

Confidence-Based Discriminative Training for Model Adaptation in Offline Arabic Handwriting Recognition

Philippe Dreuw, Georg Heigold, and Hermann Ney

dreuw@cs.rwth-aachen.de

International Conference on Document Analysis and Recognition – July 2009

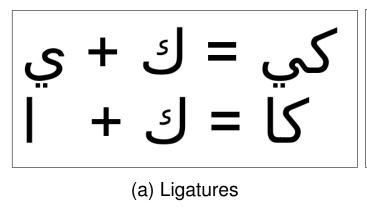
Human Language Technology and Pattern Recognition
Lehrstuhl für Informatik 6
Computer Science Department
RWTH Aachen University, Germany

Outline

- 1. Introduction
- 2. Adaptation of the ASR framework for Handwriting Recognition
 - discriminative training using modified MMI criterion
 - unsupervised confidence-based discriminative training during decoding
- 3. Experimental Results
- 4. Summary

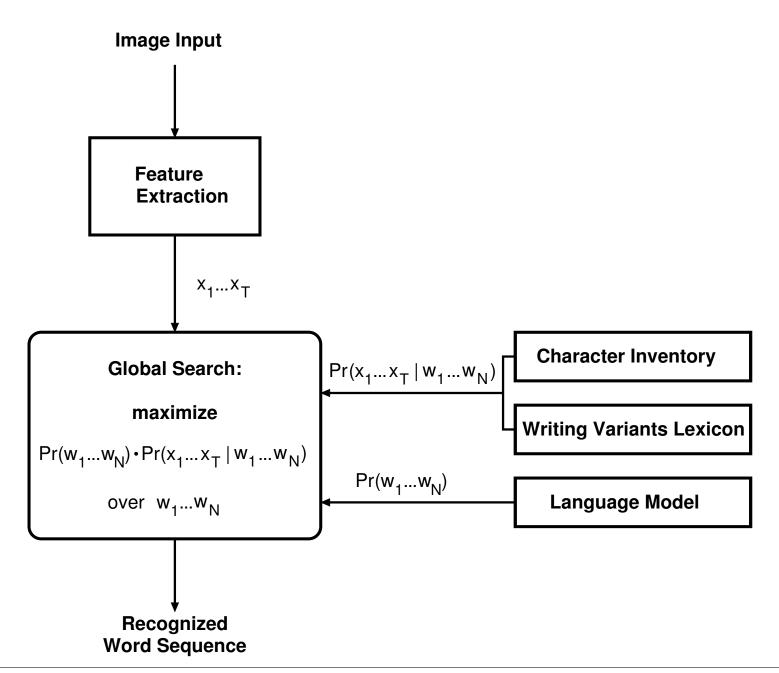
Introduction

- ► Arabic handwriting system
 - ▶ right-to-left, 28 characters, position-dependent character writing variants
 - ▶ ligatures and diacritics
 - ▶ Pieces of Arabic Word (PAWs) as subwords



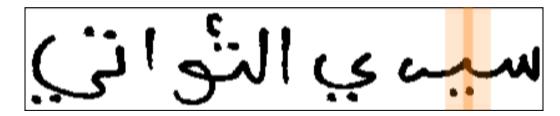
- state-of-the-art
 - preprocessing (normalization, baseline estimation, etc.) + HMMs
- ▶ our approach:
 - ▶ adaptation of RWTH-ASR framework for handwriting recognition
 - preprocessing-free feature extraction, focus on modeling

System Overview

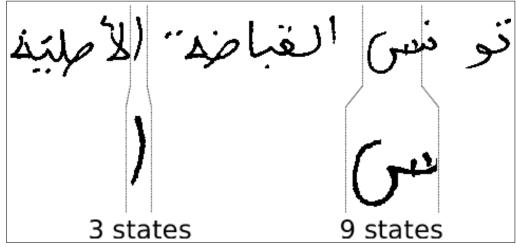


Visual Modeling: Feature Extraction and Model Length Estimation

- ► recognition of characters within a context, temporal alignment necessary
- ► features: sliding window, no preprocessing, PCA reduction



more complex characters should be represented by more HMM states



RWTH-OCR Training and Decoding Architectures

▶ Training

- ▶ Maximum Likelihood (ML)
- CMLLR-based Writer Adaptive Training (WAT)
- ▷ discriminative training using modified-MMI criterion (M-MMI)

