese-English NIST task.

Figure 7.3: Effect of the phrase orientation model scaling factor for the Chinese-English
NIST task (NIST 2002 test set, 878 sentences).

107

7 Results

7.4.1.3 Distortion model

In Figure 7.4, we show the effect of the distortion model scaling factor on the Chinese-
English NIST task. We show two curves, one without the phrase orientation model and
one with the phrase orientation model. In Figure 7.5, we show the effect of the distortion
limit on the Chinese-English NIST task. We observe a large improvement in translation
quality as the distortion limit is increased up to a length of 10. Increasing the distortion
limit beyond 10 does not lead to further improvements.

Figure 7.4: Effect of the distortion model scaling factor for the Chinese-English NIST task
(NIST 2002 test set, 878 sentences).

Figure 7.5: Effect of the distortion limit for the Chinese-English NIST task (NIST 2002
test set, 878 sentences).

108

7.5 Analysis of the Search

Table 7.21: Comparison with other groups on the Chinese-English NIST task. Translation
performance measured with BLEUr4n4[%].

NIST test set
System 2003 2004 2005

[Chiang 07] ATS 30.8 31.7 30.5
Hiero 33.7 34.6 31.8

[DeNeefe & Knight+ 07] ATS 32.8 – –
Syntax baseline 37.7 – –

improved 41.3 – –
This work 39.8 39.9 37.8

7.4.2 Comparison with other groups

In Table 7.21, we compare the results obtain in this work with the results of other groups.
The first comparison is with the hierarchical approach of [Chiang 07]. There, the align-
ment template approach of [Och & Ney 04] is used as baseline (’ATS’); the results ob-
tained using hierarchical approach are denoted with ’Hiero’. The second comparison is
done with the syntax-based system of [DeNeefe & Knight+ 07], which is a state-of-the-art
syntax-based system. Again, ’ATS’ denotes the baseline obtained with the alignment
template approach of [Och & Ney 04]. To the best of our knowledge, these are currently
the best results published for this task.

Note that these results are rather hard to compare and interpret as they measure only the
end-to-end performance of the whole MT system, including the effects of preprocessing,
word alignment, translation and language models, decoding, tuning etc.. It is difficult to
attribute the differences in translation performance to individual system components.

We observe that the phrase-based system described in this work is competitive with the
best systems on this task.

7.5 Analysis of the Search

In Figure 7.6, we show the effect of the search errors on the Bleu score for the Chinese-
English NIST task. We fixed the model scaling factors and varied the pruning parameters
to generate translations of the NIST 2002 test set. We show the Bleu score as a function
of the average value of the score function Q(·) in Equation 5.11 per sentence. We observe
a strong correlation between the model score and the Bleu score. Thus, it is important
to find a translation hypotheses with a good model score, i. e. a good search algorithm is
important to achieve good translation quality.

In Figure 7.7, we show the effect of the rest score estimation described in Section 5.2.4
on the translation performance. We compare the following variants of the rest score
estimation. We varied the included models: translation model (TM), language model

109

7 Results

 28

 29

 30

 31

 32

 33

 34

 35

 36

 37

 38

 39

-75 -70 -65 -60 -55 -50 -45

B
LE

U
[%

]

Model Score

Figure 7.6: Effect of search errors. Bleu score as a function of the average model score
per sentence for varied pruning parameters on the Chinese-English NIST task
(NIST 2002 test set, 878 sentences). The larger the model score, the better is
the solution found by the search algorithm, i. e. there are fewer search errors.

(LM), distortion model (Dist) and we compare if the rest scores are computed per position
(Equation 5.24) or per sequence (Equation 5.21). For each of the rest score estimates, we
varied the beam size, i. e. the histogram size Nc for the lexical pruning per cardinality. For
(very) large beam sizes, the rest score estimation is of course not important. For small
and medium beam sizes however, we observe that a good rest score estimate is important
to achieve high Bleu scores. Using only the translation model for the rest score estimation
does not help much. The curves are very similar to the one without rest score estimation.
Both, the language model and the distortion model, help to improve the search results.
The rest score estimates based on sequences of source position typically outperform the
estimate based on positions, i. e. with the same beam size they achieve a higher Bleu score.
The rest score estimate based on translation and language model scores for sequences of
source positions in combination with a rest score estimate for the distortion penalty model
works best. Using this rest score estimation, we already achieve a very good Bleu score
with a beam size of only 64 hypotheses. Without rest score estimation, we would need
about 16K hypotheses to achieve the same Bleu score. In Figure 7.8, we show the effect
of different rest score estimates on the model score.

As defined in Section 5.1, the number of lexical hypotheses is the overall number of hy-
potheses for a given cardinality. In contrast, for the number of coverage hypotheses we
count the distinct coverages for a given cardinality. Thus, the coverage hypotheses are
independent of the lexical choice. The more coverage hypotheses are retained during the
search, the more reorderings are considered. In Figure 7.9, we separated the effect of
lexical choice and reordering. For each of the curves, we limited the number of coverage
hypotheses and varied the maximum number of lexical hypotheses per coverage hypoth-
esis. Thus, along the x-axis we increase the search space by allowing for more lexical

110

7.5 Analysis of the Search

Figure 7.7: Effect of the rest score estimation on the translation performance
(BLEUr4n4[%]) for different beam sizes on the Chinese-English NIST task
(NIST 2002 test set, 878 sentences).

Figure 7.8: Effect of the rest score estimation on the model score for different beam sizes
on the Chinese-English NIST task (NIST 2002 test set, 878 sentences).

111

7 Results

choice, whereas from curve to curve we allow for more reordering. To be precise: for
each curve we fixed the histogram size NC for the coverage pruning per cardinality and
we varied the histogram size NL for the lexical pruning per coverage. The overall search
space is limited by the product of the two numbers; we vary the overall search space
between 1 hypothesis and 64K hypotheses. We observe that increasing the lexical choice
beyond 16 hypotheses per coverage does not lead to further improvements; often only 4
lexical hypotheses are sufficient. Furthermore, the improvement that we can achieve by
taking lexical alternatives into account is between 1 and 2 Bleu points. If we look at the
maximum number of coverage hypotheses, we see a much bigger effect on the Bleu score.
There is a considerable improvement by increasing the number of coverage hypotheses up
to 64. The curve for a maximum of 256 hypotheses is virtually identical; thus there is no
further improvement.

In Figure 7.10, we show the effect of lexical pruning per coverage on the Bleu score.
We fixed the histogram size NL for the lexical pruning per coverage, i. e. the maximum
number of lexical hypotheses per coverage and varied the total number of hypotheses, i. e.
the histogram size Nc for the lexical pruning per cardinality. We then plotted the average
number of hypotheses per source word against the Bleu score. The ’unlimited’ means that
there is no lexical pruning per coverage. This is equivalent to the pruning in Pharaoh and
Moses. Using lexical pruning per coverage, we achieve the best Bleu score already with a
small number of hypotheses; in this example about 256 hypotheses are required. Without
lexical pruning per coverage, a significantly larger beam is required to achieve this Bleu
score.

In Table 7.22, we show the memory usage of different system components. We distin-
guished the language model, the phrase table, the search, i. e. the hypotheses and trace
back information. All other components and data structures are put in the ’Other’ cat-
egory. This includes the word lexica and the phrase orientation model. For these exper-
iments, we used a beam size of 16K hypotheses per source word. For the LM and the
phrase table, we also compared filtering on the test set level and on the sentence level.
Using the efficient phrase-table representation described in Section 5.6, there is no time
overhead for filtering the phrase table on the sentence level. For filtering the LM per sen-
tence requires about 20-30 seconds, whereas loading the whole LM into memory requires
about 15 minutes for the sixgram LM. We measured the memory usage per sentence and
report the maximum. If we filter the LM and phrase-table per sentence, the total memory
usage is at most 1.6GB for the fourgram LM and 2.2GB for the sixgram LM. If the LM
and phrase table are filtered for the test set, they clearly dominate the memory usage re-
sulting in a total memory usage of about 5.2GB for the fourgram LM and about 11.2GB
for the sixgram LM.

In Figure 7.11, we show the effect of the window size for the word-level and block-level skip
reordering constraints, i. e. the IBM constraints described in Section 5.5.3. We plotted
the curves using a distortion limit of 10 and without distortion limit. The results with
and without distortion limit are rather similar for small window size. For larger window
sizes, the distortion limit seems to help somewhat.

112

7.5 Analysis of the Search

Table 7.22: Maximum memory usage for different system components. The beam size was
limited to 16K hypotheses per source word.

LM order LM Phrase-table Search Other Total
filtered per 4-gram 2.1GB 1.7GB 1.0GB 400MB 5.2GB
test set 6-gram 7.9GB 1.7GB 1.2GB 400MB 11.2GB

filtered per 4-gram 205MB 25MB 1.0GB 400MB 1.6GB
sentence 6-gram 575MB 25MB 1.2GB 400MB 2.2GB

Figure 7.9: Effect of the number of lexical and coverage hypotheses for the Chinese-English
NIST task (NIST 2002 test set, 878 sentences).

113

7 Results

Figure 7.10: Effect of lexical pruning per coverage on the Bleu score for the Chinese-
English NIST task (NIST 2002 test set, 878 sentences).

Figure 7.11: Effect of the window size for the word and block-level skip reordering con-
straints (IBM constraints) for the Chinese-English NIST task (NIST 2002
test set, 878 sentences).

114

7.5 Analysis of the Search

Table 7.23: Comparison with Moses on the Chinese-English NIST task (NIST 2002 test
set, 878 sentences). Bleu in percent; speed in words per second.

Moses RWTH RWTH (skip)
Beam Size Bleu Speed Bleu Speed Bleu Speed

1 31.7 415.7 32.0 886.5 32.4 790.7
4 34.6 128.3 35.3 544.6 35.7 620.0

16 35.9 34.9 36.7 221.8 36.9 225.3
64 36.9 9.8 37.0 58.9 37.5 89.2

256 36.9 2.0 37.2 14.4 37.4 29.5
1 024 37.2 0.5 37.2 3.4 37.5 7.9
4 096 37.2 0.1 37.2 0.8 37.5 3.3

7.5.1 Comparison with Moses

In this section, we will compare the decoder described in this work with Moses
[Koehn & Hoang+ 07], a publicly available decoder for phrase-based SMT. The ex-
periments were carried out using the Moses version from May 25, 2007 and com-
piled with the optimization flags enabled. We use the SRI library for the language
model (this is identical in both decoders). More details on Moses can be found at
http://www.statmt.org/moses.

We use the same phrase table, i. e. the same models, for the two decoders: a fourgram
LM, the phrase models p(f̃ |ẽ) and p(ẽ|f̃), the noisy-or lexicon model p(e|f̃), word and
phrase penalty and the distortion penalty model. The phrase orientation model is not
used. To compare the performance, we translated the NIST 2002 test set with varying
beam sizes and measured the Bleu score and the translation speed (in words per second)
on machines with AMD Opteron CPUs and 8GB of memory. As Moses does not support
multi-threading, we run both decoders single-threaded. The results are presented in
Table 7.23. We used two variant of our decoder: the first version uses the same reordering
constraints as Moses, the second version uses the IBM-style phrase-level skip reordering
with window 1.

Comparing Moses and the first version of the RWTH decoder, we observe that they achieve
very similar Bleu scores with a small advantage for the RWTH decoder in case of a small
beam size. Both decoders reach a Bleu score of about 37.2%. In terms of translation
speed, the RWTH decoder clearly outperforms Moses. It is faster by a factor of 7-8 for
beam sizes ≥ 64. The second variant of the RWTH decoder, using the phrase-level skip
reordering constraints with window 1, we achieve a higher Bleu score of about 37.5%.

