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Introduction

I Arabic handwriting system

. right-to-left, 28 characters, position-dependent character writing variants

. Pieces of Arabic Word (PAWs) as subwords

. ligatures and diacritics

(a) Ligatures (b) Diacritics

I state-of-the-art

. preprocessing (normalization, baseline estimation, etc.) + HMMs

I our approach:

. adaptation of RWTH-ASR framework for handwriting recognition

. preprocessing-free feature extraction, focus on modeling
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System Overview
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Visual Modeling: Feature Extraction and HMM Transitions

I recognition of characters within a context, temporal alignment necessary

I features: sliding window, no preprocessing, PCA reduction

I important: HMM whitespace models (a) and state-transition penalties (b)

(a) (b)
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Visual Modeling: Writing Variants Lexicon

I White-Space Models for Pieces of Arabic Words [Dreuw & Jonas+ 08] in ICPR 2008

. most reported error rates are dependent on the number of PAWs

. without separate white space model (NS)

. always white spaces between compound words (bws)

. white spaces as writing variants between and within words (bwws)
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Visual Modeling: Model Length Estimation

I more complex characters should be represented by more HMM states

3 states 9 states

I the number of states Sc for each character c is updated by

Sc =
Nx,c

Nc

· fP

with
Sc = estimated number states for character c

Nx,c = number of observations aligned to character c
Nc = character count of c seen in training
fP = character length scaling factor.
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Visual Modeling: Model Length Estimation

Original Length

I overall mean of character length = 7.9 pixel (≈ 2.7 pixel/state)

I total #states = 357
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Visual Modeling: Model Length Estimation

Estimated Length

I overall mean of character length = 6.2 pixel (≈ 2.0 pixel/state)

I total #states = 558
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Training and Decoding Architectures

I Training

. Maximum Likelihood (ML)

. CMLLR-based Writer Adaptive Training (WAT)

. discriminative training using modified-MMI criterion (M-MMI)

I Decoding

. 1-pass
◦ ML model
◦ M-MMI model

. 2-pass
◦ segment clustering for CMLLR writer adaptation
◦ unsupervised confidence-based M-MMI training for model adaptation
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Unsupervised Confidence-Based Discriminative Training

I example for a word-graph and the corresponding 1-best state alignment
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c = 0.001

c = 0.1

c = 0.7

I necessary steps for model adaptation during decoding:

. 1-pass recognition (unsupervised transcriptions and word-graph)

. calculation of corresponding confidences (sentence, word, or state-level)

. unsupervised M-MMI-conf training on test data
to adapt supervised-trained model (w/ regularization)

I can be done iteratively with unsupervised corpus update!
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Unsupervised Confidence-Based Discriminative Training

I ML training: accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

xt

I M-MMI training: weighted accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · xt

I M-MMI-conf training: confidence-weighted accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · cr,s,t · xt

. with confidence at sentence-, word, or state-level

[Details]
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Database: IFN/ENIT

I 937 classes

I 32492 handwritten Arabic words (Tunisian city names)

I database is used by more than 60 groups all over the world

I writer statistics
set #writers #samples
a 102 6537
b 102 6710
c 103 6477
d 104 6735
e 505 6033

Total 916 32492

I examples (same word):
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Corpus development

I ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e

I ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f

I ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f
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Experimental Results for IFN/ENIT

Train Test WER[%]
1st pass 2nd pass*

ML +MLE +M-MMI WAT+CMLLR M-MMI-conf
unsup. sup.

abc d 10.88 7.83 6.12 7.72 5.82 5.95
abd c 11.50 8.83 6.78 9.05 5.96 6.38
acd b 10.97 7.81 6.08 7.99 6.04 5.84
bcd a 12.19 8.70 7.02 8.81 6.49 6.79
abcd e 21.86 16.82 15.35 17.12 11.22 14.55

I * [Dreuw & Rybach+ 09] and [Dreuw & Heigold+ 09] submitted to ICDAR 2009

I 3 systems are currently evaluated at
Arabic Handwriting Recognition Competition ICDAR 2009
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Summary

I RWTH-ASR→ RWTH-OCR

. simple feature extraction, no preprocessing

. character model length estimation important

I discriminative training

. unsupervised confidence-based discriminative training criterion

. relative improvements of about 14%

. results outperform all error rates reported in the literature

I ongoing work

. to be evaluated in ASR experiments

. impact of preprocessing in feature extraction

. character context modeling (e.g. CART)

. further databases
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Thank you for your attention

Philippe Dreuw

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

Dreuw et. al.: Arabic Handwriting Recognition 17 / 17 Quaero CTC Workshop 12. March 2009

dreuw@cs.rwth-aachen.de
http://www-i6.informatik.rwth-aachen.de/


Comparisons for IFN/ENIT

I ICDAR 2005 Evaluation

Rank Group WRR [%]
abc-d abcd-e

1. UOB 85.00 75.93
2. ARAB-IFN 87.94 74.69
3. ICRA (Microsoft) 88.95 65.74
4. SHOCRAN 100.00 35.70
5. TH-OCR 30.13 29.62

BBN 89.49 N.A.
1* RWTH 94.05 85.45

* own evaluation result (no tuning on test data)
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Appendix: Modified-MMI Criterion And Confidences

I Training: weighted accumulation of observations xt:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t · xt

1. MMI:

ωr,s,t :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr)∑

V

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V )

2. M-MMI:

ωr,s,t(ρ 6= 0) :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr) · e−ρδ(Wr,Wr)

∑
V

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V ) · e−ρδ(Wr,V )
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Appendix: Modified-MMI Criterion And Confidences

3. M-MMI-conf:

ωr,s,t(ρ 6= 0) :=

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(Wr) · e−ρδ(Wr,Wr)

∑
V

∑
sTr1 :st=s

p(xTr1 |s
Tr
1 )p(sTr1 )p(V )

︸ ︷︷ ︸
posterior

· e−ρδ(Wr,V )︸ ︷︷ ︸
margin

· δ(cr,s,t > cthreshold)︸ ︷︷ ︸
confidence

I weighted accumulation becomes:

accs =
R∑
r=1

Tr∑
t=1

ωr,s,t(ρ)︸ ︷︷ ︸
margin posteriorρ 6=0

· cr,s,t︸︷︷︸
confidence

· xt

I confidences at:

. sentence-, word-, or state-level
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Appendix: Modified-MMI Criterion And Confidences

I word-confidence based M-MMI training and rejections
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Appendix: Segment Clustering Histograms
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Appendix: Participating Systems at ICDAR 2005 and 2007

I MITRE: Mitre Cooperation, USA
over-segmentation, adaptive lengths, character recognition with post-processing

I UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris
HMM-based (HTK), slant correction

I MIE: Mie University, Japan
segmentation, adaptive lengths

I ICRA: Intelligent Character Recognition for Arabic, Microsoft
partial word recognizer

I SHOCRAN: Egypt
confidential

I TH-OCR: Tsinghua Universty, Beijing, China
over-segmentation, character recognition with post-processing

I CACI: Knowledge and Information Management Division, Lanham, USA
HMM-based, trajectory features

I CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA
over-segmentation, HMM-based

I PARIS V / A2iA: University of Paris 5, and A2iA SA, France
hybrid HMM/NN-based, shape-alphabet

I Siemens: SIEMENS AG Industrial Solutions and Services, Germany
HMM-based, adapative lenghths, writing variants

I ARAB-IFN: TU Braunschweig, Germany
HMM-based
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