▶ Decoding

- ▶ 1-pass
 - ML model
 - M-MMI model
- ▶ 2-pass
 - segment clustering for CMLLR writer adaptation
 - o unsupervised confidence-based M-MMI training for model adaptation

Training: Modified-MMI Criterion

ightharpoonup training: weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot x_t$$

1. ML: Maximum Likelihood

$$\omega_{r,s,t}:=1.0$$

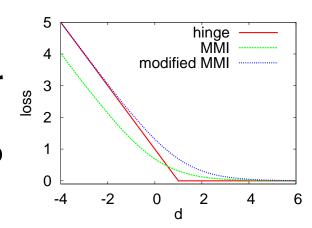
2. MMI: Maximum Mutual Information

$$\omega_{r,s,t} := rac{\sum\limits_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(W_r)}{\sum\limits_{V} \sum\limits_{s_1^{T_r}:s_t=s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(V)}$$

- $ightharpoonup \omega_{r,s,t}$ is the "(true) posterior" weight
- ▶ iteratively optimized with Rprop

Training: Modified-MMI Criterion

- margin-based training for HMMs
 - ▷ similar to SVM training, but simpler/faster
 within RWTH-OCR framework?
 - ▶ M-MMI = differentiable approximation to SVM optimization



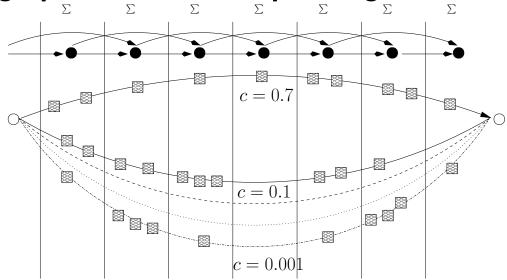
3. M-MMI:

$$\omega_{r,s,t}(
ho
eq 0) := rac{\sum\limits_{s_1^{T_r}: s_t = s} [p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(W_r) \cdot e^{-
ho\delta(W_r,W_r)}]^{\gamma}}{\sum\limits_{V} \sum\limits_{s_1^{T_r}: s_t = s} [p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(V) \cdot e^{-
ho\delta(W_r,V)}]^{\gamma}}$$

- $ightharpoonup \omega_{r,s,t}$ is the "margin posterior" weight
- $ightharpoonup e^{ho\delta(W_r,W_r)}$ corresponds to the margin offset
- ightharpoonup with $\gamma
 ightharpoonup \infty$ equals to the SVM hinge loss function
- iteratively optimized with Rprop

Decoding: Unsupervised Confidence-Based Discriminative Training

example for a word-graph and the corresponding 1-best state alignment



- ▶ necessary steps for margin-based model adaptation during decoding:
 - > 1-pass recognition (unsupervised transcriptions and word-graph)
 - calculation of corresponding confidences (sentence, word, or state-level)
 - unsupervised M-MMI-conf training on test data to adapt models (w/ regularization)
- can be done iteratively with unsupervised corpus update!

Decoding: Modified-MMI Criterion And Confidences

4. M-MMI-conf:

$$\omega_{r,s,t}(\rho \neq 0) := \underbrace{\frac{\sum\limits_{s_1^{T_r}: s_t = s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(W_r) \cdot e^{-\rho\delta(W_r,W_r)}}{\sum\limits_{s_1^{T_r}: s_t = s} p(x_1^{T_r}|s_1^{T_r})p(s_1^{T_r})p(V) \cdot \underbrace{e^{-\rho\delta(W_r,V)}}_{\text{margin}} \cdot \underbrace{\frac{\delta(c_{r,s,t} > c_{\text{threshold}})}_{\text{confidence}}}_{\text{posterior}}$$

weighted accumulation becomes:

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \underbrace{\omega_{r,s,t}(
ho)}_{\mathsf{margin \, posterior}_{
ho
eq 0}} \cdot \underbrace{c_{r,s,t}}_{\mathsf{confidence}} \cdot x_t$$

- confidences at:
 - sentence-, word-, or state-level

Training Criterions

ightharpoonup ML training: accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} x_t$$

ightharpoonup M-MMI training: weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot x_t$$

ightharpoonup M-MMI-conf training: confidence-weighted accumulation of observations x_t :

$$\mathsf{acc}_s = \sum_{r=1}^R \sum_{t=1}^{T_r} \omega_{r,s,t} \cdot c_{r,s,t} \cdot x_t$$

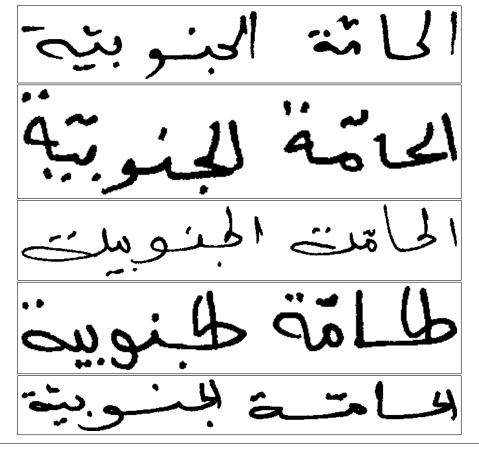
ightharpoonup with confidence $c_{r,s,t}$ at sentence-, word, or state-level

Arabic Handwriting - IFN/ENIT Database

- ▶ 937 classes
- ▶ 32492 handwritten Arabic words (Tunisian city names)
- ▶ database is used by more than 60 groups all over the world
- writer statistics

set	#writers	#samples
а	102	6537
b	102	6710
С	103	6477
d	104	6735
е	505	6033
Total	916	32492

examples (same word):



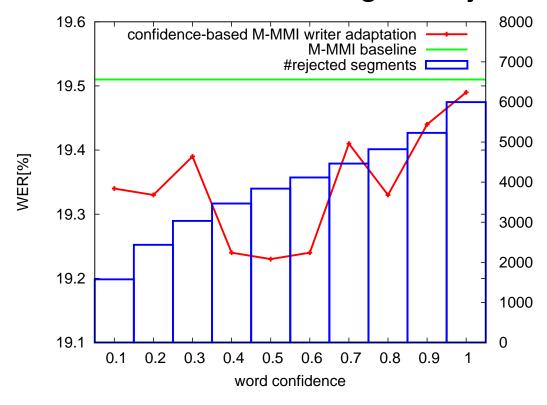
Results - Training: ML vs. MMI vs. Modified-MMI Criterion

- ► ML = Maximum Likelihood
- ► MLE = Model Length Estimation
- ► MMI vs. modified-MMI after 30 Rprop iterations
- ► ICDAR 2005 Setup [Comparison]

		WER [%]			
Train	Test	ML	+MLE	+MMI	+Modified MMI
abc	d	10.88	7.80	7.44	6.12
abd	С	11.50	8.71	8.24	6.78
acd	b	10.97	7.84	7.56	6.08
bcd	a	12.19	8.66	8.43	7.02
abcd	е	21.86	16.82	16.44	15.35

Results - Unsupervised Model Adaptation: M-MMI-conf

- ► M-MMI criterion with posterior confidences (M-MMI-conf)
- unsupervised training for model adaptation during decoding
- word-confidence based M-MMI-conf training and rejections



- \triangleright confidence threshold c=0.5
 ightarrow more than 60% segment rejection rate
- small amount of adaptation data only

Results - Unsupervised Model Adaptation: M-MMI-conf

- unsupervised training for model adaptation during decoding
- state-confidence based M-MMI-conf training and rejections
 - > arc posteriors from the lattice output from the decoder
 - > only word frames aligned with a high confidence in 1st pass
 - → unsupervised model adaptation
 - > only 5% frame rejection rate (20,970 frames of 396,416)
- ► ICDAR 2005 Setup [Comparison]

