
White-Space Models for Offline Arabic Handwriting Recognition

Philippe Dreuw, Stephan Jonas, and Hermann Ney

Human Language Technology and Pattern Recognition, RWTH Aachen University

{dreuw,jonas,ney}@cs.rwth-aachen.de

Abstract

We propose to explicitly model white-spaces for Ara-

bic handwriting recognition within different writing

variants. Position-dependent character shapes in Ara-

bic handwriting allow for large white-spaces between

characters even within words. Here, a separate char-

acter model for white-spaces in combination with a

lexicon using different writing variants and character

model length adaptation is proposed. Current hand-

writing recognition systems model the white-spaces im-

plicitly within the character models leading to possi-

bly degraded models, or try to explicitly segment the

Arabic words into pieces of Arabic words being prone

to segmentation errors. Several white-space modeling

approaches are analyzed on the well known IFN/ENIT

database and outperform the best reported error rates.

1. Introduction

Especially in Arabic handwriting with its position-

dependent shapes [5], large white-spaces can occur be-

tween isolated-, beginning-, and end-shaped characters

(see Figure 1 (b)). As some characters are only con-

nectable from the right side, such words have to be cut

into pieces (Piece of Arabic Word (PAW)).

In previous Arabic handwriting recognition compe-

titions [8, 7] it turned out that the relative error of most

systems in general follows the frequency of the pieces

of Arabic words (PAWs). Similar to silence modeling

in automatic speech recognition, we propose to explic-

itly model these white-spaces in Arabic handwriting by

different writing variants. Furthermore, a fast character

model length adaptation is presented.

2. System Overview

Our hidden Markov model (HMM) based handwriting

recognition system builds on a large vocabulary speech

recognition system [4]. The system is Viterbi trained

and uses a lexicon with multiple writing variants.

We are searching for an unknown word sequence

wN
1

, for which the sequence of features xT
1

best fits to

the trained models. We maximize the posteriori proba-

bility p(wN
1
|xT

1
) over all possible word sequences wN

1

(a) (b)

Figure 1. Two examples where each column shows

the same Tunisian town name: HMM white-space

models (a) and state-transition penalties (b) are im-

portant in Arabic handwriting recognition

with unknown number of words N . This is modeled by

Bayes’ decision rule:

ŵN
1

= argmax
wN

1

{p(wN
1

)p(xT
1
|wN

1
)} (1)

p(xT
1
|wN

1
) ≈ max

vN
1

{pα
θpm

(vN
1
|wN

1
)pβ

θem,tp
(xT

1
|vN

1
)} (2)

with vN
1

a sequence of unknown writing variants, α a

scaling exponent of the writing variant probability de-

pending on a parameter set θpm, and β a scaling expo-

nent of the visual character model depending on a pa-

rameter set θem,tp for emission and transition model.

For our system, we use appearance-based image

slice features concatenated with overlapping sliding

windows which can either be used directly as features

[3], or reduced by linear feature reduction methods like

PCA [2] or LDA [6]. Here, we use the image slices

Xt and their spatial derivatives in horizontal direction

∆ = Xt − Xt−1 for the sliding window, which are

later reduced by a PCA transformation matrix computed

from the corresponding training folds. Opposed to a

baseline dependent feature extraction [2], here we pro-

pose the extraction of additional virtual training (VT)

samples [1] to train baseline robust character models, by

simply shifting all training samples by ±δ pixels along

the y-axis. E.g., for δ = 3, the training corpus is already

enlarged by a factor of seven.

3. Visual Modeling

Each character model in our base system is modeled by

a 3-state left-to-right HMM with three separate Gaus-

sian mixtures (GMM) and a globally pooled covariance

matrix. Additionally, a large stretching of long drawn-

out characters occurs often in Arabic handwriting (see

21 3

p(3|3)p(2|2)

p(2|1)

p(3|1)

p(1|1)

p(3|1)

1

p(1|1)

(a) (b)

Figure 2. Different HMM topologies and transition

penalties are used for character models (a) and

white-space models (b).

Figure 1 (b)). Therefore, we use very low loop penalties

but higher skip penalties for our HMM state transitions

(see Figure 2 (a)).

3.1. White-Space Modeling.

In an HMM based handwriting recognition system,

white-spaces usually are modeled within the character

models. Instead of implicitly modeling white-spaces

within these character models, we propose to explic-

itly model the white-spaces by training special white-

space models. These white-space models are added to

the character transcriptions in the lexicon. We propose

several different setups for white-space modeling:

• no white-spaces (ns): i.e. the available ground

truth annotation

• between word white-spaces (bws): a white-space

character model is added only between Tunisian

town names consisting of several sub-words

• between word and within word white-spaces

(bwws): in addition to the ’bws’ writing variant,

an additional second writing variant where white-

space character models are added between the

models of isolated-, beginning-, and end-shaped

characters (i.e., the PAWs) is added to the lexicon

codebook.

Another possibility for white-space modeling would al-

low a recognition of PAW sentences instead of words,

which is not focussed here.

