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Abstract. For the recognition of continuous sign language we analyse whether
we can improve the results by explicitly incorporating depth information. Accu-
rate hand tracking for sign language recognition is made difficult by abrupt and
fast changes in hand position and configuration, overlapping hands, or a hand
signing in front of the face. In our system depth information is extracted using a
stereo-vision method that considers the time axis by using pre- and succeeding
frames. We demonstrate that depth information helps to disambiguate overlap-
ping hands and thus to improve the tracking of the hands. However, the improved
tracking has little influence on the final recognition results.

1 Introduction

Sign language recognition and translation to spoken languages is an important task to
ease the cohabitation of deaf and hard of hearing people with hearing people.

Only few studies consider the recognition of continuous sign language. Most of
the current sign language recognition systems use specialised hardware [3,16] and are
person dependent [13], i.e. can only recognise the one signer it was designed for. Fur-
thermore, most approaches focus on the recognition of isolated signs or on the even
simpler case of recognising isolated gestures [14], which can often be characterised
just by their movement direction. Ong et al. [9] give a review on recent research in sign
language and gesture recognition.

In contrast to these approaches, our aim is to build a person independent system
to recognise sentences of continuous sign language. We use a vision-based approach
which does not require special data acquisition devices, e.g. data gloves or motion cap-
turing systems which restrict the natural way of signing.

In our system, the manual features are extracted from the dominant hand (i.e. the
hand that is mostly used for one-handed signs such as finger spelling). However, in
some sequences, the tracking confuses the hands after frames in which both hands were
overlapping. An example for such a sequence is shown in Figure 1. It can be observed
that in the frame before the hands are overlapping, the speaker’s right hand is further
away from the camera than his left hand. However, this knowledge is obvious only
to human observers. Here, we analyse the usage of depth features on the one hand
within our hand tracking framework, and on the other hand within our continuous sign
language recognition system.



Fig. 1: Tracking error due to rotary overlapping hand movements: the tracker (yellow rectangle)
switches from tracking the correct and dominant right hand to the incorrect non-dominant left
hand

Apart from the possible advantages of depth information within the tracking frame-
work, there are other advantages that motivate the use of depth information in sign
language recognition: discourse entities like persons or objects can be stored in the sign
language space, i.e. the 3D body-centred space around the signing signer, by executing
them at a certain location and later just referencing them by pointing to the space. Fur-
thermore this virtual signing space is used to express past, present, or future tenses e.g.
by signing a verb in a backward direction, just in front of the signer, or in a forward
direction, respectively [15]. Due to only small changes of hand configuration but large
depth changes, stereo-vision and the extraction of depth information is a helpful knowl-
edge cue for sign language recognition, e.g. for the (simpler) recognition of isolated
sign language words [4,6].

Stereo vision and the extraction of depth information from images is an active area
of research. Although in principle approaches exist that allow to extract depth infor-
mation from monocular sequences by incorporating prior information such as human
body models, in this work, we will use depth information extracted from a camera pair
mounted in front of the signer. As the video corpus that we are using was not recorded
using a calibrated set of stereo cameras with unknown camera parameters, we follow
the idea to use two cameras, which are not calibrated and rectify the images later [10,5],
which allows us to create a dense depth map by scanline-wise matching, which we do
using the standard dynamic programming scanline matching algorithm [8].

2 System Overview

For purposes of linguistic analysis, signs are generally decomposed analytically into
hand shape, orientation, place of articulation, and movement (with important linguistic
information also conveyed through non-manual gestures, i.e., facial expressions and
head movements). In a vision-based, at every time-step t := 1, . . . , T , tracking-based
features are extracted at unknown positions uT1 := u1, . . . , uT in a sequence of images
xT1 := x1, . . . , xT .

In an automatic sign language recognition (ASLR) system for continuous sign lan-
guage, we are searching for an unknown word sequence wN1 , for which the sequence
of features xT1 = f(xT1 , u

T
1 ) best fits to the trained models. Opposed to a recognition

of isolated gestures, in continuous sign language recognition we want to maximise the
posteriori probability Pr(wN1 |xT1 ) over all possible word sequences wN1 with unknown



number of words N . This can be modeled by Bayes’ decision rule:

xT1 −→ ŵN1 = arg max
wN

1

{
Pr(wN1 |xT1 )

}
= arg max

wN
1

{
Pr(wN1 ) · Pr(xT1 |wN1 )

}
(1)

where Pr(wN1 ) is the a-priori probability for the word sequence wN1 given by the lan-
guage model (LM), and Pr(xT1 |wN1 ) is the probability of observing features xT1 given
the word sequence wN1 , referred to as visual model (VM).

The baseline system uses hidden Markov models a trigram language model. In sub-
sequent steps, this baseline system is extended by features accounting for the hand con-
figuration and depth. In the following, we describe our recognition and tracking system
[2] which will be extended to incorporate depth information.