Training/Adaptation	WER[%]	CER[%]
ML	21.86	8.11
M-MMI	19.51	7.00
+ unsupervised adaptation	20.11	7.34
+ word-confidences	19.23	7.02
+ state-confidences	17.75	6.49
+ supervised adaptation	2.06	0.77

Arabic Handwriting - Experimental Results for IFN/ENIT

► ICDAR 2005 Setup [Comparison]

Train	Test	WER[%]			
		1st pass			2nd pass
		ML	+MLE	+M-MMI	M-MMI-conf
abc	d	10.88	7.80	6.12	5.95
abd	С	11.50	8.71	6.78	6.38
acd	b	10.97	7.84	6.08	5.84
bcd	a	12.19	8.66	7.02	6.79
abcd	е	21.86	16.82	15.35	14.55

Arabic Handwriting - Experimental Results for IFN/ENIT

- ▶ evaluation of RWTH-OCR systems at *Arabic HWR Competition*, ICDAR 2009
 - external evaluation at TU Braunschweig, Germany
 - \triangleright set f and set s are unknown (not available)
 - unsupervised M-MMI-conf model adaptation achieved similar improvements
 - ▷ 3rd rank (group)

ID	WRR[%]					
			set f_g			
RWTH-OCR, ID12						
RWTH-OCR, ID13	87.17	88.63	88.68	85.69	72.54	
RWTH-OCR, ID15	86.97	88.08	87.98	83.90	65.99	
A2iA, ID8	90.66	91.92	92.31	89.42	76.66	
MDLSTM, ID11	94.68	95.65	96.02	93.37	81.06	

► Note:

▶ focus on modeling (ID12 and ID13) and speed (ID15) - no preprocessing

Summary

- ► RWTH-ASR → RWTH-OCR
 - simple feature extraction and preprocessing
 - ▶ Arabic: created a SOTA system, ranked 3rd at ICDAR 2009
 - Latin: created a SOTA system, best single system
- discriminative training
 - margin-based HMM training (ML vs. MMI vs. M-MMI)
 - unsupervised confidence-based MMI model adaptation (M-MMI-conf)
 - relative improvements of about 33% w.r.t. ML training
- ongoing work
 - **▶** to be evaluated in ASR experiments
 - ▶ impact of preprocessing in feature extraction (Arabic vs. Latin)

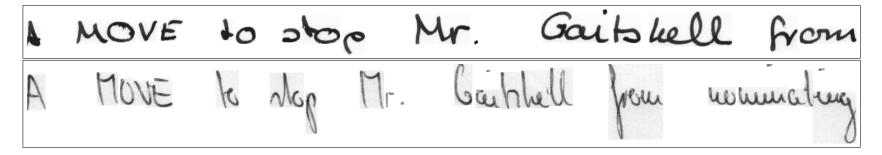
 - character context modeling (e.g. CART)
 - ▶ further databases/languages

Outlook: Latin Handwriting - IAM Database

► English handwriting, continuous sentences

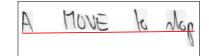
	Train	Devel	Eval 1	Eval 2	Total
Lines	6,161	1,861	900	940	9,862
Running words	53,884	17,720	7,901	8,568	88,073
Vocabulary size	7,754	3,604	2,290	2,290	11,368
Characters	281,744	83,641	41,672	42,990	450,047
Writers	283	128	46	43	500
OOV Rate		≈ 15 %	≈ 17 %	≈ 15 %	

Example lines:

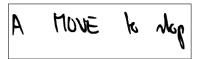


Outlook: Latin Handwriting - UPV Preprocessing

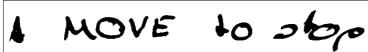
Original images

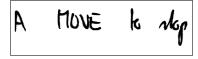


► Images after color normalisation



► Images after slant correction





Images after height normalisation

Outlook: Latin Handwriting - Experimental Results on IAM Database

Systems	Devel WER [%]	Eval WER [%]
RWTH-OCR*		
Baseline	81.07	83.60
+ UPV Preprocessing	57.59	65.26
+ LBW LM & 20k Lexicon	34.64	41.45
+ discriminative training (M-MMI)	29.40	35.32
Other Single Systems		
[Bertolami & Bunke 08]	30.98	35.52
[Natarajan & Saleem+ 08]	_	40.01
[Romero & Alabau ⁺ 07]	30.6	-
System Combination		
[Bertolami & Bunke 08]	26.85	32.83

