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Abstract

We show how ROVER and confusion network combination
(CNC) can be improved with classification. The general idea
of improving combination with classification is that each word
is assigned to a certain location and at each location a classifier
decides which of the provided alternatives is most likely cor-
rect. We investigate four variations of this idea and three dif-
ferent classifiers, which are trained on various features derived
from ASR lattices.

For our experiments, we use highly optimized ROVER and
CNC systems as baseline, which already give a relative reduc-
tion in WER of more than 20% for the TC-STAR 2007 English
task. With our methods we can further improve the result of the
corresponding standard combination method.

Index Terms: speech recognition, system combination

1. Introduction

System combination is an indispensable part of state-of-the-art
LVCSR systems. It is part of the complex decoding structure of
modern recognizers and used to ultimately combine the results
from different systems, e.g. [1] and [2]. In this paper we inves-
tigate the combination of lattices provided from different sites.
The three standard approaches for lattice based system combi-
nation considered are ROVER, confusion network combination
(CNC), and min.fWER combination. In Section 2 we shortly
repeat these approaches and present a tuning scheme which al-
lows us to optimize all free parameters together w.r.t. to mini-
mum WER. Results on the TC-STAR 2007 English task show a
reduction in WER of more than 20% relative w.r.t. to the best
single system. These results serve as baseline for the improved
combination methods we introduce in Section 3.

The idea of improving ROVER has been explored before in
[3] and [4]. The first approach used a neural network fed with
basic features derived from single best hypothesis only. The
latter work introduced {ROVER, the idea of improving ROVER
with classification and various, lattice-based features. In this
paper we further investigate fROVER and we explore two ways
of improving CNC with classification. In the first approach we
simply let the classifier decide whether the first or the second
hypothesis is correct. This approach was successfully applied
in [5] for improving CN decoding performance. The alternative
approach assigns the tROVER idea to CNC and let the classifier
choose between CNC and the single system’s CN hypotheses.
Other related work is [6], where the authors improve CN decod-
ing by SVMs using features from especial acoustic models.

The features derived from the individual lattices are de-
scribed in detail in Section 4. Section 5 introduces the three
classifiers we apply in this work: Boostexter, random forests,
and maximum entropy models. In Section 6 we present re-
sults for the various improved combination methods. We show
that all improved methods gain over their standard counterparts,

where the largest gains are observed for ;(ROVER. The gains for
improved CNC are rather small and we finish the section with
an analysis of these results. In the final section we draw conclu-
sions and discuss future work.

2. System Combination

The most simple combination technique is ROVER, which com-
bines single best output from multiple ASR systems. The lat-
tices are used only for providing word confidence scores, which
we compute according to [7]. ROVER works in two steps. In
the first step the hypotheses are aligned via a Levenshtein align-
ment with the time overlap between words as a local cost. The
result of the alignment is a series of slots each containing a word
per system together with its confidence. In case of a deletion the
empty word together with a default confidence is inserted. De-
coding is done for each slot separately, where the word with the
maximum total confidence is chosen. Setting all confidences to
1 results in doing a majority vote.

The main idea of confusion network combination as pro-
posed in [8] is similar to ROVER: instead of aligning the single
best output, we align confusion networks which are built from
the individual lattices. The advantages over ROVER are that
each slot contains many hypotheses and hence CNC has a much
lower oracle error rate. Each slot in the source CNs provides
a posterior distribution over all words. In contrast to ROVER,
we can now compute for each slot and word the combined word
posterior probability over all systems. The word posterior prob-
ability for the combined CN is the weighted average of the in-
dividual slot-wise posteriors. In decoding we choose the word
with the highest combined posterior probability.

We build CNs directly from lattices using our own algo-
rithm which is based on [9], but uses a pivot path in order to
accelerate the CN construction as proposed in [10].