2.1 Vision-Based Features

Non-Manual Features. In our baseline system we use image features only, i.e. thumb-
nails of video sequence frames. These intensity images scaled to 32×32 pixels serve
as good basic features for many image recognition problems with homogenous back-
ground, and have already been successfully used for gesture and sign language recogni-
tion. They give a global description of all (manual and non-manual) features proposed
in linguistic research.
Manual Features. To describe the appearance or shape of the dominant hand, the
tracked hand patch itself can be used as a feature, too. These hand patches are extracted
at these positions and scaled to a common size of e.g. 40×40 pixels, in order to keep
enough information about the hand configuration. Given the hand position ut = (x, y)
at time t in signing space, hand trajectory features as presented in [2] can easily be
extracted.

2.2 Stereo Vision-Based Features

Since the available data is neither calibrated nor synchronised, we rectify the images
using the described procedure. The synchronisation was done manually by temporal
alignment of the sequences and thus might be not absolutely precise.

Figure 2a gives an overview of this process. The left most frames are the original
video frames. Then, we find corresponding points in two images of each signer (sec-
ond column), from these we obtain an affine transformation to align the corresponding
scanlines of the images of each video sequence (third column) and finally we apply
the standard dynamic programming stereo matching algorithm to determine the dispar-
ity map for each pair of frames [8] (the depth maps are segmented for visualisation
purposes).

Since all signers in the database were recorded with a different camera setup, we
created different transformations for the rectification of video sequences for the individ-
ual signers. To determine this transformation, we semi-automatically specify SIFT key
points on the signers’ bodies (c.f. Figure 2b) and determine a speaker dependent align-
ment transformation. Note, that this alignment has to be done only once per camera
setup and if a calibrated camera setup was used it would not be necessary.



(a) (b)
Fig. 2: (a) obtaining depth maps from uncalibrated sequences, and (b) frames for aligning the
non-aligned signer sequences
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Fig. 3: Conventional calculation of matching cost and extension of the matching cost calculation
over the time axis to obtain smoother disparity maps.

It is well known that the dynamic programming algorithm to determine depth maps
leads to visible artifacts in the depth maps between succeeding scanlines. This effect is
commonly reduced by using a local neighbourhood of say 7× 3 pixels to determine the
matching costs. Here, additionally these artifacts occur between succeeding frames and
their corresponding scanlines. Novel in our approach is the use of temporal informa-
tion from pre- and succeeding frames to obtain smooth and dense disparity maps. This
extension is schematically shown in Figure 3.

These disparity maps are directly used as appearance-based image features and they
are additionally used as a second cue in the tracking framework to disambiguate after
hands were overlapping in an image frame. Note that under occlusion obviously there
is no depth information for the occluded hand but the optimization over time allows for
recovering the correct path even with missing depth information over longer periods.

2.3 Extending Hand Tracking with Stereo Features

The task of tracking one object in an image sequence xT1 = x1, . . . , xT can be formu-
lated as an optimization problem. Expressed in a probabilistic framework, the path of
object positions uT1 = u1, . . . , uT , with u = (x, y) ∈ R2, is searched that maximises
the likelihood of this path given the image sequence xT1 :

[uT1 ]opt = arg max
uT

1

{
p(uT1 |xT1 )

}
= arg max

uT
1

{
T∏
t=1

p(ut|ut−1
1 , xt1)

}
(2)



The advantage of this approach is the optimization over the complete path, which avoids
possibly wrong local decisions. Assuming a first-order Markov process for the path,
meaning a dynamic model where an object position depends only on the previous posi-
tion, allows an easier modeling of the object behavior, because only succeeding object
positions have to be rated. Applying the logarithm, Equation 2 can be reformulated as:

[uT1 ]opt = arg max
uT

1

{
T∑
t=1

log p(ut|ut−1, x
t
t−1)

}
(3)

The probability p(ut|ut−1, x
t
t−1) can be expressed by a relevance score function

q̃(ut−1, ut;xtt−1) that rates the object position ut with a score depending on the previ-
ous position ut−1 and the images xtt−1. In order to fulfill the requirements of a proba-
bility density function, the score has to be normalised by the sum over the scores of all
possible object positions. The logarithm can be omitted due to its monotonicity:

[uT1 ]opt = arg max
uT

1

{
T∑
t=1

log
q̃(ut−1, ut, x

t
t−1)∑

u′ q̃(ut−1, u′;xtt−1)

}
(4)

= arg max
uT

1

{
T∑
t=1

q̃(ut−1, ut, x
t
t−1)∑

u′ q̃(ut−1, u′;xtt−1)

}
(5)

The relevance score function q̃(ut−1, ut;xtt−1) is split into a function q(ut−1, ut;xtt−1)
depending on the image sequence, and an image independent transition penalty function
T (ut−1, ut) to control properties of the path.

