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Abstract

We present a novel confidence-based discriminative
training for model adaptation approach for an HMM based
Arabic handwriting recognition system to handle different
handwriting styles and their variations.

Most current approaches are maximum-likelihood
trained HMM systems and try to adapt their models to dif-
ferent writing styles using writer adaptive training, unsu-
pervised clustering, or additional writer specific data.

Discriminative training based on the Maximum Mutual
Information criterion is used to train writer independent
handwriting models. For model adaptation during decod-
ing, an unsupervised confidence-based discriminative train-
ing on a word and frame level within a two-pass decoding
process is proposed. Additionally, the training criterion is
extended to incorporate a margin term.

The proposed methods are evaluated on the IFN/ENIT
Arabic handwriting database, where the proposed novel
adaptation approach can decrease the word-error-rate by
33% relative.

1. Introduction

In this paper, we describe our discriminative training and
multi-pass decoding system for offline Arabic handwriting,
present our novel unsupervised confidence-based discrim-
inative model adaptation approach, and present systematic
results on the IFN/ENIT database [15].

Most state-of-the-art single-pass [11] and multi-pass
[2, 4, 5] HMM based handwriting recognition systems are
trained using the maximum-likelihood criterion.

Similar to the system presented in [13], we apply dis-
criminative training using the Maximum Mutual Informa-
tion (MMI) which is modified by a margin term. This mar-
gin term can be interpreted as an additional observation-

dependent prior weakening the true prior [9], and is identi-
cal with the SVM optimization problem of log-linear mod-
els [7].

The most common way for unsupervised adaptation is
the use of the automatic transcription of a previous recog-
nition pass without the application of confidence scores.
Many publications have shown that the application of con-
fidence scores for adaptation can improve recognition re-
sults. However, only small improvements are reported for
confidence based CMLLR adaptation [1] or MLLR adap-
tation [6, 14, 16]. In this work, we present a novel unsu-
pervised confidence-based discriminative model adaptation
approach using a modified MMI training criterion.

2. System Overview

We are searching for an unknown word sequence wN1 :=
w1, . . . , wN , for which the sequence of features xT1 :=
x1, . . . , xT best fits to the trained models. We maximize
the posterior probability p(wN1 |xT1 ) over all possible word
sequences wN1 with unknown number of words N . This is
modeled by Bayes’ decision rule:

ŵN1 = arg max
wN

1

{pγ(wN1 )p(xT1 |wN1 )} (1)

with γ being a scaling exponent of the language model.
In this work, we use a writing variant model refinement

[4] of our visual model

p(xT1 |wN1 )≈max
vN
1 |wN

1

{pαθpm
(vN1 |wN1 )pβθem,tp

(xT1 |vN1 , wN1 )} (2)

with vN1 a sequence of unknown writing variants, α a scal-
ing exponent of the writing variant probability depending
on a parameter set θpm, and β a scaling exponent of the vi-
sual character model depending on a parameter set θem,tp for
emission and transition model.



2.1. Feature Extraction

Without any preprocessing of the input images, we ex-
tract simple appearance-based image slice features Xt at
every time step t = 1, · · · , T which are augmented by their
spatial derivatives in horizontal direction ∆ = Xt −Xt−1.
In order to incorporate temporal and spatial context into the
features, we concatenate 7 consecutive features in a sliding
window, which are later reduced by a PCA transformation
matrix to a feature vector xt.

2.2. Discriminative Training

Our baseline hidden Markov model (HMM) based hand-
writing recognition system is Viterbi trained using the
maximum-likelihood training criterion, model length esti-
mation (MLE) for character dependent model lengths, and a
lexicon with multiple writing variants as proposed in [3, 4].

In this work, we use a discriminative training approach
based on the Modified Maximum Mutual Information cri-
terion as presented in [7]. In the following, we give a brief
summary.
Maximum Mutual Information (MMI). In automatic
speech recognition (ASR), MMI commonly refers to the
maximum likelihood (ML) for the class posteriors.