The min.fWER combination method was introduced
in [11]. It is motivated by the observation that frame error
(fWER) and true WER are highly correlated. In a first step
the union over all lattices is built and frame-wise word poste-
rior probability distributions are computed. These are used to
rescore each arc in the union lattice with the expected, normal-
ized frame error. In the decoding step the path with the mini-
mum expected frame error is chosen.

In our experiments we have lattices for each system c, with
a total of C systems. For each system we are provided with
acoustic and language model (LM) scores. For calculating lat-
tice forward-backward scores we set the scale of the acoustic
scores to a.. /3. and the LM scale to o, where . is the original
LM scale of system c and a. is initialized with 1. When com-
bining posterior probabilities among systems, we assign each
system a weight w.. First, we optimize for each combination
method the parameters o, and we, ¢ € [1,C]. Optimization
starts with a grid search over the weights followed by the sepa-
rate tuning of each a.. Finally, we use the result from the previ-



ous step as starting point for the Nelder-Mead downhill simplex
optimization algorithm (AMOEBA). The preceding grid search
turned out to be necessary for finding a starting point for down-
hill simplex that eventually converges to a good local minimum.
For min.fWER combination we include the normalization fac-
tor for the frame error in the optimization loop.

3. Improving System Combination with
Classification

The core idea of ROVER and CNC is to cluster lattice arcs into
slots and thus reduce the global decoding task to a local deci-
sion problem. The resulting decision rules are simple and rather
ad-hoc in the case of ROVER. In contrast, for CNC the decision
rule minimizes the expected WER, but the decision is biased by
the underlying CNs, which do not provide the true word pos-
terior probabilities, e.g. [12]. Both decision rules use only a
fraction of the information provided by the lattices. Thus, we
expect to improve combination accuracy by replacing the deci-
sion rules by classifiers, which can make favorable use of all the
available information.

3.1. {ROVER

The idea of replacing the decision rule of ROVER by a classifier
was explored in [3] and [4]. In the latter work we aimed to im-
prove performance by classification and by enhancing ROVER
with information from min.fWER combination. Here, ROVER
refers to the approach where the original ROVER alignment is
used and the classifier can choose from the C' systems. The
idea of coupling min.fWER combination and ROVER is imple-
mented by treating the min.fWER hypothesis as an additional
system, which is added to the hypotheses of the C systems. The
ROVER alignment is now computed over the C'+ 1 hypotheses,
where the classifier can also choose from the C'+ 1 alternatives.

3.2. iCN and :CNC

We investigate two approaches for improving CNC decoding by
classification. The first approach follows [5]: we simply decide
among the N-best hypotheses for each slot, where the hypothe-
ses are ordered according to their combined slot-wise word pos-
teriors. We refer to this method as i{CN(N=-). Choosing N=2
already gives an oracle error rate lower than the corresponding
ROVER oracle error rate. The second approach, which we call
iCNC, follows directly the {ROVER+min.fWER method: we
let the classifier choose between the CNC hypothesis and the C'
hypotheses derived from the CNs of the individual lattices.

4. Features

We generate a feature vector for each slot of the ROVER(CNC)
alignment, which is then used as input for classifier training.

4.1. Lattice pre-processing

We normalize the lattices following the procedure described
in [4]. Here, in vocabulary normalization we observed a prob-
lem in dealing with contractions like “it’s”. Ideally, we would
preserve the form hypothesized by the recognizer, but it turned
out that some systems model the difference only in the pronun-
ciation, e.g. the phrase “it_is” is associated with the pronuncia-
tions for “it’s” and “itis”. And we observed that in the reference
transcription almost solely the expanded form is used. As a re-
sult, when we left the contractions as they are, the classifiers
started to learn to expand “it’s” to “it is”. On the other hand
when expanding all contractions we loose accuracy in the time
marks which causes a consistent performance decrease of 0.1
or more for min.fWER combination, which highly depends on
correct time marks. In the end we decided to do the expansion,

Table 1: Baseline results for eval07, WER[%].ROVER results
in brackets are produced with majority voting.

Viterbi/ CN(C) | min.fWER

System ROVER (comb.)