Our proposed white-space character model uses a

special and separate single-state HMM model with sep-

arate entry and exit penalties (see Figure 2 (b)). This

allows to hypothesize the white-space character model

even for very small gaps between characters or PAWs.

3.2. Model Length Adaptation

Due to ligatures and diacritics in Arabic handwriting,

obviously some characters like yaa ø
 have a more

complex appearance than others, e.g. alif @. Further-

more, some ligatures have a nastaliq font. Especially

the letter kaaf ¼ changes dramatically, depending on

the position or the ligature (e.g. kaaf with yaa ú

» or

kaaf with alif A¿).

Here, we propose a fast character model length adap-

tation (MLA), which on the one hand leads to sharper

models (i.e., a higher spatial resolution), and on the

other hand to fewer white-space features in the char-

acter models. Based on an alignment dump of the train-

ing data on the state-level, it is possible to count the

total number of observations which are aligned to the

same 0-1-2 character model. In a first pass, these state

counts are used to calculate the average length of each

character seen in training. Each character in the lexi-

con codebook is updated by adding additional pseudo-

characters to all writing variants depending on their av-

erage character length. The new lexicon with propor-

tionally adapted model lengths of all character mod-

els, resulting in different number of states per character

model, is then used for a second pass training. Opposed

to the iteratively adaptation algortihm presented in [10],

we adapt our lexicon using a single iteration only.

4. Experimental Results

The experiments are conducted on the IFN/ENIT

database [9]. The database is divided into four train-

ing folds with an additional fold for testing [8]. The

current database version (v2.0p1e) contains a total of

32492 Arabic words handwritten by more than 1000

writers, and has a vocabulary size of 937 Tunisian

town names. Additionally, the submitted systems to

the ICDAR 2007 competition [7] were trained on all

datasets of the IFN/ENIT database and evaluated for

known datasets. Here, we follow the same evaluation

protocol as in ICDAR 2005 and 2007 competition.

4.1. Base System

Plain image features. For image size normalization,

we empirically optimized in preliminary experiments

the image scaling of the database images to 16 pixels

height, while keeping their aspect ratio. Furthermore,

this allows to model each character by a single 3-state

model (c.f. section 3).

PCA based sliding window features. We optimized

the PCA windowing parameters only on one split of

the IFN/ENIT database. The results are shown in Fig-

ure 3. For all following experiments, we chose a PCA

window-size 7 (i.e., 7× (16 + ∆) features) with a win-

dow shift of 1 pixel (i.e., maximum overlap).

4.2. White-Space Modeling

The comparison of the three proposed white-space

modeling approaches is presented in Figure 4. Addi-

tionally, the evaluation of position-independent charac-

ter models (NS-Nopos) is shown which is obviously

worse than the position-dependent models. The word-

error-rate for the ground truth annotation task with-

out white-space models (ns) is reduced by all proposed

 15

 20

 25

 30

 35

 10 20 30 40 50 60 70 80 90 100

W
E

R
 [
%

]

PCA Dimension

scaleHeight 16, sliceWidth 1, winSize 5, pca
scaleHeight 16, sliceWidth 1, winSize 7, pca
scaleHeight 16, sliceWidth 1, winSize 9, pca

scaleHeight 16, sliceWidth 1, winSize 11, pca

Figure 3. Results for different PCA window sizes and

dimensions (for training sets abc and test set d).

Figure 4. Visualization of different white-space mod-

eling approaches and PCA dimensions: the pro-

posed bwws-modeling (2nd bar, red) outperforms all

other approaches

white-space models: The overall best results are ob-

tained for a PCA reduction to 30 components in combi-

nation with the proposed between word and within word

white-space (bwws) modeling.

After optimization of the transition and writing vari-

ants parameters (e.g., α and β in Equation 2) on the d-

fold only, the results of our base system without adapted

model lengths are shown in Table 1. It can be seen that

the optimized system generalizes well on all other folds

too.

4.3. Model Length Adaptation

The experiments in Figure 4 show that white-space

modeling helps. In order to further reduce the amount

of white-spaces in the character models, the system is

retrained with a character length adapted lexicon (c.f.

subsection 3.2). The average lengths were calculated on

the corresponding training folds only. The model length

adaptation (MLA) results in Table 1 clearly show that

Table 1. Top 1 word recognition rate (WRR) and cor-

responding character recognition rate (CRR) results

for PCA-30 features and ’bwws’ white-space model-

ing using the base system, the model length adapted

system (MLA), and the model length adapted system

with additional virtual training samples (MVT)

Train Test WRR [%] CRR [%]

Base MLA MVT Base MLA MVT

abc d 89.22 90.71 92.86 96.14 95.99 97.02

abd c 88.56 89.87 91.86 95.63 95.91 96.62

acd b 89.12 90.95 92.55 96.19 96.38 97.13

bcd a 88.14 90.29 92.32 95.55 95.74 96.63

abcd [8] e 76.46 79.68 80.95 90.99 91.22 91.75

abcde [7] d 92.77 96.56 97.34 97.40 98.71 99.03

abcde [7] e 82.00 89.91 90.88 92.74 95.90 96.27

Figure 5. Alignment visualization: low HMM transi-

tion loop penalties in Arabic handwriting are impor-

tant (i.e., blocks with the same background color)

the performance of the system using MLA is improved

for the word recognition rate (WRR) and the charac-

ter recognition rate (CRR) on all folds. Additionally,

virtual training (VT) samples in combination with the

MLA system (i.e., MVT) further improve the system

performance in terms of WRR and CRR. Similar im-

provements are achieved for the base system in combi-

nation with VT data (not presented here). In particular,

and to the best of our knowledge, these results outper-

form all error rates reported in the literature.