In Figure 7.12, we plotted the Bleu score versus the translation speed. We observe that
we can achieve the same Bleu score as Moses with much less computation time. If we
look, for instance, at the Bleu score level of about 36.9%, the RWTH decoder is about 6
times faster than Moses (58.9 words per second for the RWTH decoder versus 9.8 words
per second for Moses), using the phrase-level skip constraints, we can achieve the same
Bleu score even 23 times faster than Moses (with a speed of 225.3 words per second). If

115

7 Results

 31

 32

 33

 34

 35

 36

 37

 38

 0.0625 0.25 1 4 16 64 256 1024

B
LE

U
[%

]

Translation Speed [words per sec]

Moses
RWTH

RWTH (skip)

Figure 7.12: Comparison with Moses on the Chinese-English NIST task (NIST 2002 test
set, 878 sentences).

Table 7.24: Translation results (BLEUr2n4c [%]) for various training criteria (MERT:
minimum error rate training; ML: maximum likelihood estimation; E[Bleu]:
expected Bleu score) and the maximum a-posteriori (MAP) and the minimum
Bleu risk (MBR) decision rule for the Chinese-English TC-Star task.

Development Eval’06 Eval’07
Decision Rule MAP MBR MAP MBR MAP MBR

Training MERT-Bleu (baseline) 19.5 19.4 16.7 17.2 22.2 23.0
Criterion ML sentence-level 17.8 18.9 14.8 17.1 18.9 22.7

n-gram level 18.6 18.8 17.0 17.8 22.8 23.5
E[Bleu] sentence-level 19.1 18.9 17.5 18.1 23.5 24.1

n-gram level 18.6 18.8 17.7 17.6 24.0 24.0

we look at a Bleu score of 37.2%, which is the best we achieved using Moses, the difference
is even larger. Moses processes about 0.5 words per second; using the RWTH decoder
(skip), we achieve an even better Bleu score with a speed of about 89.2 words per second,
i. e. about 178 times faster than Moses.

116

7.6 Effect of Different Training Criteria

7.6 Effect of Different Training Criteria

In Table 7.24, we present the translation results for different training criteria for the
development set and the two blind test sets on the Chinese-English TC-Star task. The
reported case-sensitive Bleu scores are computed using two reference translations, i. e.
BLEUr2n4c. Note that already the baseline system (MERT-Bleu) would have achieved
the first rank in the official TC-Star evaluation 2006; the best Bleu score in that evaluation
was 16.1% (cf. Table 7.25).

We also compare the effect of two loss function in the Bayes decision rule:

• MAP: the maximum a-posteriori decision rule (cf. Equation 1.4), i. e. the Bayes
decision rule for the 0-1 loss function.

• MBR: the minimum Bleu risk decision rule. Here, we use a Bleu induced loss
function as described in [Kumar & Byrne 04]. We use the algorithm described in
[Ehling & Zens+ 07] on a 10 000-best list.

On the development data, the MERT-Bleu achieves the highest Bleu score. This seems
reasonable as it is the objective of this training criterion.

The maximum likelihood (ML) criteria perform somewhat worse under MAP decoding.
Interestingly, the MBR decoding can compensate this to a large extent: all criteria achieve
a Bleu score of about 18.9% on the development set. The benefits of MBR decoding
become even more evident on the two test sets. Here, the MAP results for the sentence-
level ML criterion are rather poor compared to the MERT-Bleu. Nevertheless, using
MBR decoding results in very similar Bleu scores for most of the criteria on these two
test sets. We can therefore support the claim of [Smith & Eisner 06] that MBR tends to
have better generalization capabilities.

The n-gram level ML criterion seems to perform better than the sentence-level ML crite-
rion, especially on the test sets. The reasons might be that there is no need for the use
of pseudo references as described in Section 6.4 and that partial correctness is taken into
account.

The best results are achieved using the expected Bleu score criteria described in Sec-
tion 6.5. Here, the sentence level and n-gram level variants achieve more or less the same
results. The overall improvement on the Eval’06 set is about one Bleu point for MAP
decoding and 0.9 Bleu points for MBR decoding. On the Eval’07 set, the improvements
are even larger, about 1.8 Bleu points for MAP and 1.1 Bleu points for MBR. All these
improvements are statistically significant at the 99% level using a pairwise significance
test.

Given that currently the most popular approach is to use MERT-Bleu MAP decoding,
the overall improvement is 1.4 Bleu points for the Eval’06 set and 1.9 Bleu points on
the Eval’07 set. Note that the MBR decision rule almost always outperforms the MAP
decision rule. In the rare cases where the MAP decision rule yields better results, the
difference in terms of Bleu score are small and not statistically significant.

We also investigated the effect of the maximum n-gram order for the n-gram level max-
imum likelihood estimation (ML). The results are shown in Figure 7.13. We observe an

117

7 Results

1 2 3 4 5 6 7 8 9
max. n-gram order

14

16

18

20

22

24

Bl
eu

 [%
]

Dev
Eval'06
Eval'07

Figure 7.13: Effect of the maximum n-gram order on the Bleu score for the n-gram level
maximum likelihood estimation under the maximum a-posteriori decision
rule for the Chinese-English TC-Star task.

increase of the Bleu score with increasing maximum n-gram order for the development
corpus. On the evaluation sets, however, the maximum is achieved if the maximum n-
gram order is limited to four. This seems intuitive as the Bleu score uses n-grams up to
length four. However, one should be careful here: the differences are rather small, so it
might be just statistical noise.

We can conclude that the expected Bleu score is not only a theoretically sound training
criterion, but also achieves the best results in terms of Bleu score on this task. The im-
provement over a state-of-the-art MERT baseline is 1.3 Bleu points for the MAP decision
rule and 1.1 Bleu points for the MBR decision rule for the large Chinese-English TC-Star
speech translation task.

We presented two methods for computing the expected Bleu score: a sentence-level and
an n-gram level approach. Both yield similar results. We think that the n-gram level
computation has certain advantages: The n-gram posterior probabilities could be com-
puted from a word graph which would result in more reliable estimates. Whether this
pays off in terms of translation quality is left open for future work.

Another interesting result of our experiments is that the MBR decision rule seems to
be less affected by sub-optimal parameter settings. Although it is well-known that the
MBR decision rule is more appropriate than the MAP decision rule, the latter is more
popular in the SMT community (and many other areas of natural language processing).
The presented results show that it can be beneficial to use the MBR decision rule. On
the other hand, the computation of the MBR hypotheses is more time consuming.

118

7.7 Official TC-Star Evaluations

Table 7.25: TC-Star: Official results of the public evaluations in 2005, 2006 and 2007 for
the Chinese-English task (top five systems). We report case-sensitive BLEU
and NIST scores.

Verbatim ASR
Year Rank Group BLEU[%] NIST Group BLEU[%] NIST
2005 1 RWTH 15.7 5.80 RWTH 15.0 5.61

2 IBM 13.8 5.78 UKA 13.3 5.39
3 UKA 13.7 5.64 JHU 13.2 5.48
4 JHU 13.5 5.64 IRST 11.6 5.23
5 IRST 12.2 5.42 IBM 5.3c 2.68

2006 1 RWTH 16.1 6.45 RWTH 12.4 5.17
2 IRST 14.0 6.01 IRST 11.1 4.95
3 ICT 13.7 6.03 ICT 10.9 4.90
4 NRC 12.8 5.80 Systran 8.6 4.38
5 UKA 10.8 5.51 UKA 8.5 4.59

2007 1 RWTH 24.5 7.35 RWTH 22.5 6.80
2 IRST 21.8 7.09 IRST 19.7 6.45
3 ICT 20.1 6.67 ICT 18.3 6.01
4 UKA 18.6 6.47 UKA 16.5 5.82
5 NICT-ATR 18.4 6.51 XMU 11.6 5.27

7.7 Official TC-Star Evaluations

In the European Union project TC-Star, annual public evaluation were carried out.
The official results of the evaluation in 2005, 2006 and 2007 for the Chinese-English
task are summarized in Table 7.25. We show only the top five systems for the verba-
tim and ASR condition. There were two data conditions: in the primary condition,
the training data was limited (very similar to the NIST large data track), in the sec-
ondary condition, the training was unlimited. If a group participated in both tasks, we
have chosen the better of the two results. The effect on the Bleu and NIST score is
small and does not affect the ranking of the systems. RWTH participated in the pri-
mary, i. e. limited, data condition. More details can be found in the public evaluation
reports [Mostefa & Arranz+ 05, Mostefa & Garcia+ 06, Mostefa & Hamon+ 07]. In all
three years and in both conditions, verbatim and ASR, the RWTH system achieved the
first rank.

cThe official IBM submission for the ASR condition was erroneous. The corrected version, which was
submitted after the evaluation, obtained a Bleu score of 12.7%.

119

7 Results

100M

10M

1M

100K

10K

1K

100

10

1

 2 4 6 8 10 12 14

P
hr

as
e-

ta
bl

e
lo

ok
-u

ps

Source phrase length

conventional
this work

Figure 7.14: Average number of phrase-table look-ups per sentence as a function of the
source phrase length for the Spanish-English EPPS task.

7.8 Phrase Matching

In this section, we will present an empirical complexity analysis of the phrase match-
ing algorithm described in Section 5.7.2. In Figure 7.14, we present the average num-
ber of phrase-table look-ups for the full EPPS confusion networks (CNs) as a func-
tion of the source phrase length. The maximum phrase length for these experiments
is seven. The curve ’conventional’ represents the total number of source phrases in the
CNs for a given length. This is the number of phrase-table look-ups using the naive
algorithm. Note the exponential growth with increasing phrase length. Therefore, the
naive algorithm is only applicable for very short phrases and heavily pruned CNs, as e. g.
in [Bertoldi & Federico 05].

The curve ’this work’ is the number of phrase-table look-ups using the phrase-match

algorithm described in Figure 5.16. We do not observe the exponential explosion as for
the naive algorithm. Thus, the presented algorithm effectively solves the combinatorial
problem of matching phrases of the input CNs and the phrase-table.

In Table 7.26, we present the translation results and the translation times for different
input conditions. We observe a significant improvement in translation quality as more
ASR alternatives are taken into account. The best results are achieved for the full CNs.
On the other hand, the decoding time increases only moderately. Using the new algorithm,
the ratio of the time for decoding the CNs and the time for decoding the single-best input is
3.4 for the full CNs and 1.8 for the pruned CNs. In previous work [Bertoldi & Federico 05],
the ratio for the pruned CNs was about 25 and the full CNs could not be handled.

To summarize, the presented algorithm has two main advantages for speech translation:
first, it enables us to utilize large CNs, which was prohibitively expensive beforehand and
second, the efficiency is improved significantly.

120

7.8 Phrase Matching

Table 7.26: Translation quality and time for different input conditions for the Spanish-
English EPPS task (time in seconds per sentence [sec] and as factor of the
single-best decoding time [× SB]).

Time
Input type oracle ASR-WER[%] BLEU[%] [sec] [× SB]

Single-best 21.4 37.6 2.7 1.0
Confusion Network pruned 16.7 38.5 4.8 1.8

full 8.4 38.9 9.2 3.4

Whereas the previous approaches required careful pruning of the CNs, we are able to
utilize the unpruned CNs. Experiments on other tasks have shown that even larger CNs
are unproblematic.

The confusion network decoding experiments in this section were carried out us-
ing the Moses decoder [Koehn & Hoang+ 07], which is a open-source decoder for
phrase-based machine translation. More details on Moses can be found at
http://www.statmt.org/moses.

121

7 Results

122

8 Conclusions

In this chapter, we will summarize the achievements of this work and point out directions
for future work.

8.1 Summary

• We have extended the standard IBM word alignment models with a symmetric
lexicon and we have described the corresponding training procedure. Furthermore,
we have reduced the word alignment problem to the minimum-weight edge cover
problem and presented an efficient algorithm to solve this problem. Both approaches
resulted in significantly reduced word alignment error rates on the Verbmobil and
Canadian Hansards tasks.