1 94 9.0 9.0

2 9.8 9.5 9.6

3 10.2 10.1 10.1

4 9.8 9.8 9.8
1+2 8.1(9.4) 7.4 7.6
1+2+43 7.8(7.9) 7.1 7.4
1+243+4 || 7.5(7.5) 7.1 7.2

because we assume it gives the lower bias to classifier training.

4.2. Features Sets

Throughout our experiments we use different feature sets. For
each word hypothesis we compute a set of word features. The
set includes the acoustic and LM score, word duration, the num-
ber of characters, and the averaged character duration, which
serves as an approximation of the phoneme duration. Further-
more, we add the information if the word is in the list of the 10,
20, or 100 words causing the most errors. In our first work we
included the word identity as a feature, but further experiments
indicated that the feature is not helpful.

The second set of features includes all features derived
from lattice posterior probabilities. This includes CN confi-
dence and CN slot entropy of the system that hypothesized the
word and the additional CNC confidence and slot entropy for
the ¢{CN(C) approaches. Furthermore, we calculate confidences
based on frame-wise posterior probabilities across all systems
and from the combined frame-wise posterior probability distri-
butions. Cross-system confidence means that we use the statis-
tics from system A to estimate a confidence for a hypothesis
of system B. A classifier can use these confidences as an indi-
cator for OOV words. We refer to this feature set as posterior
features.

For each slot the main feature vector consists of the word
features for all hypotheses combined in the slot. We con-
sider the slot context by adding the minimum distance in sec-
onds to the preceding(subsequent) slot and the word features
for all hypotheses in the preceding(subsequent) slot. For the
tROVER approaches we provide a binary feature indicating
whether a hypothesis matches the ROVER or the min.fWER
choice (:ROVER+min.fWER only). An equivalent feature indi-
cates for ¢§CNC whether a hypothesis matches the CNC vote.

For experiments using posterior features we add for each
hypothesis the posterior features from all systems.

5. Classifier

In our previous work, [4], we employed Boostexter (BT), [13].
The idea of BT is to learn a series of weak classifiers (decision
stumps) and reweight the training examples using Adaboost,
real Adaboost. MH with logistic loss in our experiments. An
alternative are random forests (RF), which replace the weak
classifier by a more powerful full decision tree and use ran-
domization instead of boosting. The RF implementation used
is the Randomized C4.5 as suggested in [14]. Randomization
can outperform boosting in the presence of noisy training data,
because boosting can start to focus on the wrongly labeled ex-
amples. We label the training data by performing an alignment
between the aligned CNs (or the aligned single best hypotheses
in the ROVER case) and the reference. Here, we have at least
three sources of error: the oracle alignment is ambiguous, the
CNs only approximate the minimum WER alignment of the hy-
potheses, and even with a careful pre-processing we still have
mismatches due to imperfect text normalization.



Table 2: Training and test corpora statistics for TC-STAR 2007.

#features #samples
train | test

2 systems

1ROVER 75 3,032 3,215
{ROVER+min.fWER 108 3,115 3,301
iCNC 71 647 659
iICN(N=2) 99 28,900 | 26,961
3 systems

iROVER 111 4,237 4,386
iROVER+min.fWER 147 4,207 4,416
iCNC 94 1,709 1,801
iICN(N=2) 126 32,624 | 30,069
4 systems

1ROVER 149 5,320 5,178
{ROVER+min.fWER 188 5,346 5,207
iCNC 166 3,696 3,354
iICN(N=2) 157 33,252 | 30,504

As an alternative to the two decision tree based ap-
proaches we present results using a Maximum Entropy (Max-
ent) model, [15]. In speech recognition Maxent taggers have
been successfully applied to ASR post-processing tasks, e.g. for
meta data extraction [16].

We build the training and test sets for the classifiers from the
confusion network produced by either ROVER or CNC. From
an oracle alignment we know for each slot the according refer-
ence word. For some slots the reference word is not included
and we label these examples as rejects. If a reject is hypothe-
sized in decoding, we back off to the baseline hypothesis.