F (MMI)(θ) =

− 1
N

R∑
r=1

log

(
pθ(xTr

1 |w
Nr
1 )p(wNr

1 )∑
vMr
1

pθ(xTr
1 |v

Mr
1 )p(vMr

1 )

)
. (3)

This criterion has proven to perform reasonably as long as
the error rate on the training data is not too low, i.e., gener-
alization is not an issue.
Modified Maximum Mutual Information (M-MMI). We
define a modified criterion

F (M-MMI)
γ (θ) = R(θ, θ0)

− J

R

R∑
r=1

1
γ

log

 [pθ(xTr
1 |w

Nr
1 )p(wNr

1 )e(−ρδ(wNr
1 ,wNr

1 ))]γ∑
vMr
1

[pθ(xTr
1 |v

Mr
1 )p(vMr

1 )e(−ρδ(wNr
1 ,vMr

1 ))]γ

 .

(4)

The approximation level γ is an additional parameter to
control the smoothness of the criterion. The regularization
constant of R is proportional to 1

J . Here, I-smoothing is
used for regularization [17]. The major difference to the
standard MMI formulation is the additional margin term
which is non-zero only for the correct wN1 . This margin
term can be interpreted as an additional observation depen-
dent prior, weakening the true prior [9]. Moreover, this
training criterion is identical with the SVM optimization
problem for γ → ∞ and log-linear models [7]. Keep
in mind that GHMMs with globally pooled variances are
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Figure 1. Comparison of hinge loss, MMI, and
modified MMI

equivalent to a log-linear model with first order features
only [8]. See Figure 1 for a comparison of the hinge loss
function, MMI, and modified MMI.
Optimization. In [7] it is shown that the objective function
F (MMI)
γ (Λ) converges pointwise to the SVM optimization

problem using the hinge loss function for γ → ∞, simi-
lar to [18]. In other words, F (M-MMI)

γ (Λ) is a smooth ap-
proximation to an SVM with hinge loss function which can
be iteratively optimized with standard gradient-based opti-
mization techniques like Rprop [7, 18]. In this work, the
approximation level and the margin are chosen beforehand
and then kept fixed during the complete optimization using
the Rprop algorithm.
State-based confidences and modified MMI. Word con-
fidences can be incorporated into the training criterion by
simply weighing the segments with the respective confi-
dence. This is, however, not possible for state-based con-
fidences.

Rprop is a gradient-based optimization algorithm. The
gradient of the training criterion under consideration can
be represented in terms of the state posteriors prt(s|xTr

1 ).
These posteriors are obtained by marginalization and nor-
malization of the joint probabilities pθ(xTr

1 , sT1 , w
Nr
1 ) over

all state sequences through state s at frame t. These quan-
tities can be calculated efficiently by recursion, c.f. for-
ward/backward probabilities. Then, the state-based confi-
dences are incorporated by multiplying the posteriors with
the respective confidence before the accumulation. In sum-
mary, each frame t contributes conf (t)prt(s|xTr

1 )xt to the
accumulator of state s.

3. Decoding Architecture

The recognition is performed in two passes, as depicted
in Figure 2. System 1 performs the initial and independent
recognition pass using the discriminative trained models.
The output is required for the text dependent model adapta-
tion in the next step.



Sys.1 Sys.2

Decoder
Training

Discriminative Decoder

Pass 1: Pass 2:

Figure 2. Illustration of the two-pass decod-
ing process using confidence-based discrim-
inative training for model adaptation.

The model adaptation in the second pass is performed by
discriminatively training a System 2 on the text output of the
first-pass recognition system. Additionally, the confidence-
alignments generated during the first-pass decoding can be
used on a sentence-, word-, or state-level to exclude the cor-
responding features from the discriminative training process
for model adaptation.

Word Confidences. As we are dealing with isolated word
recognition on the IFN/ENIT database, the sentence and
word confidences are identical. The segments to be used in
the second-pass system are first thresholded on a word-level
by their word confidences: only complete word segments
aligned with a high confidence by the first-pass system are
used for model adaptation using discriminative training.