^{*}see [Jonas 09] for details

Thank you for your attention

Philippe Dreuw

dreuw@cs.rwth-aachen.de

http://www-i6.informatik.rwth-aachen.de/

References

- [Bertolami & Bunke 08] R. Bertolami, H. Bunke: Hidden Markov model-based ensemble methods for offline handwritten text line recognition. *Pattern Recognition*, Vol. 41, No. 11, pp. 3452–3460, Nov 2008. 21
- [Dreuw & Jonas⁺ 08] P. Dreuw, S. Jonas, H. Ney: White-Space Models for Offline Arabic Handwriting Recognition. In *International Conference on Pattern Recognition*, Tampa, Florida, USA, Dec. 2008. 33
- [Jonas 09] S. Jonas: Improved Modeling in Handwriting Recognition. Master's thesis, Human Language Technology and Pattern Recognition Group, RWTH Aachen University, Aachen, Germany, Jun 2009. 21
- [Natarajan & Saleem⁺ 08] P. Natarajan, S. Saleem, R. Prasad, E. MacRostie, K. Subramanian: *Arabic and Chinese Handwriting Recognition*, Vol. 4768/2008 of *LNCS*, chapter Multi-lingual Offline Handwriting Recognition Using Hidden Markov Models: A Script-Independent Approach, pp. 231–250. Springer Berlin / Heidelberg, 2008. 21
- [Romero & Alabau⁺ 07] V. Romero, V. Alabau, J.M. Benedi: Combination of N-Grams and Stochastic Context-Free Grammars in an Offline Handwritten

Recognition System. *Lecture Notes in Computer Science*, Vol. 4477, pp. 467–474, 2007. 21

Appendix: Comparisons for IFN/ENIT

► ICDAR 2005 Evaluation

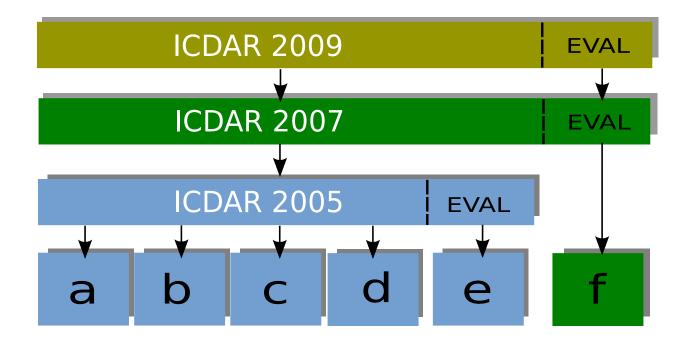
Rank	Group	WRR [%]		
		abc-d	abcd-e	
1.	UOB	85.00	75.93	
2.	ARAB-IFN	87.94	74.69	
3.	ICRA (Microsoft)	88.95	65.74	
4.	SHOCRAN	100.00	35.70	
5.	TH-OCR	30.13	29.62	
	BBN	89.49	N.A.	
1*	RWTH	94.05	85.45	

^{*}own evaluation result (no tuning on test data)

Appendix: Arabic Handwriting - IFN/ENIT Database

Corpus development

- ▶ ICDAR 2005 Competition: a, b, c, d sets for training, evaluation on set e
- ► ICDAR 2007 Competition: ICDAR05 + e sets for training, evaluation on set f
- ► ICDAR 2009 Competition: ICDAR 2007 for training, evaluation on set f