In the ¢CN approach the remaining examples are labeled
with the position of the matching hypothesis, where we use in
training as well as in testing only slots having more than one
alternative. For the other approaches we label each example
with the numbers of all the systems hypothesizing the correct
word and thus allowing multi labels. BT can directly handle
multi labels in training, unlike RF and Maxent. For the latter
we explored two approaches for converting the multi label to
a single label problem. The first approach is to build a new
label set which consists of one label for each combination of
the original labels that occur in training. In preliminary tests this
approach worked best for Maxent. In classification the Maxent
model assigns a probability to each label, which we count back
to probabilities for the original labels.

The investigated alternative is to tackle the multi label prob-
lem by doing a One-vs.-All classification. For each label we
build a binary classifier. In classification we apply each classi-
fier and choose the label with the highest score. This approach
worked best for random forests, where the score used is simply
the number of trees that voted for the given label.

6. Experiments

We present results for the combination of up to four lattice
sets from the English Task of the TC-STAR 2007 Evaluation
Campaign. Our TC-STAR project partners kindly provided us
their lattices. The task and the applied systems are described
in [17], [18], and [1]. We perform parameter tuning and classi-
fier training on the development set. All results presented in this
paper are produced on the evaluation set. The baseline results
are produced on the pre-processed lattices and are summarized
in Table 1.

6.1. Experimental Setup

For each classifier we extract training and test samples as de-
scribed in Section 5. Table 2 shows the statistics for the differ-

Table 3: iROVER combination results for eval07, WER[%].

[ {ROVER [[ 2 systems [ 3 systems [ 4 systems |
word features
Boostexter 79 7.6 7.6
Random forests 7.9 7.6 7.4
Maxent 7.9 7.8 -
word and posterior features
Boostexter 7.6 7.4 7.3
Random forests 7.7 7.4 7.2
Maxent 7.8 7.6 -

Table 4: Combination results with Boostexter (BT) and random
forests (RF) as classifier for eval07, WER[%].
[ [[ 2systems | 3 systems [ 4 systems |

iROVER BT 7.6 74 73
RF 7.7 74 72
"ROVER BT 76 72 7.0
+minfWER RF 75 73 7.0
iCNC BT 74 71 6.9
RF 7.4 7.1 6.9
iCN(N=2) BT 75 72 71
RF 7.4 7.1 7.0

ent tasks. The feature dimensionality for ¢CNC is lower than
for tROVER, because we consider only the CNC hypothesis
as left(right) context. Due to the limited training data we ap-
ply 10-fold cross-validation for tuning the classifier parameters.
With the optimal parameter set we train the final classifier on
the complete data. For Boostexter and Maxent the optimized
parameter is the number of iterations, which we choose for each
task separately. Random forests proved not to be very sensitive
to parameter tuning: in the end we used C4.5 with default op-
tions and 100 trees for all tasks.

6.2. Results and Analysis

In our first set of experiments we explore the influence of the
posterior features on overcoming simple ROVER. From Table 3
we learn that using a classifier with only the simple word fea-
tures improves considerably over ROVER. Adding the posterior
features boost tROVER performance to the level of min.fWER
combination.

Table 4 shows the results of a direct comparison of the four
¢ approaches. As expected, (ROVER+min.fWER goes beyond
{ROVER and can take over min.fWER combination but fails
on improving over CNC. We suppose that tROVER+min.fWER
can compensate for some of the errors described in Section 4.
iCNC performs best and can slightly improve over CNC. En-
couraged by the results presented in [5] we hoped to see nice
improvements for ¢CN, but disappointingly it is only able to
compensate for a few errors.