4.4. Visual Inspection

The visualizations in Figure 5, Figure 6, and Figure 7

show training alignments of Arabic words to their corre-

sponding HMM states, trained with the final HMM base

system without any model length adaptation. We use

R-G-B background colors for the 0-1-2 HMM states,

respectively, from right-to-left. The position-dependent

character model names are written in the upper line,

where the white-space models are annotated by ’si’ for

’silence’; the state numbers are written in the bottom

line. Thus, HMM state-loops and state-transitions are

represented in Figure 5 by no-color-changes and color-

changes, respectively.

In Figure 6 and Figure 7, it can be observed that the

Figure 6. Alignment visualization: first row shows

an alignment using ns-modeling, second row bws-

modeling, and third row bwws-modeling. Due to the

additional white-space models between characters

(annotated by ’si’, yellow background), the align-

ment is clearly improved.

Figure 7. Alignment visualization (from top to bot-

tom: ns, bws, bwws): due to the cursive hand-

writing style, the insertion of additional white-space

models could worse the alignment. Here, the sys-

tem opts for the correct writing variant without ad-

ditional white-spaces between characters, i.e., the

alignments for bws- and bwws-modeling are similar

white-spaces are implicitly modeled within the charac-

ter models, if no white-space modeling is applied (first

rows). The alignments are clearly improved in Fig-

ure 6, if additional white-space models are trained (sec-

ond and third row). On the other hand it can be seen in

Figure 7 that, due to the cursive handwriting style, the

bwws-modeling approach selected the correct writing

variant without additional white-space models between

the characters (i.e., the ’bws’ writing variant).

5. Conclusions

We presented an HMM based system for offline Ara-

bic handwriting recognition which explicitly models the

white-spaces between characters and pieces of Arabic

words. The proposed novel white-space models for

Arabic handwriting could improve on all cross folds the

system accuracy and outperforms the best reported error

rates. A visual inspection of the trained models showed

the need for an accurate modeling and adaptation of the

character lengths. The usage of additional virtual train-

ing samples again strongly improved the results on the

IFN/ENIT database.

6. Acknowledgment

We would like to thank Thomas Deselaers and Christian

Gollan for their support.

References

[1] C. J. C. Burges and B. Schölkopf. Improving the ac-

curacy and speed of support vector machines. In NIPS

97, volume 9, pages 375–385, Vancouver, Canada, dec

1997.

[2] R. El-Hajj, L. Likforman-Sulem, and C. Mokbel. Ara-

bic handwriting recognition using baseline dependant

features and hidden markov modeling. In ICDAR, vol-

ume 2, pages 893–897, Seoul, Korea, Aug. 2005.

[3] D. Keysers, T. Deselaers, C. Gollan, and H. Ney. De-

formation models for image recognition. IEEE PAMI,

29(8):1422–1435, Aug. 2007.

[4] J. Lööf, C. Gollan, S. Hahn, G. Heigold, B. Hoffmeis-

ter, C. Plahl, D. Rybach, R. Schlüter, and H. Ney. The

RWTH 2007 TC-STAR evaluation system for european

english and spanish. In Interspeech, pages 2145–2148,

Antwerp, Belgium, Aug. 2007.

[5] L. M. Lorigo and V. Govindaraju. Offline Arabic hand-

writing recognition: A survey. IEEE PAMI, 28(85):712–

724, May 2006.

[6] Z. A. Lu, I. Bazzi, A. Kornai, J. Makhoul, P. S.

Natarajan, and R. Schwartz. A robust language-

independent OCR system. In AIPR Workshop: Ad-

vances in Computer-Assisted Recognition, volume 3584

of SPIE, pages 96–104, 1998.

[7] V. Märgner and H. E. Abed. ICDAR 2007 Arabic hand-

writing recognition competition. In ICDAR, volume 2,

pages 1274–1278, Sept. 2007.

[8] V. Märgner, M. Pechwitz, and H. Abed. ICDAR 2005

Arabic handwriting recognition competition. In ICDAR,

volume 1, pages 70–74, Seoul, Korea, Aug. 2005.

[9] M. Pechwitz, S. S. Maddouri, V. Mägner, N. Ellouze,

and H. Amiri. IFN/ENIT-database of handwritten Ara-

bic words. In Colloque International Francophone sur

l’Ecrit et le Document (CIFED), Hammamet, Tunis,

Oct. 2002.

[10] M.-P. Schambach. Model length adaptation of an hmm

based cursive word recognition system. In ICDAR, Ed-

inburgh, Scotland, UK, Aug. 2003.