• We investigate the contribution of several phrase-based translation models to the
overall translation quality. The resulting system achieves state-of-the-art perfor-
mance on the large scale Chinese-English NIST task. Furthermore, the system was
used in the official TC-Star evaluations in 2005, 2006 and 2007 for the Chinese-
English broadcast news speech translation task. We achieved the first rank in all
three years and for all input conditions.

• We have described the search problem in detail and presented efficient algorithms for
solving this problem. The analysis of the search showed that it is important to focus
the search on alternative coverage hypotheses, i. e. alternative reorderings. On the
other hand, already a small number of lexical hypotheses per coverage hypothesis
are sufficient to achieve good translation quality. A comparison with the public tool
Moses showed, that the presented decoder is more than 23 times faster at the same
level of translation quality.

• We have presented an efficient phrase-table representation that is loaded on-demand
from disk. This enables online phrase-based SMT, i. e. the translation of arbitrary
text without the time-consuming pre-filtering of the phrase table. The memory
consumption is reduced to less than 25MB for the large Chinese-English NIST
task where previous approaches required about 1.5-2GB for test set specific phrase
tables and about 15GB for the unfiltered phrase table. The implementation was
made available as part of the public open-source toolkit Moses.

• In addition to the search for text input, we also described the search for lattice
input. Here, the input to the MT system is a lattice of alternative source sentences,
e. g. a lattice of transcriptions from a speech recognizer. The phrase matching of

123

8 Conclusions

input lattice and phrase table can be done efficiently by exploiting the prefix tree
structure of the phrase table. Using the presented algorithm on the Spanish-English
TC-Star task, we achieved a significant speed-up compared to previous work and
generated translations of better quality.

• The reordering problem in MT is difficult for two reasons: first, it is computational
expensive to explore all possible permutations; second, it is hard to select a good
permutation. Thus, reordering is a difficult search problem and a difficult modeling
problem. We have described and compared different reordering constraints to ad-
dress the search problem. We showed that the phrase orientation model can help to
address the modeling problem. Both approaches resulted in improved translation
quality.

• We presented different training criteria for optimizing the free parameters of a
phrase-based SMT system. The experimental results on the large-scale Chinese-
English TC-Star task have shown that significant improvements over the standard
minimum error rate training can be achieved. In this context, we introduced n-gram
and sentence length posterior probabilities. Using these posterior probabilities in a
rescoring/reranking framework resulted in improved translation quality.

8.2 Future Directions

• More Data. The most obvious way to improve a data-driven approach like
the one presented here is of course to utilize more data for training the system.
[Pantel & Ravichandran+ 04] has shown that simple (or better efficient) methods
applied to larger volumes of data often outperform more sophisticated methods
that do not scale to large volumes of data and therefore can utilize only a limited
subset of the available data. The automatic collection of new bilingual training data
would significantly increase the amount of available data for training SMT systems.
The work of [Fry 05] seems to indicate that we can collect bilingual data of high
quality in a rather simple (but clever) way using RSS news feeds. Furthermore, uti-
lizing comparable corpora, as e. g. in [Fung & Cheung 04, Munteanu & Fraser+ 04],
can result in additional training data. But as only a fraction of the comparable
corpora can be added to the bilingual training corpus, huge amounts of comparable
corpora are required to achieve significant improvements.

• Better Data. Despite the sheer amount of data, the quality of the data is of
course important. Currently, the preprocessing of the training data, e. g. cleaning,
tokenization, text normalization, is done using a set of hand-written rules or regu-
lar expressions. As a proper preprocessing can affect the translation quality quite
significantly, it would be desirable to automate this procedure. As the purpose is
to improve translation quality, this should be done in a bilingual way, i. e. both the
source and target language sentence should be taken into account.

124

8.2 Future Directions

• Better Models. Despite using more data, improved models can lead to better
translation quality. Iterative training of the phrase translation probabilities using
maximum likelihood or even discriminative training could result in better estimates.

A weakness of the phrase-based approach is the long-range reordering. Local re-
ordering is captured within the phrases, but long-range reordering is not. Transla-
tion quality could benefit from a stronger reordering model. Wether this is based
on syntactic parse trees as e. g. in [Galley & Hopkins+ 04, Galley & Graehl+ 06,
DeNeefe & Knight+ 07] or hierarchical phrases without explicit syntax as in e. g.
[Chiang 05, Chiang 07] or some other concept has still to be investigated.

Most SMT systems look just at the surface-level of the words. Factored translation
models [Koehn & Hoang+ 07] try to utilize models at the stem or part-of-speech
level. This seems to be promising for morphologically rich languages and/or tasks
with scarce resources.

• Public Corpora, Tools & Evaluations. MT systems are getting more and more
complicated. Thus, the entry barrier of a research group to start in the area of
MT is rather high. Freely available tools such as GIZA++ [Och & Ney 03], Pharaoh
[Koehn 04a] and Moses [Koehn & Hoang+ 07] lower the entry barrier significantly.
They foster collaboration among research groups and speed up progress in the area
of MT. Public corpora permit a comparison of different approaches trained on the
same data and public evaluations, such as the NIST evaluations from 2002 to 2006a

or the shared task of the Workshop on Machine Translationb, allow for a comparison
on unseen test data.

• Better Evaluation Metrics. Automatic evaluation metrics are important for a
rapid development cycle. During the development and tuning phase, the quality
of the MT system is evaluated several (hundred) times. The parameters of the
MT system are adjusted to achieve a high score of a given automatic evaluation
metric. Nevertheless, the ultimate goal is to improve the translation quality us-
ing this parameter tuning. Therefore, automatic evaluation metrics should have
a high correlation with human judgment of translation quality. Furthermore, it
should not be possible to cheat the metric, i. e. to improve the score without im-
proving translation quality. Current metrics have their limitations as pointed out in
[Callison-Burch & Osborne+ 06] for the Bleu score. As MT systems are tuned to-
ward a specific metric, improved MT evaluation metrics will lead to better machine
translation quality.

ahttp://www.nist.gov/speech/tests/mt/index.htm
bhttp://www.statmt.org

125

8 Conclusions

126

A Symbols & Acronyms

A.1 Mathematical Symbols

f = fJ
1 = f1, ..., fj, ..., fJ source language sentence

e = eI
1 = e1, ..., ei, ..., eI target language sentence

A ⊆ J × I word alignment (general)
a = aJ

1 = a1, ..., aj, ..., aJ word alignment (mapping)
Pr(·) general probability distribution with no specific assumptions
p(·) model-based probability distribution
L(·) loss function
λ model scaling factor
h(·) component of log-linear model
sK
1 segmentation into K phrase-pairs

ik end position of kth target phrase
jk end position of kth source phrase
bk start position of kth source phrase
ẽ target phrase

f̃ source phrase
|ẽ| length of the phrase ẽ
ẽi the ith word of phrase ẽ
qTM(·) weighted translation model score
qLM(·) weighted language model score
qDM(·) weighted distortion model score
No histogram size for observation pruning
τo threshold for observation pruning
Nc histogram size for lexical pruning per cardinality
τc threshold for lexical pruning per cardinality
NL histogram size for lexical pruning per coverage
τL threshold for lexical pruning per coverage
NC histogram size for coverage pruning per cardinality
τC threshold for coverage pruning per cardinality
$ sentence start or sentence end symbol
E(j, j′) translation candidates for source phrase fj, . . . , fj′

127

A Symbols & Acronyms

A.2 Acronyms

AER alignment error rate
ASR automatic speech recognition
BLEU bilingual evaluation understudy
BTEC basic travel expression corpus
BTG bracketing transduction grammar
CN confusion network
EM expectation maximization
EPPS European Parliament Plenary Speeches
FST finite state transducer
GB gigabyte
GIS generalized iterative scaling
HMM hidden Markov model
ITG inversion transduction grammar
LDC Linguistic Data Consortium
LM language model
MAP maximum a-postiori
MB megabyte
MBR minimum Bleu risk
MERT minimum error rate training
ML maximum likelihood
MT machine translation
PER position-independent word error rate
POS part-of-speech
PP phrase penalty
SLDB spoken language database
SMT statistical machine translation
TER translation edit rate
TM translation model
WER word error rate
WP word penalty

128

B Additional Results

B.1 Reordering Model

In Table B.1, we present the classification results of the lexicalized reordering model for
four orientation classes. The final error rates are a factor 2-4 larger than for two orientation
classes. Despite of that, we observe the same tendencies as for two orientation classes.
Again, using more features does not hurt the classification performance.

B.2 Reordering Constraints Evaluation in Training

In this section, we will investigate for the IBM and ITG reordering constraints the coverage
of the training corpus alignment. For this purpose, we compute the Viterbi alignment of
IBM model 5 with GIZA++ [Och & Ney 00, Och & Ney 03]. This alignment is produced
without any restrictions on word-reorderings and has good quality. Then, we check for
every sentence if the alignment satisfies each of the constraints. The ratio of the number
of satisfied alignments and the total number of sentences is referred to as coverage.

The first task we will present results on is the Verbmobil task [Wahlster 00]. The domain of
this corpus is appointment scheduling, travel planning, and hotel reservation. It consists

Table B.1: Classification error rates [%] using four orientation classes for the BTEC task
(W: words, C: classes).

Arabic-English Chinese-English Japanese-English
Baseline 31.4 44.9 59.0

Lang. Window W C W+C W C W+C W C W+C

Tgt d = 0 24.5 27.7 24.2 30.0 34.4 29.7 28.9 31.4 28.7
d ∈ {0, 1} 23.9 27.2 23.7 29.2 32.9 28.9 28.7 30.6 28.3
d ∈ {−1, 0, 1} 22.1 25.3 21.9 27.6 31.4 27.4 28.3 30.1 28.2

Src d = 0 22.1 23.2 20.4 25.9 27.7 20.4 24.1 24.9 22.3
d ∈ {0, 1} 11.9 12.0 10.8 14.0 14.9 13.2 18.6 19.5 17.7
d ∈ {−1, 0, 1} 10.1 8.7 8.0 11.4 11.1 10.5 15.6 15.6 14.5

Src d = 0 20.9 21.8 19.6 24.1 26.8 19.6 22.3 23.4 21.1
+ d ∈ {0, 1} 11.8 11.5 10.6 13.5 14.5 12.8 18.6 18.8 17.1

Tgt d ∈ {−1, 0, 1} 9.6 7.7 7.6 11.3 10.1 10.1 15.6 15.2 14.2

129

B Additional Results

Table B.2: Corpus statistics of the Verbmobil task.

German English

Train Sentences 58 073
Words 519 523 549 921
Vocabulary 7 939 4 672
Singletons 3 453 1 698

Table B.3: Corpus statistics of the Canadian Hansards task.

French English

Train Sentences 1.5M
Words 24M 22M
Vocabulary 100 269 78 332
Singletons 40 199 31 319

of transcriptions of spontaneous speech. Table B.2 shows the corpus statistics of this
corpus. The training corpus (Train) was used to train the IBM model parameters.

Additionally, we carried out experiments on the Canadian Hansards task. This task
consists of the proceedings of the Canadian parliament, which are kept by law in both
French and English. About 3 million parallel sentences of this bilingual data have been
made available by the Linguistic Data Consortium (LDC). Here, we use a subset of the
data containing only sentences with a maximum length of 30 words. Table B.3 shows the
training and test corpus statistics.

Table B.4 shows the results for the Verbmobil task and for the Canadian Hansards task. It
contains the results for both translation directions German-English (S→T) and English-
German (T→S) for the Verbmobil task and French-English (S→T) and English-French
(T→S) for the Canadian Hansards task, respectively.

Table B.4: Coverage on the training corpus for alignment constraints for the Verbmobil
task and for the Canadian Hansards task (S→T: source-to-target direction,
T→S: target-to-source direction).

