

Improved Modeling for Arabic Handwriting Recognition

Philippe Dreuw, Stephan Jonas, Georg Heigold, David Rybach, Christian Gollan, Hermann Ney

dreuw@cs.rwth-aachen.de

Quaero CTC Workshop – 12. March 2009

Human Language Technology and Pattern Recognition Lehrstuhl für Informatik 6 Computer Science Department RWTH Aachen University, Germany

1. Introduction

2. Adaptation of the RWTH-ASR framework for Handwriting Recognition

Outline

- Model Length Estimation
- Unsupervised Confidence-Based Discriminative Training
- **3. Experimental Results**
- 4. Summary

Introduction

- right-to-left, 28 characters, position-dependent character writing variants
- Pieces of Arabic Word (PAWs) as subwords
- ligatures and diacritics

state-of-the-art

- preprocessing (normalization, baseline estimation, etc.) + HMMs
- ► our approach:
 - > adaptation of RWTH-ASR framework for handwriting recognition
 - > preprocessing-free feature extraction, focus on modeling

System Overview

Visual Modeling: Feature Extraction and HMM Transitions

- recognition of characters within a context, temporal alignment necessary
- features: sliding window, no preprocessing, PCA reduction

important: HMM whitespace models (a) and state-transition penalties (b)

Visual Modeling: Writing Variants Lexicon

White-Space Models for Pieces of Arabic Words [Dreuw & Jonas+ 08] in ICPR 2008
 most reported error rates are dependent on the number of PAWs
 without separate white space model (NS)

> always white spaces between compound words (bws)

white spaces as writing variants between and within words (bwws)

Udero

Visual Modeling: Model Length Estimation

more complex characters should be represented by more HMM states

• the number of states S_c for each character c is updated by

$$S_c = rac{N_{x,c}}{N_c} \cdot f_P$$

with

- S_c = estimated number states for character c
- $N_{x,c}$ = number of observations aligned to character c
 - N_c = character count of c seen in training
 - f_P = character length scaling factor.

c b Length (Pixel)

0

Sex.

Visual Modeling: Model Length Estimation

Original Length

- > overall mean of character length = 7.9 pixel (\approx 2.7 pixel/state)
- total #states = 357

Mean length of characters

Visual Modeling: Model Length Estimation

Estimated Length

c F Length (Pixel)

0

Udero

- > overall mean of character length = 6.2 pixel (\approx 2.0 pixel/state)
- ▶ total #states = 558

Set Si

Training and Decoding Architectures

► Training

- Maximum Likelihood (ML)
- CMLLR-based Writer Adaptive Training (WAT)
- b discriminative training using modified-MMI criterion (M-MMI)

Decoding

⊳ 1-pass

- \circ ML model
- M-MMI model
- ⊳ 2-pass
 - **o** segment clustering for CMLLR writer adaptation
 - unsupervised confidence-based M-MMI training for model adaptation

Coucero Unsupervised Confidence-Based Discriminative Training

example for a word-graph and the corresponding 1-best state alignment

- necessary steps for model adaptation during decoding:
 - I-pass recognition (unsupervised transcriptions and word-graph)
 - calculation of corresponding confidences (sentence, word, or state-level)
 - unsupervised M-MMI-conf training on test data to adapt supervised-trained model (w/ regularization)
- can be done iteratively with unsupervised corpus update!

ML training: accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} x_t$$

M-MMI training: weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot x_t$$

M-MMI-conf training: confidence-weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot c_{r,s,t} \cdot x_t$$

with confidence at sentence-, word, or state-level

[Details]

Dreuw et. al.: Arabic Handwriting Recognition

Database: IFN/ENIT

► 937 classes

- ► 32492 handwritten Arabic words (Tunisian city names)
- database is used by more than 60 groups all over the world
- writer statistics

set	#writers	#samples
а	102	6537
b	102	6710
С	103	6477
d	104	6735
е	505	6033
Total	916	32492

examples (same word):

Corpus development

► ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e

- ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f
- ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f

Experimental Results for IFN/ENIT

Train	Test	WER[%]						
			1st pass			2nd pass*		
		ML	+MLE	+M-MMI	WAT+CMLLR		M-MMI-conf	
					unsup.	sup.		
abc	d	10.88	7.83	6.12	7.72	5.82	5.95	
abd	С	11.50	8.83	6.78	9.05	5.96	6.38	
acd	b	10.97	7.81	6.08	7.99	6.04	5.84	
bcd	а	12.19	8.70	7.02	8.81	6.49	6.79	
abcd	е	21.86	16.82	15.35	17.12	11.22	14.55	

* [Dreuw & Rybach⁺ 09] and [Dreuw & Heigold⁺ 09] submitted to ICDAR 2009

Systems are currently evaluated at Arabic Handwriting Recognition Competition ICDAR 2009