State Confidences. Instead of rejecting an entire utterance
or word, the system can use state confidence scores to select
state-dependent data. State confidence scores are obtained
from computing arc posteriors from the lattice output from
the decoder. The arc posterior is the fraction of the proba-
bility mass of the paths that contain the arc from the mass
that is represented by all paths in the lattice. The posterior
probabilities can be computed efficiently using the forward-
backward algorithm as, for example, described in [10]. The
word frames to be used in the second-pass system are first
thresholded on a state-level by their state confidences: only
word frames aligned with a high confidence by the first-pass
system, are used for model adaptation using discriminative
training (see subsection 2.2).

An example for a word-graph and the corresponding 1-
best state alignment is given in Figure 3: during the decod-
ing, the ten feature frames (the squares) can be aligned to
different words (long arcs) and their states. In this exam-
ples, the word-confidence of the 1-best alignment is c =
0.7. The corresponding state-confidences are calculated by
accumulating state-wise over all other word alignments, i.e.
the state-confidence of the 1-best alignment’s fourth state
would stay 0.7, all other state-confidences sum up to 1.0.

�
�
�
� ��
��
��
��

��
��
��
�� ��

��
��
��

��
��
��

��
��
��

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

�
�
�
� �

�
�
�

��
��
��
���

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

��
��
��

��
��
��

��
��
��
�� �

�
�

�
�
�

�
�
�

�
�
�

�
�
�
�
��
��
��
��

�
�
�
�

∑ ∑ ∑ ∑ ∑ ∑ ∑

c = 0.001
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Figure 3. Example for a word-graph and the
corresponding 1-best state alignment: word-
confidence of the 1-best alignment is c = 0.7.
The corresponding state-confidences are
calculated by accumulating state-wise over
all other word alignments

Figure 4. IFN/ENIT corpora splits used in
2005 and 2007.

4. Experimental Results

The experiments are conducted on the IFN/ENIT
database [15]. The database is divided into four training
folds with an additional fold for testing [12]. The current
database version (v2.0p1e) contains a total of 32492 Ara-
bic words handwritten by about 1000 writers, and has a vo-
cabulary size of 937 Tunisian town names. Additionally,
the submitted systems to the ICDAR 2007 competition [11]
were trained on all datasets of the IFN/ENIT database and
evaluated for known datasets. Here, we follow the same
evaluation protocol as for the ICDAR 2005 and 2007 com-
petition (see Figure 4).

4.1. First Pass Decoding

In this section we compare our maximum-likelihood
trained baseline system to our discriminative trained sys-
tems using the MMI and modified margin-based MMI cri-
terion. The discriminative training is initialized with the re-
spective ML baseline model and iteratively optimized using
the Rprop algorithm.

The number of Rprop iterations and the choice of the
regularization constantR(θ, θ0) have to be chosen carefully
(c.f. optimization in subsection 2.2), and were empirically



Table 1. Comparison of maximum-likelihood
trained baseline system (ML), and discrim-
inative trained systems using MMI criterion
and margin-based MMI (M-MMI) criterion af-
ter 30 Rprop iterations.

Train Test WER[%]

ML MMI M-MMI

abc d 10.88 10.59 8.94
abd c 11.50 10.58 2.66
acd b 10.97 10.43 8.64
bcd a 12.19 11.41 9.59

abcd e 21.86 21.00 19.51

abcde e 11.14 2.32 2.95

optimized in informal experiments to 30 Rprop iterations.
The results in Table 1 show that the discriminatively

trained models clearly outperform the maximum likelihood
trained models, especially the models trained with the ad-
ditional margin term. The strong decrease in word-error-
rate (WER) for experiment setup abd-c might be due to the
training data being separable for the given configurations,
whereas the strong improvement for experiment abcde-e
was expected because of the test set e being part of the train-
ing data.

4.2. Second Pass Decoding and
Unsupervised Model Adaptation

In this section we evaluate our discriminative training for
unsupervised model adaptation during a second pass decod-
ing step.

In a first experiment we used the complete first-pass out-
put of the M-MMI system for an unsupervised adaptation.
The results in Table 2 show that the M-MMI based unsuper-
vised adaptation cannot improve the system accuracy. With
every Rprop iteration, the system is even more biased by
the relatively large amount of wrong transcriptions in the
adaptation corpus.