Coverage [%]
Task Constraint S→T T→S

Verbmobil IBM 91.0 88.1
ITG baseline 91.6 87.0

extended 96.5 96.9
Canadian IBM 87.1 86.7
Hansards ITG baseline 81.3 73.6

extended 96.1 95.6

130

B.3 Results for Different Phrase-level Reordering Constraints

For the Verbmobil task, the baseline ITG constraints and the IBM constraints result in
a similar coverage. It is about 91% for the German-English translation direction and
about 88% for the English-German translation direction. A significantly higher coverage
of about 96% is obtained with the extended ITG constraints. Thus, with the extended
ITG constraints, the coverage increases by about 8% absolute.

For the Canadian Hansards task, the baseline ITG constraints yield a worse coverage
than the IBM constraints. Especially for the English-French translation direction, the
ITG coverage of 73.6% is very low. One reason might be that the negation ”ne ... pas” ↔
”not” cannot be handled with the standard ITG constraints. Again, the extended ITG
constraints obtained the best results. Here, the coverage increases from about 87% for
the IBM constraints to about 96% for the extended ITG constraints.

We have described the ITG constraints in detail and compared them to the IBM con-
straints. We draw the following conclusions: especially for long sentences the ITG con-
straints allow for higher flexibility in word-reordering than the IBM constraints. Re-
garding the Viterbi alignment in training, the baseline ITG constraints yield a similar
coverage as the IBM constraints on the Verbmobil task. On the Canadian Hansards task
the baseline ITG constraints were not sufficient. With the extended ITG constraints
the coverage improves significantly on both tasks. On the Canadian Hansards task the
coverage increases from about 87% to about 96%.

B.3 Results for Different Phrase-level Reordering
Constraints

B.3.1 Corpus statistics

To investigate the effect of reordering constraints, we have chosen two Japanese–English
tasks, because the word order in Japanese and English is rather different. The first task is
the Basic Travel Expression Corpus (BTEC) task [Takezawa & Sumita+ 02]. The corpus
statistics are shown in Table B.5. This corpus consists of phrasebook entries. Note that
this version of the BTEC corpus is not identical to the one used in Section 7.2.1. Here, we
use a significantly larger portion of the Japanese-English corpus. This corpus was kindly
provided by the Advanced Telecommunication Research Institute International (ATR),
Kyoto, Japan.

The second task is the Spoken Language DataBase (SLDB) task
[Morimoto & Uratani+ 94]. This task consists of transcription of spoken dialogs in
the domain of hotel reservation. Here, we use domain-specific training data in addition to
the BTEC corpus. The corpus statistics of this additional corpus are shown in Table B.6.
The development corpus is the same for both tasks.

131

B Additional Results

Table B.5: Statistics of the BTEC corpus.

Japanese English

Train Sentences 152 K
Words 1 044 K 893 K
Vocabulary 17 047 12 020

Dev sentences 500
words 3 361 2 858

Test sentences 510
words 3 498 –

Table B.6: Statistics of the SLDB corpus. This corpus is used in addition to the BTEC
corpus.

Japanese English

Train Sentences 15 K
Words 201 K 190 K
Vocabulary 4 757 3 663

Test sentences 330
words 3 940 –

B.3.2 System comparison

The experiments in this section were carried out using the alignment template approach
[Och & Ney 04] which is closely related to the phrase-based approach. The main dif-
ferences is that in the alignment template approach word classes are used to generalize
the phrases. In Table B.7 and Table B.8, we show the translation results for the BTEC
task. First, we observe that the overall quality is rather high on this task. The average
length of the used alignment templates is about five source words in all systems. The
monotonic search (mon) shows already good performance on short sentences with less
than 10 words. We conclude that for short sentences the reordering is captured within
the alignment templates. On the other hand, the monotonic search degrades for long
sentences with at least 10 words resulting in a WER of 16.6% for these sentences.

We present the results for various non-monotonic search variants: the first one is with the
IBM constraints (skip) as described in Section 5.5.3. We allow for one or two gaps, i. e.
skip 1 or skip 2.The experiments showed that if we set the maximum number of gaps to
three or more the translation results are equivalent to the search without any reordering
constraints (free). The results for the ITG constraints as described in Section 5.5.2 are
also presented.

The unconstrained reorderings improve the total translation quality down to a WER of
11.5%. We see that especially the long sentences benefit from the reorderings resulting in

132

B.3 Results for Different Phrase-level Reordering Constraints

Table B.7: Effect of phrase-level reordering constraint for the BTEC task (510 sentences).
Sentence lengths: short: < 10 words, long: ≥ 10 words; times in milliseconds
per sentence.

WER[%]
sentence length

reorder short long all time[ms]
mon 11.4 16.6 12.7 73
skip 1 10.8 13.5 11.4 134

2 10.8 13.4 11.4 169
free 10.8 13.8 11.5 194
ITG 10.6 12.2 11.0 164

Table B.8: Translation performance for the BTEC task (510 sentences).

error rates[%] accuracy measures
reorder WER PER BLEU[%] NIST
mon 12.7 10.6 86.8 14.14
skip 1 11.4 10.1 88.0 14.19

2 11.4 10.1 88.1 14.20
free 11.5 10.0 88.0 14.19
ITG 11.0 9.9 88.2 14.25

an improvement from 16.6% to 13.8%. Comparing the results for the free reorderings and
the ITG reorderings, we see that the ITG system always outperforms the unconstrained
system. The improvement on the whole test set is statistically significant at the 95%
level.a

In Table B.9 and Table B.10, we show the results for the SLDB task. First, we observe
that the overall quality is lower than for the BTEC task. The SLDB task is a spoken
language translation task and the training corpus for spoken language is rather small.
This is also reflected in the average length of the used alignment templates that is about
three source words compared to about five words for the BTEC task.

The results on this task are similar to the results on the BTEC task. Again, the ITG
constraints perform best. Here, the improvement compared to the unconstrained search
is statistically significant at the 99% level. Compared to the monotonic search, the BLEU
score for the ITG constraints improves from 54.4% to 57.1%.

aThe statistical significance test were done for the WER using boostrap resampling.

133

B Additional Results

Table B.9: Effect of phrase-level reordering constraint for the SLDB task (330 sentences).
Sentence lengths: short: < 10 words, long: ≥ 10 words; times in milliseconds
per sentence.

WER[%]
sentence length

reorder short long all time[ms]
mon 32.0 52.6 48.1 911
skip 1 31.9 51.1 46.9 3 175

2 32.0 51.4 47.2 4 549
free 32.0 51.4 47.2 4 993
ITG 31.8 50.9 46.7 4 472

Table B.10: Translation performance for the SLDB task (330 sentences).

error rates[%] accuracy measures
reorder WER PER BLEU[%] NIST
mon 48.1 35.5 54.4 9.45
skip 1 46.9 35.0 56.8 9.71

2 47.2 35.1 57.1 9.74
free 47.2 34.9 57.1 9.75
ITG 46.7 34.6 57.1 9.76

134

Bibliography

[Al-Onaizan & Curin+ 99] Y. Al-Onaizan, J. Curin, M. Jahr, K. Knight, J.D.
Lafferty, I.D. Melamed, D. Purdy, F.J. Och, N.A. Smith, D. Yarowsky:
Statistical Machine Translation, Final Report, JHU Workshop, 1999.
http://www.clsp.jhu.edu/ws99/projects/mt/final report/mt-final-report.ps.

[Ayan & Dorr 06] N.F. Ayan, B.J. Dorr: Going Beyond AER: An Extensive Analysis
of Word Alignments and Their Impact on MT. Proc. 21st Int. Conf. on Computa-
tional Linguistics and 44th Annual Meeting of the Assoc. for Computational Linguistics
(COLING/ACL), pp. 9–16, Sydney, Australia, July 2006.

[Banerjee & Lavie 05] S. Banerjee, A. Lavie: METEOR: An Automatic Metric for MT
Evaluation with Improved Correlation with Human Judgments. Proc. 43rd Annual
Meeting of the Assoc. for Computational Linguistics (ACL): Workshop on Intrinsic
and Extrinsic Evaluation Measures for MT and/or Summarization, pp. 65–72, Ann
Arbor, MI, June 2005.

[Baum 72] L.E. Baum: An Inequality and Associated Maximization Technique in Statis-
tical Estimation for Probabilistic Functions of Markov Processes. Inequalities, Vol. 3,
pp. 1–8, 1972.

[Baxter 64] G. Baxter: On Fixed Points of the Composite of Commuting Functions.
American Mathematical Society, Vol. 15, No. 6, pp. 851–855, December 1964.

[Bellman 57] R. Bellman: Dynamic Programming. Princeton University Press, Princeton,
NJ, 1957.

[Bender & Hasan+ 05] O. Bender, S. Hasan, D. Vilar, R. Zens, H. Ney: Comparison of
Generation Strategies for Interactive Machine Translation. Proc. 10th Annual Conf. of
the European Assoc. for Machine Translation (EAMT), pp. 33–40, Budapest, Hungary,
May 2005.

[Bender & Zens+ 04] O. Bender, R. Zens, E. Matusov, H. Ney: Alignment Templates: the
RWTH SMT System. Proc. Int. Workshop on Spoken Language Translation (IWSLT),
pp. 79–84, Kyoto, Japan, September 2004.

[Berger & Brown+ 96] A.L. Berger, P.F. Brown, S.A. Della Pietra, V.J. Della Pietra,
J.R. Gillett, A.S. Kehler, R.L. Mercer: Language Translation Apparatus and Method
of Using Context-based Translation Models, United States Patent 5510981, April 1996.

[Berger & Della Pietra+ 96] A.L. Berger, S.A. Della Pietra, V.J. Della Pietra: A Maxi-
mum Entropy Approach to Natural Language Processing. Computational Linguistics,
Vol. 22, No. 1, pp. 39–72, March 1996.

135

Bibliography

[Bertoldi 05] N. Bertoldi: Statistical Models and Search Algorithms for Machine Trans-
lation. Ph.D. thesis, University of Trento, Trento, Italy, March 2005.

[Bertoldi & Federico 05] N. Bertoldi, M. Federico: A New Decoder for Spoken Language
Translation Based on Confusion Networks. Proc. IEEE Automatic Speech Recognition
and Understanding Workshop (ASRU), pp. 86–91, San Juan, Puerto Rico, Novem-
ber/December 2005.

[Bertoldi & Zens+ 07] N. Bertoldi, R. Zens, M. Federico: Speech Translation by Con-
fusion Networks Decoding. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), Vol. IV, pp. 1297–1300, Honolulu, Hawaii, April 2007.

[Birch & Callison-Burch+ 06] A. Birch, C. Callison-Burch, M. Osborne, P. Koehn: Con-
straining the Phrase-Based, Joint Probability Statistical Translation Model. Proc. Hu-
man Language Technology Conf. / North American Chapter of the Assoc. for Compu-
tational Linguistics Annual Meeting (HLT-NAACL): Workshop on Statistical Machine
Translation, pp. 154–157, New York City, NY, June 2006.

[Bisani & Ney 04] M. Bisani, H. Ney: Bootstrap Estimates for Confidence Intervals in
ASR Performance Evaluationx. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal
Processing (ICASSP), pp. 409–412, Montreal, Canada, May 2004.

[Blatz & Fitzgerald+ 03] J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte,
A. Kulesza, A. Sanchis, N. Ueffing: Confidence Estimation for Machine
Translation. Final report, JHU/CLSP Summer Workshop, 113 pages, 2003.
http://www.clsp.jhu.edu/ws2003/groups/estimate/.

[Blatz & Fitzgerald+ 04] J. Blatz, E. Fitzgerald, G. Foster, S. Gandrabur, C. Goutte,
A. Kulesza, A. Sanchis, N. Ueffing: Confidence Estimation for Machine Translation.
Proc. 20th Int. Conf. on Computational Linguistics (COLING), pp. 315–321, Geneva,
Switzerland, August 2004.

[Brown & Cocke+ 88] P.F. Brown, J. Cocke, S. Della Pietra, V.J. Della Pietra, F. Jelinek,
R.L. Mercer, P.S. Roossin: A Statistical Approach to Language Translation. Proc. 12th
Int. Conf. on Computational Linguistics (COLING), pp. 71–76, Budapest, Hungary,
August 1988.