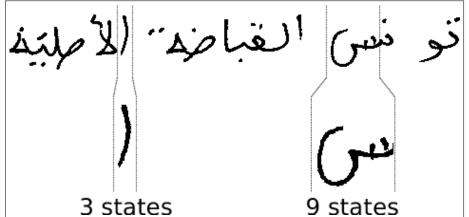
RMTH

Appendix: Participating Systems at ICDAR 2005 and 2007

- MITRE: Mitre Cooperation, USA over-segmentation, adaptive lengths, character recognition with post-processing
- ▶ UOB-ENST: University of Balamand (UOB), Lebanon and Ecole Nationale Superieure des Telecommunications (ENST), Paris HMM-based (HTK), slant correction
- MIE: Mie University, Japan segmentation, adaptive lengths
- ► ICRA: Intelligent Character Recognition for Arabic, Microsoft partial word recognizer
- SHOCRAN: Egypt confidential
- ► TH-OCR: Tsinghua Universty, Beijing, China over-segmentation, character recognition with post-processing
- ► CACI: Knowledge and Information Management Division, Lanham, USA HMM-based, trajectory features
- ► CEDAR: Center of Excellence for Document Analysis and Recognition, Buffalo, USA over-segmentation, HMM-based
- ► PARIS V / A2iA: University of Paris 5, and A2iA SA, France hybrid HMM/NN-based, shape-alphabet
- ► Siemens: SIEMENS AG Industrial Solutions and Services, Germany HMM-based, adapative lenghths, writing variants
- ► ARAB-IFN: TU Braunschweig, Germany HMM-based

Appendix: Visual Modeling - Model Length Estimation

more complex characters should be represented by more HMM states



ightharpoonup the number of states S_c for each character c is updated by

$$S_c = rac{N_{x,c}}{N_c} \cdot lpha$$

with

 S_c = estimated number states for character c

 $N_{x,c}$ = number of observations aligned to character c

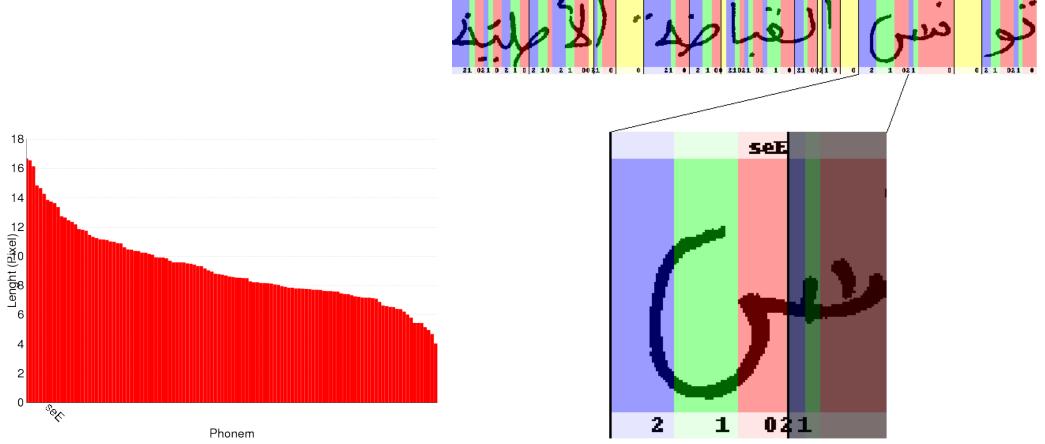
 N_c = character count of c seen in training

 α = character length scaling factor.

Appendix: Visual Modeling - Model Length Estimation

Original Length

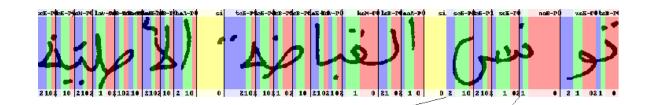
- ightharpoonup overall mean of character length = 7.9 pixel (pprox 2.6 pixel/state)
- ▶ total #states = 357