Here we extended the tracking framework proposed in [1], by using the obtained
depth information not only as features for the models to be trained but also as scoring
function q(ut−1, ut;xtt−1) to determine a likelihood for the tracked hand being still the
correct one. In particular, after hands were overlapping, the tracker often confused the
hands afterwards (c.f. Figure 1), with the additional depth information, the tracker has
a cue to decide which hand to follow in the remaining frames.

For each of these tracked positions, we look up the corresponding depth information
from the smoothed disparity maps, for later use in the recognition framework.

3 Experimental Results

For our experiments, we use a publicly available Boston-104 database, which has been
used in several other works [2,11] and consits of 201 American Sign Language sen-
tences performed by 3 different signers (161 are used for training and 40 for testing [2]).
On the average, these sentences consist of 5 words out of a vocabulary of 104 unique
words. In particular, four camera views are available therefrom two for stereo vision.
Unfortunately, calibration sequences or exact camera settings are not available and re-
quire the above mentioned methods.

Hand Tracking Performance Measurement. For the evaluation of the hand tracking
methods, the ground truth positions of both hands in the test sequences are used to



Table 1: Hand tracking results for different tracking features and tolerances.

Features TER [%]

τ = 20 τ = 15

appearance-based 28.61 39.06
+ stereo-vision 21.54 28.45

Fig. 4: Comparison of vision-based tracking (yellow) and joint vision- and stereo-vision-based
tracking (red) of the dominant hand performing rotating and overlapping hand movements (first
row) and fast asynchronous upward and downward movements (second row) .

evaluate the effect of the depth information on the tracking performance. For an image
sequence xT1 and corresponding annotated hand positions uT1 , the tracking error rate
(TER) of tracked positions ûT1 is defined as the relative number of frames where the
Euclidean distance between the tracked and the annotated position is larger than or equal
to a tolerance τ , with TER = 1

T

∑T
t=1 δτ (ut, ût) and δτ (u, v) := 0 iff ‖u − v‖ < τ ,

δτ (u, v) := 1 otherwise.
For τ = 20 (i.e. approximately the half of the hand’s palm size), the baseline TER

of 28.61% using only appearance-based tracking features can be strongly improved
to 21.54% TER when using the depth information as additional cue. In average, the
tracking accuracy of the system is improved by ±5 pixels in Table 1 by combining
appearance-based and stereo-vision based tracking features.

A few example sequences with visualised tracking results when appearance only
(yellow) and both, depth and appearance, is used (red) are shown in Figure 4. It can
be observed that after hands were overlapping, often the yellow, purely appearance-
based tracker, confuses the dominant and non-dominant hands, but the tracker which
additionally uses the depth information is able to follow the correct dominant hand.

Continuous Sign Language Recognition. Recognition experiments are evaluated us-
ing the word error rate (WER) in the same way as it is currently done in speech recog-
nition, i.e. we measure the amount of insertion (INS), deletion (DEL), and substitution
(SUB) errors.

First, we analyse different appearance-based and depth-based features for our base-
line system. Table 2 gives an overview of results obtained with the baseline system for
image, depth, and manual features alone, as well as for various combinations of these.



Table 2: Baseline results using appearance-based features.

Features DEL INS SUB errors WER %

Frame (32x32) 43 6 16 65 35.62 (1)
Frame + tracking trajectory 14 10 19 43 24.16 (2)

Depth-Hand 33 15 54 102 57.30
PCA-Depth-Hand 28 13 54 95 53.37

Frame + PCA depth hand 27 13 31 71 39.89 (1)
Frame + tracking trajectory + PCA depth-Hand 12 8 15 35 19.66 (2)

It can be seen that the original intensity images as well as the disparity images scaled
down to 32×32 pixels already lead to reasonable results.

Combining the original image with depth features has so far not led to a perfor-
mance improvement (c.f. (1) in Table 2). Using the improved tracking framework, the
combination of the original image with the trajectory, which consists only of x and y
coordinates extracted from succeeding tracking positions, leads to a WER of 24.1%
which can be improved to 19.66% when the PCA reduced hand patch from the depth
image is used additionally (c.f. (2) in Table 2).

4 Summary

We have presented an approach to incorporate depth information into our automatic
continuous sign language recognition system. We have shown that the use of the ad-
ditional depth cue leads to a clear improvement of the tracking results and to minor
improvements in the recognition of sign language sentences. For the tracking we have
shown that the depth information helps to disambiguate between different hands af-
ter these have overlapped. The recognition results have shown small improvements al-
though the tracking was improved because on the one hand, the tracking is sufficiently
good for continuous sign language recognition without stereo information and on the
other hand, the signs to be distinguished cannot better be discriminated using depth
information than without.

It will be interesting to analyse the impact of the depth information when recognis-
ing more complicated sentences with a stronger focus on future and past tenses under
more adverse imaging conditions.
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