[Brown & Cocke+ 90] P.F. Brown, J. Cocke, S.A. Della Pietra, V.J. Della Pietra, F. Je-
linek, J.D. Lafferty, R.L. Mercer, P.S. Roossin: A Statistical Approach to Machine
Translation. Computational Linguistics, Vol. 16, No. 2, pp. 79–85, June 1990.

[Brown & Della Pietra+ 93] P.F. Brown, S.A. Della Pietra, V.J. Della Pietra, R.L. Mer-
cer: The Mathematics of Statistical Machine Translation: Parameter Estimation. Com-
putational Linguistics, Vol. 19, No. 2, pp. 263–311, June 1993.

[Callison-Burch & Osborne+ 06] C. Callison-Burch, M. Osborne, P. Koehn: Re-
evaluating the Role of BLEU in Machine Translation Research. Proc. 11th Conf. of
the Europ. Chapter of the Assoc. for Computational Linguistics (EACL), pp. 249–256,
Trento, Italy, April 2006.

136

Bibliography

[Cettolo & Federico 04] M. Cettolo, M. Federico: Minimum Error Training of Log-linear
Translation Models. Proc. Int. Workshop on Spoken Language Translation (IWSLT),
pp. 103–106, Kyoto, Japan, September 2004.

[Chen & Goodman 98] S.F. Chen, J. Goodman: An Empirical Study of Smoothing Tech-
niques for Language Modeling. Technical Report TR-10-98, Computer Science Group,
Harvard University, Cambridge, MA, 63 pages, August 1998.

[Chen & Rosenfeld 99] S.F. Chen, R. Rosenfeld: A Gaussian Prior for Smoothing Maxi-
mum Entropy Models. Technical Report CMUCS-99-108, Carnegie Mellon University,
Pittsburgh, PA, 25 pages, February 1999.

[Cherry & Lin 03] C. Cherry, D. Lin: A Probability Model to Improve Word Alignment.
Proc. 41st Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp.
88–95, Sapporo, Japan, July 2003.

[Chiang 05] D. Chiang: A Hierarchical Phrase-Based Model for Statistical Machine
Translation. Proc. 43rd Annual Meeting of the Assoc. for Computational Linguistics
(ACL), pp. 263–270, Ann Arbor, Michigan, June 2005.

[Chiang 07] D. Chiang: Hierarchical Phrase-Based Translation. Computational Linguis-
tics, Vol. 33, No. 2, pp. 201–228, June 2007.

[Chung & Graham+ 78] F. Chung, R. Graham, V. Hoggatt, M. Kleimann: The Number
of Baxter Permutations. Journal of Combinatorial Theory Series A, Vol. 24, No. 3,
pp. 382–394, 1978.

[Darroch & Ratcliff 72] J.N. Darroch, D. Ratcliff: Generalized Iterative Scaling for Log-
Linear Models. Annals of Mathematical Statistics, Vol. 43, pp. 1470–1480, 1972.

[Dempster & Laird+ 77] A.P. Dempster, N.M. Laird, D.B. Rubin: Maximum Likelihood
from Incomplete Data via the EM Algorithm. Journal of the Royal Statistics Society
Series B, Vol. 39, No. 1, pp. 1–22, 1977.

[DeNeefe & Knight+ 07] S. DeNeefe, K. Knight, W. Wang, D. Marcu: What Can Syntax-
based MT Learn from Phrase-based MT? Proc. Conf. on Empirical Methods for Natural
Language Processing (EMNLP), pp. 755–763, Prague, Czech Republic, June 2007.

[Doddington 02] G. Doddington: Automatic Evaluation of Machine Translation Quality
Using N-gram Co-occurrence Statistics. Proc. ARPA Workshop on Human Language
Technology, 2002.

[Dreyer & Hall+ 07] M. Dreyer, K. Hall, S. Khudanpur: Comparing Reordering Con-
straints for SMT Using Efficient BLEU Oracle Computation. Proc. Human Language
Technology Conf. / North American Chapter of the Assoc. for Computational Linguis-
tics Annual Meeting (HLT-NAACL): Workshop on Syntax and Structure in Statistical
Translation (SSST), pp. 103–110, Rochester, NY, April 2007.

[Duda & Hart+ 00] R.O. Duda, P.E. Hart, D.G. Stork: Pattern Classification. John
Wiley and Sons, New York, NY, 2nd edition, 2000.

137

Bibliography

[Dulucq & Guibert 96] S. Dulucq, O. Guibert: Stack Words, Standard Tableaux and
Baxter Permutations. Discrete Mathematics, Vol. 157, No. 4, pp. 91–106, 1996.

[Eck & Hori 05] M. Eck, C. Hori: Overview of the IWSLT 2005 Evaluation Campaign.
Proc. Int. Workshop on Spoken Language Translation (IWSLT), pp. 11–32, Pittsburgh,
PA, October 2005.

[Ehling & Zens+ 07] N. Ehling, R. Zens, H. Ney: Minimum Bayes Risk Decoding for
BLEU. Proc. 45th Annual Meeting of the Assoc. for Computational Linguistics (ACL):
Poster Session, pp. 101–104, Prague, Czech Republic, June 2007.

[Eppstein 01] D. Eppstein: Bibliography on k shortest paths and other ”k best so-
lutions” problems, http://www.ics.uci.edu/∼eppstein/bibs/kpath.bib. URL,
March 2001.

[EU 07] European Commission - Directorate-General for Translation - FAQ, 2007.
http://ec.europa.eu/dgs/translation/navigation/faq/faq facts en.htm.

[Foster & Kuhn+ 06] G. Foster, R. Kuhn, H. Johnson: Phrasetable Smoothing for Sta-
tistical Machine Translation. Proc. Conf. on Empirical Methods for Natural Language
Processing (EMNLP), pp. 53–61, Sydney, Australia, July 2006.

[Fraser & Marcu 07] A. Fraser, D. Marcu: Measuring Word Alignment Quality for Sta-
tistical Machine Translation. Computational Linguistics, Vol. 33, No. 3, pp. 293–303,
September 2007.

[Fry 05] J. Fry: Assembling a Parallel Corpus from RSS News Feeds. Proc. MT Summit
X: Workshop on Example-based Machine Translation, pp. 59–62, Phuket, Thailand,
September 2005.

[Fung & Cheung 04] P. Fung, P. Cheung: Mining Very-Non-Parallel Corpora: Parallel
Sentence and Lexicon Extraction via Bootstrapping and EM. Proc. Conf. on Empirical
Methods for Natural Language Processing (EMNLP), pp. 57–63, Barcelona, Spain, July
2004.

[Galley & Graehl+ 06] M. Galley, J. Graehl, K. Knight, D. Marcu, S. DeNeefe, W. Wang,
I. Thayer: Scalable Inference and Training of Context-Rich Syntactic Translation Mod-
els. Proc. 21st Int. Conf. on Computational Linguistics and 44th Annual Meeting of the
Assoc. for Computational Linguistics (COLING/ACL), pp. 961–968, Sydney, Australia,
July 2006.

[Galley & Hopkins+ 04] M. Galley, M. Hopkins, K. Knight, D. Marcu: What’s in a
translation rule? Proc. Human Language Technology Conf. / North American Chapter
of the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL), pp. 273–
280, Boston, MA, May 2004.

[Germann & Jahr+ 01] U. Germann, M. Jahr, K. Knight, D. Marcu, K. Yamada: Fast
Decoding and Optimal Decoding for Machine Translation. Proc. 39th Annual Meeting
of the Assoc. for Computational Linguistics (ACL), pp. 228–235, Toulouse, France,
July 2001.

138

Bibliography

[Germann & Jahr+ 04] U. Germann, M. Jahr, K. Knight, D. Marcu, K. Yamada: Fast
Decoding and Optimal Decoding for Machine Translation. Artificial Intelligence, Vol.
154, pp. 127–143, 2004.

[Gildea 03] D. Gildea: Loosely Tree-Based Alignment for Machine Translation. Proc.
41st Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp. 80–87,
Sapporo, Japan, July 2003.

[Graham & Knuth+ 94] R.L. Graham, D.E. Knuth, O. Patashnik: Concrete Mathemat-
ics. Addison-Wesley Publishing Company, Reading, MA, 2nd edition, 1994.

[Hasan & Khadivi+ 06] S. Hasan, S. Khadivi, R. Zens, H. Ney: A Flexible Architecture
for CAT Applications. Proc. 11th Annual Conf. of the European Assoc. for Machine
Translation (EAMT), pp. 81–88, Oslo, Norway, June 2006.

[Hasan & Zens+ 07] S. Hasan, R. Zens, H. Ney: Are Very Large N-best Lists Useful
for SMT? Proc. Human Language Technology Conf. / North American Chapter of
the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL), Companion
Volume: Short Papers, pp. 57–60, Rochester, NY, April 2007.

[Held & Karp 62] M. Held, R.M. Karp: A Dynamic Programming Approach to Sequenc-
ing Problems. Journal of the Society of Industrial and Applied Mathematics (SIAM),
Vol. 10, No. 1, pp. 196–210, 1962.

[Huang & Zhang+ 05] L. Huang, H. Zhang, D. Gildea: Machine Translation as Lexical-
ized Parsing with Hooks. Proc. 9th Int. Workshop on Parsing Technology (IWPT), pp.
65–73, Vancouver, Canada, October 2005.

[Jelinek 98] F. Jelinek: Statistical Methods for Speech Recognition. MIT Press, Cam-
bridge, MA, 1998.

[Kanthak & Ney 04] S. Kanthak, H. Ney: FSA: An Efficient and Flexible C++ Toolkit for
Finite State Automata Using On-Demand Computation. Proc. 42nd Annual Meeting of
the Assoc. for Computational Linguistics (ACL), pp. 510–517, Barcelona, Spain, July
2004.

[Kanthak & Vilar+ 05] S. Kanthak, D. Vilar, E. Matusov, R. Zens, H. Ney: Novel Re-
ordering Approaches in Phrase-Based Statistical Machine Translation. Proc. 43rd An-
nual Meeting of the Assoc. for Computational Linguistics (ACL): Workshop on Building
and Using Parallel Texts: Data-Driven Machine Translation and Beyond, pp. 167–174,
Ann Arbor, MI, June 2005.

[Kasami 65] T. Kasami: An Efficient Recognition and Syntax Analysis Algorithm for
Context-free Languages. Technical Report AFCRL-65-758, Air Force Cambridge Re-
search Laboratory, Bedford, MA, August 1965.

[Keijsper & Pendavingh 98] J. Keijsper, R. Pendavingh: An Efficient Algorithm for
Minimum-weight Bibranching. Journal of Combinatorial Theory Series B, Vol. 73,
No. 2, pp. 130–145, July 1998.

139

Bibliography

[Khadivi & Zens+ 06] S. Khadivi, R. Zens, H. Ney: Integration of Speech to Computer-
Assisted Translation Using Finite State Automata. Proc. 21st Int. Conf. on Computa-
tional Linguistics and 44th Annual Meeting of the Assoc. for Computational Linguistics
(COLING/ACL), pp. 467–474, Sydney, Australia, July 2006.

[Kneser & Ney 95] R. Kneser, H. Ney: Improved Backing-Off for M-gram Language Mod-
elling. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
Vol. 1, pp. 181–184, Detroit, MI, May 1995.

[Knight 99] K. Knight: Decoding Complexity in Word-Replacement Translation Models.
Computational Linguistics, Vol. 25, No. 4, pp. 607–615, December 1999.

[Knight & Al-Onaizan 98] K. Knight, Y. Al-Onaizan: Translation with Finite-State De-
vices. Proc. D. Farwell, L. Gerber, E.H. Hovy, editors, Third Conference of the Associ-
ation for Machine Translation in the Americas, Vol. 1529 of Lecture Notes in Computer
Science, pp. 421–437. Springer Verlag, October 1998.