Summary

- simple feature extraction, no preprocessing
- character model length estimation important
- discriminative training
 - > unsupervised confidence-based discriminative training criterion
 - relative improvements of about 14%
 - results outperform all error rates reported in the literature
- ongoing work
 - b to be evaluated in ASR experiments
 - impact of preprocessing in feature extraction
 - character context modeling (e.g. CART)
 - Further databases

Thank you for your attention

Philippe Dreuw

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

Comparisons for IFN/ENIT

ICDAR 2005 Evaluation

Rank	Group	WRR [%]		
		abc-d	abcd-e	
1.	UOB	85.00	75.93	
2.	ARAB-IFN	87.94	74.69	
3.	ICRA (Microsoft)	88.95	65.74	
4.	SHOCRAN	100.00	35.70	
5.	TH-OCR	30.13	29.62	
	BBN	89.49	N.A.	
1*	RWTH	94.05	85.45	

* own evaluation result (no tuning on test data)

Fixed Training: weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot x_t$$

1. MMI:

$$\omega_{r,s,t} := rac{\sum\limits_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r}) p(s_1^{T_r}) p(W_r)}{\sum\limits_{V} \sum\limits_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r}) p(s_1^{T_r}) p(V)}$$

2. M-MMI:

$$\omega_{r,s,t}(
ho
eq 0) := rac{\sum\limits_{V_1}^{T_r:s_t=s} p(x_1^{T_r}|s_1^{T_r}) p(s_1^{T_r}) p(W_r) \cdot e^{-
ho \delta(W_r,W_r)}}{\sum\limits_{V_1}^{T_r:s_t=s} p(x_1^{T_r}|s_1^{T_r}) p(s_1^{T_r}) p(V) \cdot e^{-
ho \delta(W_r,V)}}$$

3. M-MMI-conf:

$$\omega_{r,s,t}(\rho \neq 0) := \underbrace{\sum_{V} \sum_{\substack{s_1^{T_r}: s_t = s \\ V = s_1^{T_r}: s_t = s}} p(x_1^{T_r} | s_1^{T_r}) p(s_1^{T_r}) p(V) \cdot \underbrace{e^{-\rho \delta(W_r, V)}}_{\text{margin}} \cdot \underbrace{\frac{\delta(c_{r,s,t} > c_{\text{threshold}})}_{\text{confidence}}}_{\text{posterior}}$$

weighted accumulation becomes:

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \underbrace{\omega_{r,s,t}(
ho)}_{\mathsf{margin posterior}_{
ho
eq 0}}$$

$$\underbrace{c_{r,s,t}}_{ ext{confidence}}$$
 · x_t

confidences at:

sentence-, word-, or state-level

word-confidence based M-MMI training and rejections

E)

Appendix: Segment Clustering Histograms

Appendix: Participating Systems at ICDAR 2005 and 2007

- MITRE: Mitre Cooperation, USA over-segmentation, adaptive lengths, character recognition with post-processing
- UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris HMM-based (HTK), slant correction
- MIE: Mie University, Japan segmentation, adaptive lengths
- ICRA: Intelligent Character Recognition for Arabic, Microsoft partial word recognizer
- SHOCRAN: Egypt confidential
- TH-OCR: Tsinghua University, Beijing, China over-segmentation, character recognition with post-processing
- CACI: Knowledge and Information Management Division, Lanham, USA HMM-based, trajectory features
- CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA over-segmentation, HMM-based
- PARIS V / A2iA: University of Paris 5, and A2iA SA, France hybrid HMM/NN-based, shape-alphabet
- Siemens: SIEMENS AG Industrial Solutions and Services, Germany HMM-based, adapative lenghths, writing variants
- ARAB-IFN: TU Braunschweig, Germany HMM-based

- [Dreuw & Heigold⁺ 09] P. Dreuw, G. Heigold, H. Ney: Confidence-Based Discriminative Training for Writer Adaptation in Offline Arabic Handwriting Recognition. In *International Conference on Document Analysis and Recognition*, Barcelona, Spain, July 2009. 15
- [Dreuw & Jonas⁺ 08] P. Dreuw, S. Jonas, H. Ney: White-Space Models for Offline Arabic Handwriting Recognition. In *International Conference on Pattern Recognition*, Tampa, Florida, USA, Dec. 2008. 6
- [Dreuw & Rybach⁺ 09] P. Dreuw, D. Rybach, C. Gollan, H. Ney: Writer Adaptive Training and Writing Variant Model Refinement for Offline Arabic Handwriting Recognition. In *International Conference on Document Analysis and Recognition*, Barcelona, Spain, July 2009. 15