Using the word-confidences of our first-pass alignment
to reject complete word segments (i.e. feature sequences
xT1 ) from the unsupervised adaptation corpus, the results
in Table 2 show a slight improvement only in comparison
to the M-MMI trained system. Figure 5 shows the result-
ing WER for different confidence threshold values and the
corresponding number of rejected segments. For a confi-
dence threshold of c = 0.5, more than 60% of the 6033 seg-
ments of set e are rejected from the unsupervised adaptation
corpus, resulting in a relatively small amount of adaptation
data.
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Figure 5. Results for word-confidence based
discriminative training using different con-
fidence thresholds and their corresponding
number of rejected segments.

Table 2. Results for confidence-based model
adaptation on the evaluation experiment
setup abcd-e using a margin-based MMI crite-
rion and 30 Rprop iterations.

Training/Adaptation WER[%] CER[%]

ML 21.86 8.11

M-MMI 19.51 7.00
+ unsupervised adaptation 20.11 7.34

+ word-confidences 19.23 7.02
+ state-confidences 17.75 6.49

+ supervised adaptation 2.06 0.77

Using the state-confidences of our first-pass alignment
to decrease the contribution of single frames (i.e. features
xt) during the iterative M-MMI optimization process (c.f.
optimization in subsection 2.2), the number of features for
model adaptation is reduced by approximately 5%: 375 446
frames of 396 416 frames extracted from the 6033 test seg-
ments are considered during the optimization, only 20 970
frames are rejected based on confidence thresholding (c.f.
also Figure 3). Note that also the character-error-rate (CER)
is decreased to 6.49%.

Interestingly, the supervised adaptation on test set e,
where the correct transcriptions of set e are used for an
adaptation of the model trained using set abcd, can again
decrease the word-error-rate of the system down to 2.06%,
which is even better than an M-MMI optimization on the
full training set abcde (c.f. Table 1).

Table 3 shows the final results of our Arabic handwriting



Table 3. Results for confidence-based model
adaptation on the IFN/ENIT database using
model length estimation (MLE), a margin-
based MMI criterion and 30 Rprop iterations.

Train Test WER[%]

1st pass 2nd pass

ML +MLE +M-MMI M-MMI-conf

abc d 10.88 7.83 6.12 5.95
abd c 11.50 8.83 6.78 6.38
acd b 10.97 7.81 6.08 5.84
bcd a 12.19 8.70 7.02 6.79

abcd e 21.86 16.82 15.35 14.55

recognition system with additional model length estimation
(MLE) as described in [3, 4]. Again, the WER of the MLE
based system can be decreased by our proposed modified
MMI training during both decoding passes down to 14.55%,
which is the currently best known WER in the literature.

5. Conclusions

We presented a novel confidence-based discriminative
training using a margin-based Maximum Mutual Informa-
tion training criterion for model adaptation in offline Arabic
handwriting recognition. The advantages of the proposed
methods using the HMM based multi-pass decoding system
were shown on the IFN/ENIT corpus.

The proposed discriminative training could outperform
the maximum-likelihood trained system on all cross folds.

The impact of different writing styles was dealt with a
novel confidence-based discriminative training for model
adaptation, where the usage of state-confidences during the
iterative optimization process based on the modified MMI
criterion could decrease the word-error-rate by 33% relative
in comparison to a maximum-likelihood trained system.

Acknowledgements. We would like to thank Christian
Gollan for his support. This work was partly realized as part
of the Quaero Programme, funded by OSEO, French State
agency for innovation.

References

[1] T. Anastasakos and S. Balakrishnan. The use of confidence
measures in unsupervised adaptation of speech recognizers.
In International Conference on Spoken Language Process-
ing, Sydney, Australia, 1998.

[2] R. Bertolami and H. Bunke. Hmm-based ensamble methods
for offline handwritten text line recognition. Pattern Recog-
nition, 41:3452–3460, 2008.

[3] P. Dreuw, S. Jonas, and H. Ney. White-space models for of-
fline arabic handwriting recognition. In International Con-
ference on Pattern Recognition, Tampa, Florida, USA, Dec.
2008.

[4] P. Dreuw, D. Rybach, C. Gollan, and H. Ney. Writer adap-
tive training and writing variant model refinement for of-
fline arabic handwriting recognition. In ICDAR, Barcelona,
Spain, July 2009.
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