[Knuth 73] D.E. Knuth: The Art of Computer Programming, Vol. 1 - Fundamental Al-
gorithms. Addison-Wesley, Reading, MA, 2nd edition, 1973.

[Koehn 03] P. Koehn: Noun Phrase Translation. Ph.D. thesis, University of Southern
California, 2003.

[Koehn 04a] P. Koehn: Pharaoh: a Beam Search Decoder for Phrase-Based Statistical
Machine Translation Models. Proc. 6th Conf. of the Assoc. for Machine Translation in
the Americas (AMTA), pp. 115–124, Washington DC, September/October 2004.

[Koehn 04b] P. Koehn: Statistical Significance Tests for Machine Translation Evaluation.
Proc. Conf. on Empirical Methods for Natural Language Processing (EMNLP), pp. 388–
395, Barcelona, Spain, July 2004.

[Koehn & Axelrod+ 05] P. Koehn, A. Axelrod, A.B. Mayne, C. Callison-Burch, M. Os-
borne, D. Talbot: Edinburgh System Description for the 2005 IWSLT Speech Transla-
tion Evaluation. Proc. Int. Workshop on Spoken Language Translation (IWSLT), pp.
78–85, Pittsburgh, PA, October 2005.

[Koehn & Hoang+ 07] P. Koehn, H. Hoang, A. Birch, C. Callison-Burch, M. Federico,
N. Bertoldi, B. Cowan, W. Shen, C. Moran, R. Zens, C. Dyer, O. Bojar, A. Constantine,
E. Herbst: Moses: Open Source Toolkit for Statistical Machine Translation. Proc. 45th
Annual Meeting of the Assoc. for Computational Linguistics (ACL): Poster Session,
pp. 177–180, Prague, Czech Republic, June 2007.

[Koehn & Och+ 03] P. Koehn, F.J. Och, D. Marcu: Statistical Phrase-Based Translation.
Proc. Human Language Technology Conf. / North American Chapter of the Assoc. for
Computational Linguistics Annual Meeting (HLT-NAACL), pp. 127–133, Edmonton,
Canada, May/June 2003.

[Kumar & Byrne 03] S. Kumar, W. Byrne: A weighted finite state transducer implemen-
tation of the alignment template model for statistical machine translation. Proc. Human

140

Bibliography

Language Technology Conf. / North American Chapter of the Assoc. for Computa-
tional Linguistics Annual Meeting (HLT-NAACL), pp. 142–149, Edmonton, Canada,
May/June 2003.

[Kumar & Byrne 04] S. Kumar, W. Byrne: Minimum Bayes-Risk Decoding for Statistical
Machine Translation. Proc. Human Language Technology Conf. / North American
Chapter of the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL),
pp. 169–176, Boston, MA, May 2004.

[Kumar & Byrne 05] S. Kumar, W. Byrne: Local Phrase Reordering Models for Statisti-
cal Machine Translation. Proc. Human Language Technology Conf. / Conf. on Empiri-
cal Methods in Natural Language Processing (HLT/EMNLP), pp. 161–168, Vancouver,
Canada, October 2005.

[Lavie & Agarwal 07] A. Lavie, A. Agarwal: METEOR: An Automatic Metric for MT
Evaluation with High Levels of Correlation with Human Judgments. Proc. 45th Annual
Meeting of the Assoc. for Computational Linguistics (ACL): Workshop on Statistical
Machine Translation, pp. 228–231, Prague, Czech Republic, June 2007.

[Lehmer 70] D.H. Lehmer: Permutations with strongly restricted displacements. In Com-
binatorial Theory and its Applications, Vol. 2, pp. 755–770. North-Holland, Amsterdam,
The Netherlands, 1970.

[Lin & Och 04] C.Y. Lin, F.J. Och: ORANGE: a Method for Evaluating Automatic
Evaluation Metrics for Machine Translation. Proc. 20th Int. Conf. on Computational
Linguistics (COLING), pp. 501–507, Geneva, Switzerland, August 2004.

[Malouf 02] R. Malouf: A Comparison of Algorithms for Maximum Entropy Parameter
Estimation. Proc. Conf. on Natural Language Learning (CoNLL), pp. 49–55, Taipei,
Taiwan, August/September 2002.

[Mangu & Brill+ 00] L. Mangu, E. Brill, A. Stolcke: Finding Consensus in Speech Recog-
nition: Word Error Minimization and Other Applications of Confusion Networks. Com-
puter, Speech and Language, Vol. 14, No. 4, pp. 373–400, October 2000.

[Marcu & Wong 02] D. Marcu, W. Wong: A Phrase-Based, Joint Probability Model
for Statistical Machine Translation. Proc. Conf. on Empirical Methods for Natural
Language Processing (EMNLP), pp. 133–139, Philadelphia, PA, July 2002.

[Mathias & Byrne 06] L. Mathias, W. Byrne: Statistical Phrase-based Speech Transla-
tion. Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP),
Vol. 1, pp. 561–564, Toulouse, France, May 2006.

[Matusov & Ney 05] E. Matusov, H. Ney: Phrase-based Translation of Speech Recognizer
Word Lattices using Loglinear Model Combination. Proc. IEEE Automatic Speech
Recognition and Understanding Workshop (ASRU), pp. 110–115, San Juan, Puerto
Rico, November/December 2005.

141

Bibliography

[Matusov & Popović+ 04] E. Matusov, M. Popović, R. Zens, H. Ney: Statistical Machine
Translation of Spontaneous Speech with Scarce Resources. Proc. Int. Workshop on
Spoken Language Translation (IWSLT), pp. 139–146, Kyoto, Japan, September 2004.

[Matusov & Zens+ 04] E. Matusov, R. Zens, H. Ney: Symmetric Word Alignments for
Statistical Machine Translation. Proc. 20th Int. Conf. on Computational Linguistics
(COLING), pp. 219–225, Geneva, Switzerland, August 2004.

[Matusov & Zens+ 06] E. Matusov, R. Zens, D. Vilar, A. Mauser, M. Popović, S. Hasan,
H. Ney: The RWTH Machine Translation System. Proc. TC-Star Workshop on Speech-
to-Speech Translation, pp. 31–36, Barcelona, Spain, June 2006.

[Melamed 00] I.D. Melamed: Models of Translational Equivalence among Words. Com-
putational Linguistics, Vol. 26, No. 2, pp. 221–249, June 2000.

[Melamed 04] I.D. Melamed: Statistical Machine Translation by Parsing. Proc. 42nd
Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp. 653–660,
Barcelona, Spain, July 2004.

[Mohri & Pereira+] M. Mohri, F.C. Pereira, M.D. Riley: AT&T FSM Library - Finite
State Machine Library. http://www.research.att.com/∼fsmtools/fsm.

[Morimoto & Uratani+ 94] T. Morimoto, N. Uratani, T. Takezawa, O. Furuse,
Y. Sobashima, H. Iida, A. Nakamura, Y. Sagisaka, N. Higuchi, Y. Yamazaki: A Speech
and Language Database for Speech Translation Research. Proc. 3rd Int. Conf. on
Spoken Language Processing (ICSLP), pp. 1791–1794, Yokohama, Japan, September
1994.

[Mostefa & Arranz+ 05] D. Mostefa, V. Arranz, K. Choukri, O. Hamon, S. Surcin: TC-
STAR Deliverable no. D 30: Evaluation Report. Technical report, Integrated project
TC-STAR (IST-2002-FP6-506738) funded by the European Commission, 42 pages, Au-
gust 2005. http://www.tc-star.org/.

[Mostefa & Garcia+ 06] D. Mostefa, M.N. Garcia, O. Hamon, N. Moreau: TC-STAR De-
liverable no. D 16: Evaluation Report. Technical report, Integrated project TC-STAR
(IST-2002-FP6-506738) funded by the European Commission, 102 pages, September
2006. http://www.tc-star.org/.

[Mostefa & Hamon+ 07] D. Mostefa, O. Hamon, N. Moreau, K. Choukri: TC-STAR
Deliverable no. D 30: Evaluation Report. Technical report, Integrated project TC-
STAR (IST-2002-FP6-506738) funded by the European Commission, 91 pages, May
2007. http://www.tc-star.org/.

[Munteanu & Fraser+ 04] D.S. Munteanu, A. Fraser, D. Marcu: Improved Machine
Translation Performance via Parallel Sentence Extraction from Comparable Corpora.
Proc. Human Language Technology Conf. / North American Chapter of the Assoc. for
Computational Linguistics Annual Meeting (HLT-NAACL), pp. 265–272, Boston, MA,
May 2004.

142

Bibliography

[Nagata & Yamamoto+ 06] M. Nagata, K. Yamamoto, K. Ohashi: A Clustered Global
Phrase Reordering Model for Statistical Machine Translation. Proc. 21st Int. Conf. on
Computational Linguistics and 44th Annual Meeting of the Assoc. for Computational
Linguistics (COLING/ACL), pp. 713–720, Sydney, Australia, July 2006.

[Nelder & Mead 65] J.A. Nelder, R. Mead: A Simplex Method for Function Minimization.
The Computer Journal, Vol. 7, pp. 308–313, 1965.

[Ney 99] H. Ney: Speech Translation: Coupling of Recognition and Translation. Proc.
IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), pp. 517–520,
Phoenix, AR, March 1999.

[Ney 01] H. Ney: Stochastic Modelling: from Pattern Classification to Language Trans-
lation. Proc. 39th Annual Meeting of the Assoc. for Computational Linguistics (ACL):
Workshop on Data-Driven Machine Translation, pp. 1–5, Morristown, NJ, July 2001.

[Ney & Haeb-Umbach+ 92] H. Ney, R. Haeb-Umbach, B.H. Tran, M. Oerder: Improve-
ments in Beam Search for 10000-Word Continuous Speech Recognition. Proc. IEEE
Int. Conf. on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 9–12, San
Francisco, CA, March 1992.

[Ney & Martin+ 97] H. Ney, S. Martin, F. Wessel: Statistical Language Modeling Us-
ing Leaving-One-Out. In S. Young, G. Bloothooft, editors, Corpus-Based Methods in
Language and Speech Processing, pp. 174–207. Kluwer, 1997.

[Och 99] F.J. Och: An Efficient Method for Determining Bilingual Word Classes. Proc.
9th Conf. of the Europ. Chapter of the Assoc. for Computational Linguistics (EACL),
pp. 71–76, Bergen, Norway, June 1999.

[Och 01] F.J. Och: YASMET: Toolkit for Conditional Maximum Entropy Models, 2001.
http://www-i6.informatik.rwth-aachen.de/web/Software/YASMET.html.

[Och 02] F.J. Och: Statistical Machine Translation: From Single-Word Models to Align-
ment Templates. Ph.D. thesis, Lehrstuhl für Informatik 6, Computer Science Depart-
ment, RWTH Aachen University, Aachen, Germany, October 2002.

[Och 03] F.J. Och: Minimum Error Rate Training in Statistical Machine Translation.
Proc. 41st Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp.
160–167, Sapporo, Japan, July 2003.

[Och & Gildea+ 03] F.J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser,
S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, D. Radev: Syntax for Statistical
Machine Translation. Technical report, Johns Hopkins University 2003 Summer Work-
shop on Language Engineering, Center for Language and Speech Processing, Baltimore,
MD, 120 pages, August 2003.

[Och & Gildea+ 04] F.J. Och, D. Gildea, S. Khudanpur, A. Sarkar, K. Yamada, A. Fraser,
S. Kumar, L. Shen, D. Smith, K. Eng, V. Jain, Z. Jin, D. Radev: A Smorgasbord of
Features for Statistical Machine Translation. Proc. Human Language Technology Conf.

143

Bibliography

/ North American Chapter of the Assoc. for Computational Linguistics Annual Meeting
(HLT-NAACL), pp. 161–168, Boston, MA, May 2004.