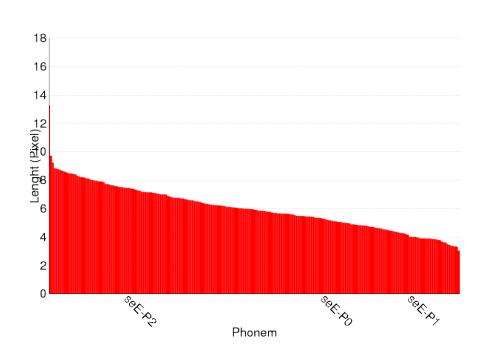


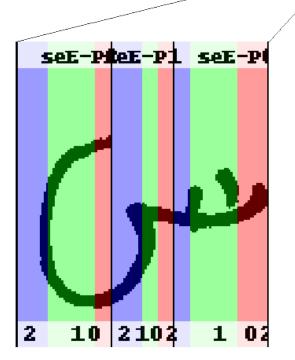
Appendix: Visual Modeling - Model Length Estimation

Estimated Length

- ightharpoonup overall mean of character length = 6.2 pixel (pprox 2.0 pixel/state)
- **▶** total #states = 558

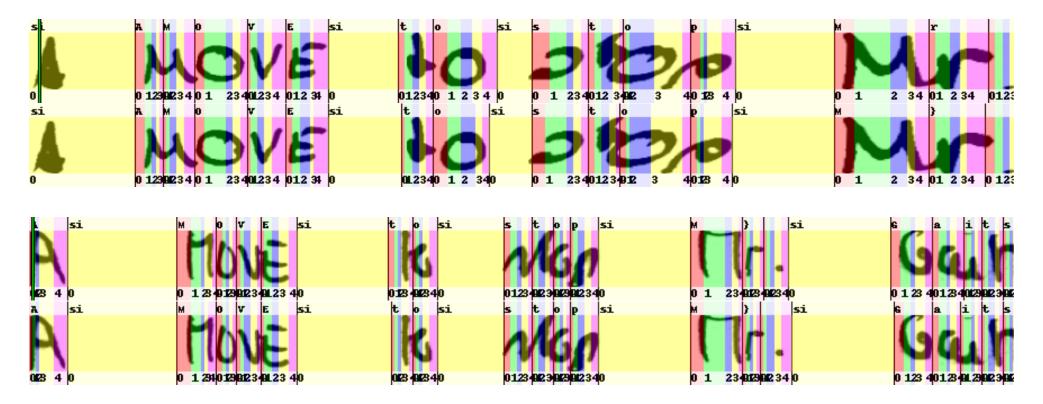






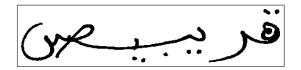
Appendix: Alignment Visualization

- alignment visualization with and without discriminative training
- upper lines with 5-2 baseline setup, lower lines with additional discriminative training

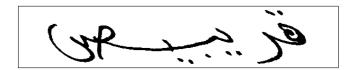


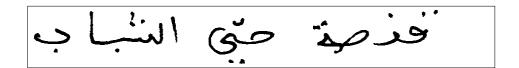
Appendix: Arabic Handwriting - UPV Preprocessing

Original images

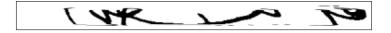


Images after slant correction





► Images after size normalisation

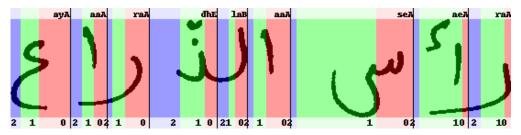


Experimental Results:

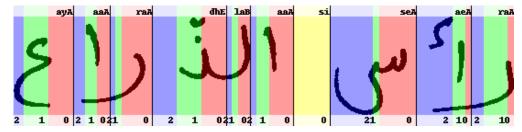
- **▶** important informations in ascender and descender areas are lost
- ▶ not yet suitable for Arabic HWR

Appendix: Visual Modeling - Writing Variants Lexicon

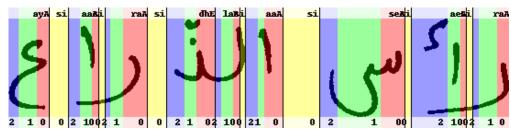
- most reported error rates are dependent on the number of PAWs
- without separate whitespace model



always whitespaces between compound words



whitespaces as writing variants between and within words



White-Space Models for Pieces of Arabic Words [Dreuw & Jonas + 08] in ICPR 2008