Boostexter and random forests are mostly on the same level
with some advantages for RF. Especially for the hard ¢CNC and
iCN tasks RF seems to be more robust. We applied Maxent only
to a few tasks, where the results are slightly worse than BT and
RF. Recently, we started some experiments using second order
posterior features which seems to help for Maxent, unlike BT
and RF. The Maxent toolkit used applies the General Iterative
Scaling (GIS) algorithm which causes extremely long runtime,
e.g. 100K iterations for the tROVER/2-system task and 1M for
the tROVER/3-system task, without giving an advantage over
BT and RF, which is eventually the reason why we don’t present
more Maxent results.

We expected ¢CNC and ¢CN to perform better. Oracle error
rates show that there is much latitude for improvements for all
approaches, with the lowest oracles for {CN(N=2). We tried
1CN(N=3) which gives a nice improvement in oracle but not in
true error rate.



Table 5: Error detection and correction results for eval07 for
Sfour systems and with a random forest as classifier.

vanced Research Projects Agency (DARPA) under Contract No.
HRO0O011-06-C-0023. Any opinions, findings and conclusions or
recommendations expressed in this material are those of the au-
thor(s) and do not necessarily reflect the views of the Defense

error detection error correction

recall | prec. recall | prec.

iROVER 0.22 0.7 0.16 0.52
(357/1,658) | (357/514) || (269/1,658) | (269/514)

iROVER 0.16 0.72 0.12 0.51
+min.fWER || (267/1,629) | (267/369) || (189/1,629) | (189/369)

iCNC 0.14 0.71 0.1 0.48
(153/1,086) | (153/215) || (104/1,086) | (104/215)

iICN(N=2) 0.08 0.63 0.06 0.46
(153/2,018) | (153/244) || (113/2,018) | (113/244)

For a further analysis of the different approaches we looked
at the error detection and correction statistics. For a sequence
of slots S we denote the reference word for a slot s € S as
W ref, the baseline hypothesis as W pase (€ither the ROVER,
min.fWER, or CNC hypothesis), and the classifier hypothesis
as ws. Now, we define recall and precision for error detection
and correction as follows:

Pses HWs#Ws base A Ws baseZWs,rof }
205 H{Ws base#Ws,ref
Pses HWs#Ws base A Ws baseZWs,rof }
Zs {ws #Ws,base}
Pses H{Ws#Ws base N Ws=Ws rof }
205 H{Ws base#Ws,ref
Dses HWs#Ws base A Ws=Wg ref}

Zs l{Ws?sWs,base}

IeCdetect S

PIeCyetect S

(
(
(
(

T€Ccorrect S

):
=
):
):

S

preccorrect
Table 5 gives the performance obtained with RF as classifier
applied on the four systems task; the results for the other cor-
pora and classifiers show the same tendencies. We see that for
iROVER, {ROVER+min.fWER, and ¢CNC the precisions re-
main almost constant, whereas the recall values decrease. This
suggests that the iROVER approaches mostly compensate for
errors that were already wiped out by CNC and thus :CNC im-
proves only slightly. Looking at the hypotheses produced by the
three approaches support the conclusion. Comparing :CNC and
1CN we see that the absolute number of recovered and corrected
errors is almost equal for both approaches, but {CN produces
many more false positives. Thus, for the tested classifiers and
features it helps to apply the ROVER constraint, i.e. to restrict
the choice to hypotheses that occurred at least for one system
as best hypothesis. That ¢CN behaves worse because of seeing
more data implies that either the feature set or the modeling is
still insufficient.

7. Conclusions and Outlook

We showed that classification can improve ROVER even on a
set of very basic features available from all ASR systems. The
usage of more sophisticated features derived from ASR lattices
further improves ROVER. These features in conjunction with
classification help as well to improve min.fWER and confusion
network combination (CNC).

The improvements over a highly optimized CNC baseline
are present but rather small and the question arises whether we
are already at the limits of improving combination with clas-
sification. For a final judgement further research is required.
We plan to overcome shortcomings of the presented features by
exploring features of higher degree and from additional knowl-
edge sources. At the classifier-side we consider conditional ran-
dom fields an interesting approach as they are able to model
long-term context dependencies.
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