[Och & Ney 00] F.J. Och, H. Ney: Improved Statistical Alignment Models. Proc. 38th
Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp. 440–447, Hong
Kong, China, October 2000.

[Och & Ney 02] F.J. Och, H. Ney: Discriminative Training and Maximum Entropy Mod-
els for Statistical Machine Translation. Proc. 40th Annual Meeting of the Assoc. for
Computational Linguistics (ACL), pp. 295–302, Philadelphia, PA, July 2002.

[Och & Ney 03] F.J. Och, H. Ney: A Systematic Comparison of Various Statistical Align-
ment Models. Computational Linguistics, Vol. 29, No. 1, pp. 19–51, March 2003.

[Och & Ney 04] F.J. Och, H. Ney: The Alignment Template Approach to Statistical
Machine Translation. Computational Linguistics, Vol. 30, No. 4, pp. 417–449, December
2004.

[Och & Tillmann+ 99] F.J. Och, C. Tillmann, H. Ney: Improved Alignment Models for
Statistical Machine Translation. Proc. Joint SIGDAT Conf. on Empirical Methods in
Natural Language Processing and Very Large Corpora (EMNLP), pp. 20–28, College
Park, MD, June 1999.

[Och & Zens+ 03] F.J. Och, R. Zens, H. Ney: Efficient Search for Interactive Statisti-
cal Machine Translation. Proc. 10th Conf. of the Europ. Chapter of the Assoc. for
Computational Linguistics (EACL), pp. 387–393, Budapest, Hungary, April 2003.

[Ohashi & Yamamoto+ 05] K. Ohashi, K. Yamamoto, K. Saito, M. Nagata: NUT-NTT
Statistical Machine Translation System for IWSLT 2005. Proc. Int. Workshop on Spo-
ken Language Translation (IWSLT), pp. 128–133, Pittsburgh, PA, October 2005.

[Pantel & Ravichandran+ 04] P. Pantel, D. Ravichandran, E. Hovy: Towards Terascale
Semantic Acquisition. Proc. 20th Int. Conf. on Computational Linguistics (COLING),
pp. 771–777, Geneva, Switzerland, August 2004.

[Papineni & Roukos+ 98] K.A. Papineni, S. Roukos, R.T. Ward: Maximum Likelihood
and Discriminative Training of Direct Translation Models. Proc. IEEE Int. Conf. on
Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 189–192, Seattle, WA,
May 1998.

[Papineni & Roukos+ 02] K. Papineni, S. Roukos, T. Ward, W.J. Zhu: Bleu: a Method
for Automatic Evaluation of Machine Translation. Proc. 40th Annual Meeting of the
Assoc. for Computational Linguistics (ACL), pp. 311–318, Philadelphia, PA, July 2002.

[Pearl 88] J. Pearl: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann Publishers, Inc., San Mateo, CA, 1988. Revised second
printing.

[Press & Teukolsky+ 02] W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery:
Numerical Recipes in C++. Cambridge University Press, Cambridge, UK, 2002.

144

Bibliography

[Schröder 70] E. Schröder: Vier combinatorische Probleme. Zeitschrift für Mathematik
und Physik, Vol. 15, pp. 361–376, 1870.

[Shapiro & Stephens 91] L. Shapiro, A.B. Stephens: Boostrap Percolation, the Schröder
Numbers, and the N -Kings Problem. SIAM Journal on Discrete Mathematics, Vol. 4,
No. 2, pp. 275–280, May 1991.

[Shen & Sarkar+ 04] L. Shen, A. Sarkar, F.J. Och: Discriminative Reranking for Machine
Translation. Proc. Human Language Technology Conf. / North American Chapter of
the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL), pp. 177–184,
Boston, MA, May 2004.

[Shen & Zens+ 06] W. Shen, R. Zens, N. Bertoldi, M. Federico: The JHU Workshop 2006
IWSLT System. Proc. Int. Workshop on Spoken Language Translation (IWSLT), pp.
59–63, Kyoto, Japan, November 2006.

[Smith & Eisner 06] D.A. Smith, J. Eisner: Minimum Risk Annealing for Training Log-
Linear Models. Proc. 21st Int. Conf. on Computational Linguistics and 44th Annual
Meeting of the Assoc. for Computational Linguistics (COLING/ACL), pp. 787–794,
Sydney, Australia, July 2006.

[Snover & Dorr+ 06] M. Snover, B. Dorr, R. Schwartz, L. Micciulla, J. Makhoul: A
Study of Translation Edit Rate with Targeted Human Annotation. Proc. Conf. of the
Assoc. for Machine Translation in the Americas (AMTA), pp. 223–231, Cambridge,
MA, August 2006.

[Steinbiss & Tran+ 94] V. Steinbiss, B.H. Tran, H. Ney: Improvements in Beam Search.
Proc. Int. Conf. on Spoken Language Processing (ICSLP), pp. 2143–2146, September
1994.

[Stolcke 02] A. Stolcke: SRILM – An Extensible Language Modeling Toolkit. Proc.
Int. Conf. on Spoken Language Processing (ICSLP), Vol. 2, pp. 901–904, Denver, CO,
September 2002.

[Takezawa & Sumita+ 02] T. Takezawa, E. Sumita, F. Sugaya, H. Yamamoto, S. Ya-
mamoto: Toward a Broad-coverage Bilingual Corpus for Speech Translation of Travel
Conversations in the Real World. Proc. 3rd Int. Conf. on Language Resources and
Evaluation (LREC), pp. 147–152, Las Palmas, Spain, May 2002.

[Tillmann 01] C. Tillmann: Word Re-Ordering and Dynamic Programming based Search
Algorithms for Statistical Machine Translation. Ph.D. thesis, Lehrstuhl für Infor-
matik 6, Computer Science Department, RWTH Aachen University, Aachen, Germany,
May 2001.

[Tillmann 03] C. Tillmann: A Projection Extension Algorithm for Statistical Machine
Translation. Proc. Conf. on Empirical Methods for Natural Language Processing
(EMNLP), pp. 1–8, Sapporo, Japan, July 2003.

145

Bibliography

[Tillmann 06] C. Tillmann: Efficient Dynamic Programming Search Algorithms for
Phrase-Based SMT. Proc. Workshop on Computationally Hard Problems and Joint
Inference in Speech and Language Processing, pp. 9–16, New York City, NY, June
2006.

[Tillmann & Ney 00] C. Tillmann, H. Ney: Word Re-ordering and DP-based Search in
Statistical Machine Translation. Proc. 18th Int. Conf. on Computational Linguistics
(COLING), pp. 850–856, Saarbrücken, Germany, July 2000.

[Tillmann & Ney 03] C. Tillmann, H. Ney: Word Reordering and a Dynamic Program-
ming Beam Search Algorithm for Statistical Machine Translation. Computational Lin-
guistics, Vol. 29, No. 1, pp. 97–133, March 2003.

[Tillmann & Vogel+ 97] C. Tillmann, S. Vogel, H. Ney, A. Zubiaga: A DP-based Search
Using Monotone Alignments in Statistical Translation. Proc. 35th Annual Meeting of
the Assoc. for Computational Linguistics (ACL), pp. 289–296, Madrid, Spain, July
1997.

[Tillmann & Xia 03] C. Tillmann, F. Xia: A Phrase-based Unigram Model for Statistical
Machine Translation. Proc. Human Language Technology Conf. / North American
Chapter of the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL),
Companion Volume: Short Papers, pp. 106–108, Edmonton, Canada, May/June 2003.

[Tillmann & Zhang 05] C. Tillmann, T. Zhang: A Localized Prediction Model for Statis-
tical Machine Translation. Proc. 43rd Annual Meeting of the Assoc. for Computational
Linguistics (ACL), pp. 557–564, Ann Arbor, MI, June 2005.

[Tillmann & Zhang 06] C. Tillmann, T. Zhang: A Discriminative Global Training Al-
gorithm for Statistical MT. Proc. 21st Int. Conf. on Computational Linguistics and
44th Annual Meeting of the Assoc. for Computational Linguistics (COLING/ACL), pp.
721–728, Sydney, Australia, July 2006.

[Tomás & Casacuberta 01] J. Tomás, F. Casacuberta: Monotone Statistical Translation
using Word Groups. Proc. Machine Translation Summit VIII, pp. 357–361, Santiago
de Compostela, September 2001.

[Tomás & Casacuberta 04] J. Tomás, F. Casacuberta: Statistical Machine Translation
Decoding Using Target Word Reordering. In Structural, Syntactic, and Statistical
Pattern Recognition, Vol. 3138 of Lecture Notes in Computer Science, pp. 734–743.
Springer-Verlag, Lisbon, Portugal, August 2004.

[Toutanova & Ilhan+ 02] K. Toutanova, H.T. Ilhan, C.D. Manning: Extensions to HMM-
based Statistical Word Alignment Models. Proc. Conf. on Empirical Methods for Nat-
ural Language Processing (EMNLP), pp. 87–94, Philadelphia, PA, July 2002.

[Turian & Shen+ 03] J.P. Turian, L. Shen, I.D. Melamed: Evaluation of Machine Trans-
lation and its Evaluation. Technical Report Proteus technical report 03-005, Computer
Science Department, New York University, 8 pages, 2003.

146

Bibliography

[Udupa & Maji 06] R. Udupa, H.K. Maji: Computational Complexity of Statistical Ma-
chine Translation. Proc. 11th Conf. of the Europ. Chapter of the Assoc. for Computa-
tional Linguistics (EACL), pp. 25–32, Trento, Italy, April 2006.

[Ueffing 05] N. Ueffing: Confidence Measures for Statistical Machine Translation. Ph.D.
thesis, Lehrstuhl für Informatik 6, Computer Science Department, RWTH Aachen Uni-
versity, Aachen, Germany, 2005.

[Ueffing & Macherey+ 03] N. Ueffing, K. Macherey, H. Ney: Confidence Measures for
Statistical Machine Translation. Proc. MT Summit IX, pp. 394–401, New Orleans, LA,
September 2003.

[Ueffing & Och+ 02] N. Ueffing, F.J. Och, H. Ney: Generation of Word Graphs in Sta-
tistical Machine Translation. Proc. Conf. on Empirical Methods for Natural Language
Processing (EMNLP), pp. 156–163, Philadelphia, PA, July 2002.

[Venugopal & Zollmann+ 05] A. Venugopal, A. Zollmann, A. Waibel: Training and Eval-
uating Error Minimization Rules for Statistical Machine Translation. Proc. 43rd Annual
Meeting of the Assoc. for Computational Linguistics (ACL): Workshop on Building and
Using Parallel Texts: Data-Driven Machine Translation and Beyond, pp. 208–215, Ann
Arbor, MI, June 2005.

[Vidal 97] E. Vidal: Finite-State Speech-to-Speech Translation. Proc. IEEE Int. Conf.
on Acoustics, Speech, and Signal Processing (ICASSP), Vol. 1, pp. 111–114, Munich,
Germany, April 1997.

[Vilar 98] J.M. Vilar: Aprendizaje de Transductores Subsecuenciales para su empleo en
tareas de Dominio Restringido. Ph.D. thesis, Universidad Politecnica de Valencia, 1998.

[Vilar & Matusov+ 05] D. Vilar, E. Matusov, S. Hasan, R. Zens, H. Ney: Statistical
Machine Translation of European Parliamentary Speeches. Proc. MT Summit X, pp.
259–266, Phuket, Thailand, September 2005.

[Vilar & Popović+ 06] D. Vilar, M. Popović, H. Ney: AER: Do we need to ”improve”
our alignments? Proc. Int. Workshop on Spoken Language Translation (IWSLT), pp.
205–212, Kyoto, Japan, November 2006.

[Vilar & Vidal 05] J.M. Vilar, E. Vidal: A Recursive Statistical Translation Model. Proc.
43rd Annual Meeting of the Assoc. for Computational Linguistics (ACL): Workshop on
Building and Using Parallel Texts: Data-Driven Machine Translation and Beyond, pp.
199–207, Ann Arbor, MI, June 2005.

[Vogel 03] S. Vogel: SMT Decoder Dissected: Word Reordering. Proc. Int. Conf. on Nat-
ural Language Processing and Knowledge Engineering (NLP-KE), pp. 561–566, Beijing,
China, October 2003.

[Vogel & Ney+ 96] S. Vogel, H. Ney, C. Tillmann: HMM-Based Word Alignment in
Statistical Translation. Proc. 16th Int. Conf. on Computational Linguistics (COLING),
pp. 836–841, Copenhagen, Denmark, August 1996.

147

Bibliography

[Wahlster 00] W. Wahlster, editor: Verbmobil: Foundations of speech-to-speech transla-
tions. Springer Verlag, Berlin, Germany, July 2000.

[Wang & Waibel 97] Y.Y. Wang, A. Waibel: Decoding Algorithm in Statistical Machine
Translation. Proc. 35th Annual Meeting of the Assoc. for Computational Linguistics
(ACL), pp. 366–372, Madrid, Spain, July 1997.

[Wasserman 05] L. Wasserman: All of Statistics: A Concise Course in Statistical Infer-
ence. Springer Science+Business Media, New York City, NY, 2005. 2nd printing.

[Weaver 55] W. Weaver: Translation. In W.N. Locke, A.D. Booth, editors, Machine
Translation of Languages: fourteen essays, pp. 15–23. MIT Press, Cambridge, MA,
1955.

[Wessel 02] F. Wessel: Word Posterior Probabilities for Large Vocabulary Continuous
Speech Recognition. Ph.D. thesis, Lehrstuhl für Informatik 6, Computer Science De-
partment, RWTH Aachen University, Aachen, Germany, January 2002.

[West 95] J. West: Generating Trees and the Catalan and Schröder Numbers. Discrete
Mathematics, Vol. 146, pp. 247–262, November 1995.

[Wu 95] D. Wu: Stochastic Inversion Transduction Grammars, with Application to Seg-
mentation, Bracketing, and Alignment of Parallel Corpora. Proc. 14th Int. Joint Conf.
on Artificial Intelligence (IJCAI), pp. 1328–1334, Montreal, Canada, August 1995.

[Wu 96] D. Wu: A Polynomial-Time Algorithm for Statistical Machine Translation. Proc.
34th Annual Meeting of the Assoc. for Computational Linguistics (ACL), pp. 152–158,
Santa Cruz, CA, June 1996.

[Wu 97] D. Wu: Stochastic Inversion Transduction Grammars and Bilingual Parsing of
Parallel Corpora. Computational Linguistics, Vol. 23, No. 3, pp. 377–403, September
1997.

[Wu & Wong 98] D. Wu, H. Wong: Machine Translation with a Stochastic Grammati-
cal Channel. Proc. 36th Annual Meeting of the Assoc. for Computational Linguistics
and 17th Int. Conf. on Computational Linguistics (COLING-ACL), pp. 1408–1414,
Montréal, Québec, Canada, August 1998.

[Xiong & Liu+ 06] D. Xiong, Q. Liu, S. Lin: Maximum Entropy Based Phrase Reorder-
ing Model for Statistical Machine Translation. Proc. 21st Int. Conf. on Computational
Linguistics and 44th Annual Meeting of the Assoc. for Computational Linguistics (COL-
ING/ACL), pp. 521–528, Sydney, Australia, July 2006.

[Xu & Matusov+ 05] J. Xu, E. Matusov, R. Zens, H. Ney: Integrated Chinese Word Seg-
mentation in Statistical Machine Translation. Proc. Int. Workshop on Spoken Language
Translation (IWSLT), pp. 141–147, Pittsburgh, PA, October 2005.

[Xu & Zens+ 04] J. Xu, R. Zens, H. Ney: Do We Need Chinese Word Segmentation for
Statistical Machine Translation? Proc. Third SIGHAN Workshop on Chinese Language
Learning, pp. 122–128, Barcelona, Spain, July 2004.

148

Bibliography

[Xu & Zens+ 05] J. Xu, R. Zens, H. Ney: Sentence Segmentation Using IBM Word
Alignment Model 1. Proc. 10th Annual Conf. of the European Assoc. for Machine
Translation (EAMT), pp. 280–287, Budapest, Hungary, May 2005.

[Xu & Zens+ 06] J. Xu, R. Zens, H. Ney: Partitioning Parallel Documents Using Binary
Segmentation. Proc. Human Language Technology Conf. / North American Chapter of
the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL): Workshop
on Statistical Machine Translation, pp. 78–85, New York City, NY, June 2006.

[Yamada & Knight 01] K. Yamada, K. Knight: A Syntax-Based Statistical Translation
Model. Proc. 39th Annual Meeting of the Assoc. for Computational Linguistics (ACL),
pp. 523–530, Toulouse, France, July 2001.

[Yamada & Knight 02] K. Yamada, K. Knight: A Decoder for Syntax-based Statistical
MT. Proc. 40th Annual Meeting of the Assoc. for Computational Linguistics (ACL),
pp. 303–310, Philadelphia, PA, July 2002.

[Younger 67] D. Younger: Recognition and Parsing of Context-free Languages in Time
n3. Information and Control, Vol. 10, No. 2, pp. 189–208, 1967.

[Zens & Bender+ 05] R. Zens, O. Bender, S. Hasan, S. Khadivi, E. Matusov, J. Xu,
Y. Zhang, H. Ney: The RWTH Phrase-based Statistical Machine Translation Sys-
tem. Proc. Int. Workshop on Spoken Language Translation (IWSLT), pp. 155–162,
Pittsburgh, PA, October 2005.

[Zens & Hasan+ 07] R. Zens, S. Hasan, H. Ney: A Systematic Comparison of Training
Criteria for Statistical Machine Translation. Proc. Conf. on Empirical Methods for
Natural Language Processing (EMNLP), pp. 524–532, Prague, Czech Republic, June
2007.

[Zens & Matusov+ 04] R. Zens, E. Matusov, H. Ney: Improved Word Alignment Us-
ing a Symmetric Lexicon Model. Proc. 20th Int. Conf. on Computational Linguistics
(COLING), pp. 36–42, Geneva, Switzerland, August 2004.

[Zens & Ney 03] R. Zens, H. Ney: A Comparative Study on Reordering Constraints in
Statistical Machine Translation. Proc. 41st Annual Meeting of the Assoc. for Compu-
tational Linguistics (ACL), pp. 144–151, Sapporo, Japan, July 2003.

[Zens & Ney 04a] R. Zens, H. Ney: Improvements in Phrase-Based Statistical Machine
Translation. Proc. Human Language Technology Conf. / North American Chapter of
the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL), pp. 257–264,
Boston, MA, May 2004.

[Zens & Ney+ 04b] R. Zens, H. Ney, T. Watanabe, E. Sumita: Reordering Constraints for
Phrase-Based Statistical Machine Translation. Proc. 20th Int. Conf. on Computational
Linguistics (COLING), pp. 205–211, Geneva, Switzerland, August 2004.

[Zens & Ney 05] R. Zens, H. Ney: Word Graphs for Statistical Machine Translation.
Proc. 43rd Annual Meeting of the Assoc. for Computational Linguistics (ACL): Work-
shop on Building and Using Parallel Texts: Data-Driven Machine Translation and
Beyond, pp. 191–198, Ann Arbor, MI, June 2005.

149

Bibliography

[Zens & Ney 06a] R. Zens, H. Ney: Discriminative Reordering Models for Statistical
Machine Translation. Proc. Human Language Technology Conf. / North American
Chapter of the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL):
Workshop on Statistical Machine Translation, pp. 55–63, New York City, NY, June
2006.

[Zens & Ney 06b] R. Zens, H. Ney: N -Gram Posterior Probabilities for Statistical Ma-
chine Translation. Proc. Human Language Technology Conf. / North American Chapter
of the Assoc. for Computational Linguistics Annual Meeting (HLT-NAACL): Workshop
on Statistical Machine Translation, pp. 72–77, New York City, NY, June 2006.

[Zens & Ney 07] R. Zens, H. Ney: Efficient Phrase-table Representation for Machine
Translation with Applications to Online MT and Speech Translation. Proc. Human
Language Technology Conf. / North American Chapter of the Assoc. for Computational
Linguistics Annual Meeting (HLT-NAACL), pp. 492–499, Rochester, NY, April 2007.

[Zens & Och+ 02] R. Zens, F.J. Och, H. Ney: Phrase-Based Statistical Machine Trans-
lation. Proc. M. Jarke, J. Koehler, G. Lakemeyer, editors, 25th German Conf. on
Artificial Intelligence (KI2002), Vol. 2479 of Lecture Notes in Artificial Intelligence
(LNAI), pp. 18–32, Aachen, Germany, September 2002. Springer Verlag.

[Zhang & Huang+ 06] H. Zhang, L. Huang, D. Gildea, K. Knight: Synchronous Bina-
rization for Machine Translation. Proc. Human Language Technology Conf. / North
American Chapter of the Assoc. for Computational Linguistics Annual Meeting (HLT-
NAACL), pp. 256–263, New York City, NY, June 2006.

[Zhang & Vogel 05] Y. Zhang, S. Vogel: Measuring Confidence Intervals for the Machine
Translation Evaluation Metrics. Proc. Int. Conf. on Theoretical and Methodological
Issues in Machine Translation (TMI), pp. 85–94, Baltimore, MD, October 2005.

[Zhang & Zens+ 07a] Y. Zhang, R. Zens, H. Ney: Chunk-Level Reordering of Source Lan-
guage Sentences with Automatically Learned Rules for Statistical Machine Translation.
Proc. Human Language Technology Conf. / North American Chapter of the Assoc. for
Computational Linguistics Annual Meeting (HLT-NAACL): Workshop on Syntax and
Structure in Statistical Translation (SSST), pp. 1–8, Rochester, NY, April 2007.

[Zhang & Zens+ 07b] Y. Zhang, R. Zens, H. Ney: Improved Chunk-level Reordering for
Statistical Machine Translation. Proc. Int. Workshop on Spoken Language Translation
(IWSLT), pp. 21–28, Trento, Italy, October 2007.

[Zollmann & Venugopal 06] A. Zollmann, A. Venugopal: Syntax Augmented Machine
Translation via Chart Parsing. Proc. Human Language Technology Conf. / North
American Chapter of the Assoc. for Computational Linguistics Annual Meeting (HLT-
NAACL): Workshop on Statistical Machine Translation, pp. 138–141, New York City,
NY, June 2006.

150

Lebenslauf

Angaben zur Person

Richard Zens

geboren am 29. März 1977

Geburtsort: Düren

Schulbildung

1984 - 1988 Grundschule Müddersheim

1988 - 1996 Frankengymnasium Zülpich

Wehrdienst

1996 - 1997 Stabs- und Fernmeldebatallion, Coesfeld

Studium

1997 - 2002 Informatikstudium an der RWTH Aachen

Vertiefungsgebiet: Mustererkennung und Sprachverarbeitung

Abschluss als Diplom-Informatiker

2002 - 2008 Promotionsstudium an der RWTH Aachen

2006 Teilnahme am 6-Wochen Summer Research Workshop des Center for

Language and Speech Processing an der Johns Hopkins University,

Baltimore, Maryland, USA

Arbeitstätigkeiten

1998 - 2001 Studentische Hilfskraft am Lehrstuhl für Mustererkennung und Sprach-

verarbeitung (Informatik 6) an der RWTH Aachen

2002 - 2008 Wissenschaftlicher Mitarbeiter am Lehrstuhl für Mustererkennung

und Sprachverarbeitung (Informatik 6) an der RWTH Aachen

2003 3-monatiger Aufenthalt beim Advanced Telecommunication Research

Institute International, Kyoto, Japan

2008 - Research Scientist bei Google Inc., Mountain View, Kalifornien, USA

151

